
Hardware/Software Co-Design for Matrix Computations on Reconfigurable
Computing Systems ∗

Ling Zhuo and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
{lzhuo, prasanna}@usc.edu

Abstract

Recently, reconfigurable computing systems have been
built which employ Field-Programmable Gate Arrays (FP-
GAs) as hardware accelerators for general-purpose proces-
sors. These systems provide new opportunities for scientific
computations. However, the co-existence of the processors
and the FPGAs in such systems also poses new challenges
to application developers. In this paper, we investigate a
design model for hybrid designs, that is, designs that uti-
lize both the processors and the FPGAs. The model char-
acterizes a reconfigurable computing system using various
system parameters, including the floating-point computing
power of the processor and the FPGA, the number of nodes,
the memory bandwidth and the network bandwidth. Using
the model, we investigate hardware/software co-design for
two computationally intensive applications: matrix factor-
ization and all-pairs shortest-paths problem. Our designs
balance the load between the processor and the FPGA, as
well as overlap the computation time with memory trans-
fer time and network communication time. The proposed
designs are implemented on 6 nodes in a Cray XD1 chas-
sis. Our implementations achieve 20 GFLOPS and 6.6
GFLOPS for these two applications, respectively.

1 Introduction

FPGAs are a form of reconfigurable hardware. They
offer the design flexibility of software, but with time per-
formance closer to Application Specific Integrated Circuits
(ASICs). Due to their low computing density, early FP-
GAs were mainly used for applications that were not com-
putationally demanding. However, with rapid advances in
technology, current FPGA devices contain much more re-

∗Supported by the United States National Science Foundation under
grant No. CCR-0311823 and in part by No. ACI-0305763.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

sources than their predecessors [20]. Thus, FPGAs have
been employed to accelerate various scientific applications
and have achieved superior performance compared with
general-purpose processors [19, 21].

With the increasing computing power of FPGAs, high-
end systems that employ FPGAs as application-specific ac-
celerators have been built. Such systems include SRC 6 and
7 [16], Cray XD1 and XT3 [4], SGI RASC [15], among oth-
ers. These systems contain multiple compute nodes (also
called nodes) that are connected through an interconnect
network. Each node contains both FPGAs and general-
purpose processors. These reconfigurable computing sys-
tems provide multiple levels of parallelism. Coarse-grain
parallelism can be employed on multiple computing nodes,
while fine-grain parallelism can be explored on the FPGAs.
Moreover, within each node, the processors and the FPGAs
can collaborate to compute the tasks assigned to the node.
Thus, such systems can achieve higher performance than
systems with processors only.

However, to effectively utilize a reconfigurable comput-
ing system, certain design challenges have to be addressed.
One of them is the workload partition between hardware
(FPGA accelerators) and software (executed on the pro-
cessors) within each node. An efficient partitioning tech-
nique should consider not only the computing power of the
processor and the FPGA, but also the data transfer time
between them. Another design challenge is the workload
distribution among multiple nodes. Moreover, when data
are exchanged among the nodes, the hardware/software co-
design within each node needs to take network communica-
tion costs into consideration. To the best of our knowledge,
these issues have not been addressed in previous works.

In this paper, we propose a design model for hybrid
designs on reconfigurable computing systems for a class of
applications. The designs are hybrid in that they utilize both
the processors and the FPGAs in the system. The model
provides various design parameters to analyze a system, in-
cluding the floating-point computing power of the processor
and the FPGA, the number of nodes, the memory bandwidth

as well as the network bandwidth. Using the model, we
propose designs for two example applications, LU decom-
position for matrix factorization and Floyd-Warshall algo-
rithm [3] for all-pairs shortest-paths problem. Both of these
applications are used extensively in scientific computing.

For each example application, we identify various tasks.
Based on the inherent attributes of the tasks and the system
parameters, hardware/software partitioning is performed.
For LU decomposition, we partition the computations of
one type of tasks (block matrix multiplication) between the
processor and the FPGA, and perform all the other types of
tasks on the processor only. For the Floyd-Warshall algo-
rithm, the tasks are not partitioned because they contain a
large number of data dependencies. Instead, a task is as-
signed entirely either to the processor or to the FPGA. The
partition is further optimized by overlapping the computa-
tions with the data transfer and network communications.

To illustrate our ideas, we implemented our designs
on Cray XD1. In our implementations, 6 nodes are used.
Within each node, our designs employ a 2.2 GHz AMD
Opteron processor and a Xilinx XC2VP50 FPGA. The
nodes communicate using MPI (Message Passing Inter-
face) [13]. Two baseline designs are used for performance
comparison. “FPGA-only design” employs the FPGAs in
the nodes only, while “Processor-only design” employs
only the processors. Using 6 nodes in one chassis of
XD1, our hybrid design achieves 20 GFLOPS for LU
decomposition. It achieves 1.3X speedup and 2X speedup
over the Processor-only design and the FPGA-only design,
respectively. For the Floyd-Warshall algorithm, the hybrid
design achieves 6.6 GFLOPS. It achieves 5.8X speedup
and 1.15X speedup over the Processor-only design and the
FPGA-only design, respectively. Experimental results also
show that our designs achieve more than 80% of the sum of
the performance of the two baseline designs. The proposed
design model can also be used for performance prediction
of a given application. Our designs achieve more than 85%
of the performance predicted by the design model.

The rest of the paper is organized as follows. Section II
introduces related work. Section III discusses representa-
tive systems and architectural model of the reconfigurable
computing systems. Section IV presents the design model
for hybrid designs. Section V presents our hybrid designs
for the example applications. Section VI presents the
experimental results on XD1 and analyzes the performance.
Section VII concludes the paper.

2 Related Work

In [9], an FPGA-based design for Conjugate Gradient
iterative method is developed using a HLL (high-level
language)-to-HDL (hardware description language) com-
piler on an SRC reconfigurable computer. In [17], a design

for all-pairs shortest-paths is implemented on one node of
Cray XD1. In these designs, only the computing power of
the FPGA is utilized, while the computing power of the
processor is mostly unused.

In [14], the authors partition the tasks in a molecular dy-
namics simulation system between the processor and the
FPGA. They then model the performance of several alterna-
tives for the tasks mapped to the FPGA. We also proposed
a simple method for partitioning matrix multiplication and
block LU decomposition in [22]. In contrast to these re-
sults, in this paper, we propose a generic design model that
can be applied to a class of applications. In addition, our
model not only considers the computing power of the pro-
cessor and the FPGA, but also the data transfer time and the
network communication costs.

Various programming models have also been proposed
for reconfigurable computing systems. The work in [2]
starts from high-level representation, and provides methods
to explore hardware/software trade-offs based on profiling
of the source code. In [6], a unified programming model is
presented for specifying application threads from a single
application program. The threads are either compiled to run
on the processor or synthesized to run on the FPGA. These
efforts focus on facilitating the programming and compila-
tion on a single node in a reconfigurable computing system.
On the other hand, our work focuses on the effective uti-
lization of both the processor and the FPGA within multiple
nodes.

3 Reconfigurable Computing Systems

Many reconfigurable computing systems have become
available. One representative system is Cray XD1 [4].
The basic architectural unit of XD1 is a compute blade,
which contains two AMD 2.2 GHz processors and one Xil-
inx Virtex-II Pro XC2VP50. Each FPGA has access to
four banks of QDR II SRAM. The maximum FPGA-SRAM
memory bandwidth is 12.8 GB/s. Through Cray’s RapidAr-
ray processors, the FPGA can access the DRAM of the pro-
cessors at a bandwidth of 2.8 GB/s. Six compute blades fit
into one chassis, connected through a non-blocking cross-
bar switching fabric which provides two 2 GB/s links to
each node. The recently introduced supercomputer of Cray,
XT3, also supports reconfigurable computing by incorpo-
rating FPGA modules from DRC [5]. Each DRC module
contains a Virtex-4 FPGA and SRAM memory of up to 64
MB. The module has access to adjacent Opteron processors
and DRAM memory at a bandwidth of up to 6.4 GB/s.

Other systems include SRC reconfigurable computers
[16] and SGI RASC [15]. SRC Computers offers the MAP
processor which includes two Xilinx Virtex-II Pro FPGAs,
in single-MAP workstations or multiple-MAP clusters [16].
SGI builds the RC100 Blade which has two Xilinx Virtex-

4 FPGAs. Each blade is directly connected to the shared
global memory.

A reconfigurable computing system can be seen as a dis-
tributed system with multiple nodes. The nodes are con-
nected through an interconnect network. Each node can
be based on either general-purpose processors, FPGAs, or
both. Each FPGA contains certain amount of on-chip mem-
ory, usually Block RAMs (BRAMs). The FPGAs also has
access to off-chip but on-board memory, which is SRAM.
Through the connection between the processors and the FP-
GAs, an FPGA can also access the the main memory of the
general-purpose processor (Cray systems and SRC comput-
ers) or the shared global memory (SGI RASC), which is
DRAM.

…

Interconnect Network

Processor

SRAM

DRAM

BRAM

FPGA

Processor

SRAM

DRAM

BRAM

FPGA

Figure 1. Architectural Model for Reconfig-
urable Computing Systems

In this paper, we only consider systems where each node
consists of both FPGAs and processors. Currently, in such
systems, only the processors of the nodes are connected to
the interconnect network. The architectural model of these
systems is shown in Figure 1.

4 Design Model and Partitioning Strategy

We propose a design model for hybrid designs on recon-
figurable computing systems. Our model targets computa-
tionally intensive applications which are suitable for hard-
ware acceleration, such as matrix computations. The design
methodology using the model takes the following steps:

1. Identify various tasks within an application. The com-
putational complexity of the tasks as well as the depen-
dencies among them are then analyzed.

2. Characterize the hardware resources and the comput-
ing capacity of a system using various parameters.

3. Perform hardware/software partitioning based on the
system parameters and the attributes (computational
complexity, data dependencies, etc) of the tasks.

4. Improve the partition by overlapping the computations
with data transfer and network communications (if
multiple nodes are employed).

In the rest of this section, we give more details of our
design model. As task identification is totally dependent on
the application, it is discussed in Section 5 for each exam-
ple application. Note that our model is unsuitable for per-
forming hardware/software co-design for control-intensive
applications or applications that contain few computation-
ally intensive tasks.

4.1 System Parameters

We assume that a reconfigurable computing system con-
sists of p nodes interconnected by a high bandwidth, low la-
tency network. Without loss of generality, we assume each
node has one processor and one FPGA. We characterize the
system using the following parameters:

Of : number of floating-point operations performed per
clock cycle by the FPGA in a node;

Op: number of floating-point operations performed per
clock cycle by the processor in a node;

Ff : clock speed (number of clock cycles per second) of
the FPGA-based design;

Fp: clock speed of the processor;
Bd: DRAM memory bandwidth available to the FPGA-

based design, measured as the number of bytes transferred
between the FPGA and DRAM per second;

Bn: network bandwidth between any two nodes,
measured as the number of bytes transferred per second;

bw: word width. In this paper, we consider double-
precision floating-point numbers. Thus, bw = 8 bytes.

The computing power is defined as the number of
floating-point operations performed in a second. For both
the processor and the FPGA, the computing power is de-
pendent on the application. For an FPGA-based design, we
can get exact values of Of and Ff , and hence the comput-
ing power of the FPGA is calculated as Of × Ff . For the
processor, we use Op × Fp to refer to the sustained perfor-
mance for a given application. It is obtained by executing a
sample program of the application.

Note that our model does not consider the memory ac-
cess latency. This is because for the applications consid-
ered, data are streaming into and out of the FPGA. There-
fore, the memory access latency is only incurred only once.

4.2 Workload Partition

A simple way of partitioning a task within a node is to
execute the computationally intensive part on the FPGA,
and use the processor for the control intensive part. How-
ever, the computing power of the processor is mostly

wasted. Therefore, we partition the workload of an ap-
plication between the hardware and software so that both
the processor and the FPGA are fully utilized. Suppose Np

floating-point operations are assigned to the processor and
Nf operations are assigned to the FPGA. Thus, the compu-
tation time (time for execution of the task) of the proces-
sor Tp = Np

Op×Fp
, and the computation time of the FPGA

Tf = Nf

Of×Ff
. We can choose Np and Nf so that Tp ≈ Tf .

However, the above partition is not accurate because it
does not consider the data transfer time inside a node. As
the input data are stored in the DRAM memory, they have to
be transferred to the FPGA. The data are streamed into the
FPGA so that the computations on the FPGA can be over-
lapped with the data transfer. However, the computations on
the processor cannot begin until the transfer is completed.
Thus, data transfer time has to be included in the workload
partition. Suppose there are Df bytes of input data to be
transferred to the FPGA. We have

Tp +
Df

Bd
= Tf (1)

At the end of the application, the result data generated
by the FPGA also need to be transferred back to the
DRAM. As such transfer is initiated by the FPGA, it can be
overlapped with the computations on the processor. More-
over, because of spatial parallelism, the transfer can also be
overlapped with the computations on the FPGA. Thus, as an
approximation, we do not consider this data transfer time.

Some tasks contain a large number of data dependencies
and are not suitable for partitioning. For these tasks, the co-
ordination and communication between the processor and
the FPGA may become the performance bottleneck. There-
fore, such tasks are assigned entirely to either the processor
or the FPGA. In this case, Tp ≈ Tf is achieved by tuning the
numbers of tasks assigned to the processor and the FPGA.

4.3 Multiple Nodes

An application can also employ multiple nodes in the re-
configurable computing systems. Since the nodes commu-
nicate through the processors, the computations on the pro-
cessors cannot overlap with the network communications.
On the other hand, the computations on the FPGAs are not
affected. Thus, the partition needs to be adjusted so that
the communication costs are included. Suppose Dp bytes
of data need to be transferred between two nodes, Equation
1 should be modified to:

Tp +
Df

Bd × Ff
+

Dp

Bn
= Tf (2)

When the tasks are assigned to multiple nodes, load bal-
ancing among the nodes is important. If a node is over-
loaded, it will become the performance bottleneck in the

system. Thus, in our model, we need to adjust the number
of tasks assigned to each node so that the execution time of
each node is approximately equal.

4.4 Hardware/Software Coordination

Besides workload partition, the coordination between
the processor and the FPGA is also important in the design
model. First, the processor needs to notify the FPGA-based
design to start. It also needs to be notified when the com-
putations on the FPGA are completed. The status registers
in the FPGA can be used for these purposes. As the
latency for the processor to check the registers is negligible
compared with the computation time of a task, we do not
consider it in our model. Nonetheless, the frequency of
coordination is given for each example application.

The second issue is the coordination of memory ac-
cesses. As both the processor and the FPGA have access to
the DRAM memory, memory accesses, especially memory
writes, must be coordinated to avoid conflicts. Thus, we
need to make sure that the processor and the FPGA write
to separate memory locations. Another coordination issue
is data dependency between the processor and the FPGA.
For example, if the FPGA reads the input from the DRAM
memory before the computations on the processor are
completed, read-after-write hazards may occur. Therefore,
in our model, the FPGA cannot read the DRAM memory
before getting permission from the processor. Similarly,
the processor has to get permission from the FPGA before
reading the SRAM memory.

4.5 Performance Prediction

Our design model can also be used for performance pre-
diction. After the values of the system parameters are deter-
mined, the workload for a given application is partitioned
following the model. Then we can calculate the total exe-
cution time for the application on both the processor (Ttp)
and the FPGA (Ttf) based on the data dependencies among
the tasks. Moreover, for simplicity, we assume all the data
transfer and network communications are overlapped with
the computations on the FPGA. Thus, the predicted total
latency of the design is max{Ttp, Ttf}. In Section 6, we
compare the predicted performance with the experimental
results.

5 Example Applications

5.1 Design for LU Decomposition

LU decomposition factors an n × n matrix A into an
n×n lower triangular matrix L and an n×n upper triangu-
lar matrix U . The diagonal entries of the resulting L matrix

are all 1s. As customary in hardware implementation of
matrix factorization, we assume that A is a nonsingular
matrix and no pivoting is needed. For small matrices, we
can use the LU decomposition algorithm described in [3].

5.1.1 Algorithm Description

In our work, we consider LU decomposition of large matri-
ces. Therefore, we follow the block algorithm given in [10],
which is described as follows. At the beginning of the al-
gorithm, there are four matrices: A0

00, A0
01, A0

10, and A0
11.

A0
00 is a b × b matrix, A0

01 is a b × (n − b) matrix, A0
10 is

an (n − b) × b matrix, and A0
00 is an (n − b) × (n − b)

matrix. The goal of the algorithm is to decompose A into
two matrices, L and U , such that(

A0
00 A0

01

A0
10 A0

11

)
=

(
L1

00 0
L1

10 L1
11

) (
U1

00 U1
01

0 U1
11

)
(3)

The steps of the algorithm are as follows:

1. Perform a sequence of Gaussian eliminations on the
n× b matrix formed by A0

00 and A0
10 in order to calcu-

late the entries of L1
00, L1

10, and U1
00;

2. Calculate U1
01 as the product of (L1

00)
−1 and A0

01;

3. Evaluate A1
11 ← A0

11 − L1
10U

1
01;

4. Apply steps 1 to 3 recursively to matrix A1
11. During

the tth (0 ≤ t ≤ n
b−1) iteration, the initial matrices are

At
00, At

01, At
10, At

11; the resulting matrices Lt
00, U t

00,
Lt

10, U t
01 and At+1

11 are obtained. An iteration denotes
an execution of steps 1 to 3.

5.1.2 Task Identification

Five tasks have been identified in block LU decomposition:
opLU, opL, opU, opMM and opMS. In the tth iteration,
opLU is performed in step 1 to obtain Lt

00 and U t
00. (n

b − t)
opL operations are performed in step 1 to obtain Lt

10 using
At

10 and (U t
00)

−1. In step 2, (n
b − t) opU operations gen-

erate U t
01 using At

01 and (Lt
00)

−1. In step 3, block matrix
multiplications (opMM operations) and matrix subtractions
(opMS operations) are performed for (n

b − t)2 times. opL
and opU operations need the outputs of opLU; opMM op-
erations need the outputs of opL and opU operations; opMS
operations need the outputs of opMM operations.

Among the five operations, opMS is the least compu-
tationally intensive (Θ(n2)) and does not need hardware
acceleration. The other operations are all computationally
intensive, with a complexity of Θ(n3). However, it is
impractical to partition opLU, opL and opU between the
processor and the FPGA because they contain a lot of data
dependencies. Therefore, in our design, only opMM is
performed on both the processor and the FPGA. All the
other operations are performed on the processor.

…P0 Pi Pp-1…

Interconnect Network

GPPi

 FPGAi

SRAM

DRAM

Matrix
Multiplier

Matrix
Multiplier

GPP0

DRAM

opLU,
opL, opU

Figure 2. Architecture of our design for LU
decomposition in 0th iteration

5.1.3 Proposed Design

We now present our hybrid design for LU decomposition.
Let p nodes be denoted as P0, P1, . . . , Pp−1. Matrix
A is partitioned into b × b blocks which are denoted as
Auv (0 ≤ u, v ≤ n

b − 1). Initially, Pi (0 ≤ i ≤ p − 1)
stores Aiv and Aui (i ≤ u, v ≤ n

b − 1), A(i+p),v and
Au,(i+p), (i + p ≤ u, v ≤ n

b − 1), . . . , A(i+p(n
bp−1)),v and

Au,(i+p(n
bp−1)) (i + p(n

bp − 1) ≤ u, v ≤ n
b − 1).

In the tth iteration, Pt′ performs opLU, opL, opU oper-
ations on its processor, where t′ = t mod p. After one
opL and one opU are completed, their outputs are trans-
ferred to the other nodes where opMM operations are per-
formed on both the processors and the FPGAs. The outputs
of the opMM operations, A′

uv (t + 1 ≤ u, v ≤ n
b − 1),

are sent to Pt′′ , where t′′ = max{u, v}. Pt′′ performs
Auv = Auv − A′

uv , t + 1 ≤ u, v ≤ n
b − 1. The archi-

tecture of our design in the 0th iteration is shown in Figure
2. FPGAi and GPPi in the figure refer to the FPGA and the
processor of node i, respectively.

In our design, b× b block matrix multiplications are per-
formed by p − 1 nodes together. For E = C × D, the
columns of matrix C are grouped in column stripes. Each
stripe consists of b

k submatrices of size k×k, where k is the
number of Processing Elements (PEs) on one FPGA [21].
Similarly, the rows of D are grouped in row stripes. Sup-
pose Pt′ contains matrix C and D. It transfers the column
stripes of matrix C and the row stripes of matrix D to the
other nodes. Pi (0 ≤ i ≤ p − 1, i �= t′) stores 1

p−1 of D
stripe to its memory and generates n

p−1 columns of E. In

particular, Pi needs to perform b3

p−1 floating-point multipli-

cations and b3

p−1 floating-point additions. We need to parti-
tion this workload between the processor and the FPGA.

Workload Partition We proposed a partitioning scheme on
a node for matrix multiplication in [22]. The partition as-

k

b

bf

bp

Matrix C

b/(p-1)

b

k

Matrix D

Figure 3. Workload partition for multiplying
one column stripe of C and one row stripe
of D

signs bf rows of matrix C to FPGA and bp rows to the pro-
cessor, where bf + bp = b and bf

bp
= OpFp

Of Ff
. When p nodes

are employed, each FPGA multiplies a bf × b and a b× b
p−1

matrix. Each processor performs a (bp×b)× (b× b
p−1) ma-

trix multiplication. On each node, SRAM memory of size
bf b
p−1 is needed to store the intermediate results. The parti-
tion is shown in Figure 3. However, in such partition, the
data transfer time and the network communication costs are
not considered. Thus, we improve the partition in this paper
as follows.

For performing E = C × D, it takes Tcomm = 2bkbw

Bn

to transfer one column stripe of C and one row stripe of
D from Pt′ to Pi (i �= t′). Within Pi, the processor then
moves bfk elements of matrix C and bk

p−1 elements of ma-
trix D from its DRAM memory to the FPGA. Tmem thus
equals (bf k+bk/p−1)bw

Bd
. After transferring the data, the pro-

cessor of Pi performs a (bp × k) × (k × b
p−1) matrix mul-

tiplication. Thus, the computation time of the processor is
Tp = 2bpbk

(p−1)(Op×FP) . The FPGA of Pi multiplies a bf × k

and a k× b
p−1 matrix. That is, it performs bf

k × 1× b
k(p−1)

(k × k) submatrix multiplies. As the effective latency for
each submatrix multiply is k2 FPGA clock cycles [21], the
computation time of the FPGA is Tf = bf b

(p−1)Ff
.

Except for the first stripes of C and D, Tcomm and Tmem

can be overlapped with Tf to reduce latency. Thus, the val-
ues of bp and bf should be determined so that

Tf = Tcomm + Tmem + Tp (4)

Note that Tmem does not include the time for sending re-
sults back from the FPGA to the DRAM memory. This is
because such sending can be done without interrupting the
computations on the processor and the FPGA.

Hardware/Software Coordination In the above partition-
ing, the processor generates bp rows of E and the FPGA
generates bf rows of E. As they write to separate memory

locations, there will not be access conflict. For the multi-
plication of one column stripe of C and one row strip of D,
the processor needs to signal the FPGA to start computa-
tions as well as be notified when the FPGA is done. Thus,
the frequency of coordination is 2

Tf
= 2(p−1)Ff

bf b times per
second.

Load Balancing While the other nodes are performing
opMM operations, Pt′ performs operations opLU, opL and
opU. According to the discussion above, the total latency of

one opMM equals b
k × bf b

(p−1)Ff
= bf b2

(p−1)kFf
. Suppose when

Pt′ performs one opLU/opL/opU , the other nodes perform
l opMM operations. If the latency of performing one opLU,
opL and opU operation is Tlu, Topl and Topu, for load bal-
ancing, l should be determined so that

max{Tlu, Topl, Topu}+
lb

k
× Tcomm =

lbfb2

(p− 1)kFf
(5)

We include the communication costs because Pt′ also needs
to send the block matrices for opMM operations to the other
nodes.

5.2 Design for Floyd-Warshall Algorithm

Consider a weighted and directed graph G with n ver-
tices. The all-pairs shortest-paths problem is the problem
to find a shortest (least-weight) path between every pair of
vertices in the graph. The Floyd-Warshall algorithm [3] is
an efficient technique to solve this problem.

5.2.1 Algorithm Description

In our work, we focus on all-pairs shortest-paths problems
with large problem sizes. Therefore, we follow a blocked
version of the Floyd-Warshall algorithm [7]. Suppose ma-
trix D0 is partitioned to blocks of size b× b. The blocks are
denoted as D0

uv (0 ≤ u, v ≤ n
b − 1). There are totally n

b it-
erations in the algorithm. Dt+1 is used to denote the matrix
generated after iteration t (0 ≤ t ≤ n

b − 1). In iteration t,
there are three steps:

1. Perform the Floyd-Warshall algorithm in [3] on block
Dt

tt. Such operation is denoted as op1;

2. Perform the Floyd-Warshall algorithm in [3] on block
Dt

tq (0 ≤ q ≤ n
b − 1, q �= t) using the columns of

Dt
tq and the rows of Dt

tt. Similarly, perform the reg-
ular Floyd-Warshall algorithm on block Dt

qt using the
rows of Dt

qt and the columns of Dt
tt. We denote these

operations as op21 and op22, respectively;

3. Perform the Floyd-Warshall algorithm in [3] on the re-
maining blocks. For block Dt

uv (0 ≤ u, v ≤ n
b − 1,

u �= t, v �= t), the rows of Dt
tv and the columns of Dt

ut

are needed. Such operation is called op3.

5.2.2 Task Identification

The operations in the steps are identified as the tasks in the
block Floyd-Warshall algorithm. In each iteration, one op1
operation, n

b − 1 op21 operations, n
b − 1 op22 operations

and (n
b − 1)2 op3 operations are performed. op21 and op22

operations need the outputs of op1; op3 operations need the
outputs of op21 and op22.

n/bp

n/b

op1

P0

Interconnect Network

op21

op22

op3

P1 P2 P3

Figure 4. Illustration of operations of the
nodes for Floyd-Warshall algorithm (n

b = 8,
p = 4, t = 2).

All the tasks in block Floyd-Warshall algorithm are
computationally intensive and have a complexity of Θ(n3).
Except the inputs, these tasks are all the same. Therefore,
we can use the same processor-based algorithm and FPGA-
based design for these operations. As the tasks contain a
large number of data dependencies, they are not suitable
for partitioning between the processor and the FPGA.

5.2.3 Proposed Design

Suppose there are p nodes in the system, denoted as P0,
P1, . . . , Pp−1. Initially, each node stores n

bp columns of

the b × b blocks in D0. In particular, Pi stores columns
in
bp , in

bp + 1, . . . , (i+1)n
bp − 1 (0 ≤ i ≤ p− 1).

In iteration t (0 ≤ t ≤ n
b − 1), there are n

b phases. In
phase 0, op1 operation is performed on block Dt

tt by Pt′ ,
where t′ = � t

n/bp�. The resulting Dt
tt is then transferred

to all the other nodes. When Pi (0 ≤ i ≤ p − 1, i �= t′)
performs n

bp op21 operations, Pt′ performs n
bp − 1 op21 op-

erations and one op22 operation. In the following phase,
the result of the op22 operation is transferred to the other
nodes for op3 operations. When Pi (0 ≤ i ≤ p− 1, i �= t′)
performs n

bp op3 operations, Pt′ performs n
bp−1 op3 opera-

tions and one op22. Again, the result of the op22 operation
is transferred to the other nodes for op3 operations. This

continues until all the op22 operations and op3 operations
are completed.

Note that except phase 0, each node performs the same
number of operations in each phase. Thus, load balancing is
maintained in the system. Figure 4 illustrates the operations
of the nodes when n

b = 8, p = 4 and t = 2. Different
operations of the application are shown in different patterns.

Workload Partition Within each node, entire operations
are assigned to the processor and the FPGA. Each of the op-
erations contains b3 floating-point additions and b3 floating-
point comparisons. Thus, the computation time of the pro-
cessor Tp = 2b3

Op×Fp
. On the FPGA, We employ the de-

sign proposed in [18]. In that design, with k floating-point
adders and k floating-point comparators, the latency of per-
forming the regular Floyd-Warshall algorithmon on a b × b

matrix takes 2b3

k clock cycles. Therefore, Tf = 2b3

kFf
. The

on-chip memory required by the design is of size 2k2 words,
and the size of required on-board memory is 2b2 words.

We aim to share the workload between the processor and
the FPGA. In each phase discussed above, each node per-
forms n

bp operations and sends/receives one block. When
an operation is implemented on the FPGA, two blocks need
to be accessed from the DRAM memory. Thus, we have
Tcomm = b2

Bn
and Tmem = 2b2

Bd
. Suppose the processor and

the FPGA each performs l1 and l2 operations, respectively.
Besides l1 + l2 = n

bp , we have

l1 × Tp + Tcomm + l2 × Tmem = l2 × Tf (6)

Hardware/Software Coordination As the FPGAs and the
processors execute separate tasks in our design, there is no
memory access conflict. For l2 operations performed by the
FPGA, the processor needs to give the start signal and be
notified when the FPGA is done. Thus, the frequency of
coordination is 2

l2×Tf
= 2kFp

2l2b3 times per second.

6 Experimental Results

To illustrate our ideas, we implemented our designs on
XD1 which is briefly discussed in Section 3. The FPGA-
based designs are described using VHDL. We used Xilinx
ISE 7.1i and Mentor Graphics ModelSim 5.7 development
tools [12, 20]. In our experiments, we used our own 64-
bit floating-point adders and multipliers that comply with
IEEE-754 standard [8]. On the processor, a C program is
executed. It is in charge of file operations, data transfer and
MPI communications. Note that in our implementation, the
C program only employs one AMD processor in each node.

6.1 Implementation Details

We first determine the values of the system parameters.
When our FPGA-based matrix multiplier in [21] is imple-

mented on one FPGA in XD1, at most 8 PEs can be config-
ured. Hence k = 8. As each PE performs two floating-point
operations in each clock cycle, Of = 16. The clock speed
of the design Ff = 130× 106. To obtain the sustained per-
formance of the processor for matrix multiplication, dgemm
subroutine in AMD Core Math Library (ACML) [1] is ex-
ecuted. When the matrix size is 2048, one AMD pro-
cessor achieves 3.9 GFLOPS using dgemm routine so that
Op × Fp ≈ 3.9 × 109. As the system we used for im-
plementation only contains one chassis, we have p = 6.
In XD1, Bn = 2 GB/s. As the FPGA-based design gets
one word from the DRAM memory in each clock cycle,
Bd = 1.04 GB/s. On each node, 8 MB of SRAM mem-
ory is allocated to store the intermediate results so that we

have bpb
p−1 ≤ 8 MB

bw
. As b needs to be a multiple of both k

and p− 1, we set b = 3000.
Next we need to determine the workload partition. Ac-

cording to Equation 4, bp = 1720 and bf = 1280. To get
the value of l, we first obtain the latencies of opLU, opL
and opU operations on the processor. When b = 3000, the
routine used and the latency of each operation are shown in
Table 1. According to Equation 5, we set l = 3.

Table 1. Routines and Latencies for Various
Operations in LU Decomposition

Operation opLU opL opU
Routine dgetrf dtrsm dtrsm

Latency (s) 4.9 7.1 7.1

We have justified our selection of bp, bf and l through
experiments. Figure 5 shows the latency of a b × b block
matrix multiplication when bf increases from 0 to b. The
computations are performed on P1, . . . , Pp−1, while P0

sends data to all the other nodes. We see that when bf

increases from 0 to 1280, the latency keeps decreasing
because the processor shares its workload with the FPGA.
However, when bf further increases, the FPGA becomes
overloaded and the latency begins to increase. Figure 6
shows the latency of our design for performing the 0th
iteration of LU decomposition when l increases from 0 to
5. In the experiment, bf = 1280 and bp = 2720. Operations
opLU, opL and opU are performed on the processor of P0,
while the block matrix multiplications are performed on the
other nodes. We see that latency decreases when l increases
from 0 to 3, because the computing power of P1, . . . , Pp−1

is better utilized. The latency begins to increase when l
is further increased as P0 is under-utilized. However, the
increase is not noticeable until l = 5.

In the design for Floyd-Warshall algorithm, p and Bn

are the same as in the design for LU decomposition. We
implemented the design proposed in [18] on the FPGA in
XD1. At most k = 8 PEs can be configured and each PE
performs two floating-point operations in each clock cycle.

Thus, Of = 16. Our implementation achieved 120 MHz,
hence Ff = 120 × 106. As the FPGA-based design gets
one word from the DRAM memory in each clock cycle,
Bd = 960 MB/s. On each node, 8 MB of SRAM mem-
ory is allocated so that we have 2b2 ≤ 8 MB

bw
. As b needs

to be a multiple of k, we set b = 256. On the processor,
for each b × b block, we implemented the regular Floyd-
Warshall algorithm as described in [3]. When b = 256, the
sustained performance of the algorithm is 190 MFLOPS.
Thus, Op × Fp ≈ 190 × 106. According to Equation 6,
we have l1

l2
= 1

5 and l1 + l2 = n
bp . Therefore, we set n as

18432. In this case, l1 = 2 and l2 = 10.
Figure 7 shows the latency of one iteration in our design

for the Floyd-Warshall algorithm when the workload
partition varies. We see that when l1 decreases from 12 to
2, the latency keeps on decreasing because the FPGA keeps
on taking more workload from the processor. However,
when l1 is 1, the FPGA becomes overloaded and the latency
begins to increase. Unlike the LU decomposition, there
is a large difference between the computing power of the
FPGA and the processor. Therefore, when only the FPGA
is employed, the latency is even smaller than some cases
where the processor and the FPGA work together.

6.2 Performance Analysis

To evaluate our hybrid designs, we compare their perfor-
mance against two baseline designs. “FPGA-only design”
employs the FPGAs in the nodes only, while “Processor-
only design” employs only the processors. Both of these
designs employ p = 6 nodes in XD1. For fair compari-
son, the baseline designs follow the same steps as that in
the hybrid design. We use GFLOPS to measure the sus-
tained floating-point performance of the designs.

For LU decomposition, the performance of the hybrid
design increases with the number of blocks, n

b , as shown
in Figure 8. This is because block matrix multiplication
opMM is the the only operation which exploits the com-
puting power of both the FPGA and the processor. On the
other hand, the performance of the design for the Floyd-
Warshall algorithm almost remains the same when n in-
creases. The reason is that the proportion between the com-
putational loads of the FPGA and the processor is indepen-
dent of the problem size. In the following discussion, for
LU decomposition, n = 30000 and b = 3000; for Floyd-
Warshall algorithm, n = 92160 and b = 256.

Figure 9 shows that our designs achieve 20 GFLOPS and
6.6 GFLOPS for the two applications, respectively. The per-
formance of the hybrid design for Floyd-Warshall algorithm
is low because both the designs on the processor and the
FPGA are not optimized. Some optimizations exist which
can achieve higher performance [11]. However, implemen-
tations of such optimizations are beyond the scope of this

0

1

2

3

4

5

6

0 640 1280 1920 2560 3000

b f

L
at

en
cy

 (
s)

Figure 5. Latency of one b× b block matrix
multiplication vs. bf (b = 3000, p = 6)

200

250

300

350

0 1 2 3 4 5

l

L
at

en
cy

 (
s)

Figure 6. Latency of the 0th iteration in LU
decomposition using our design vs. l (n =
30000, p = 6)

0

40

80

120

160

12 10 8 6 4 2 0

l 1

L
at

en
cy

 (
s)

Figure 7. Latency of one iteration in Floyd-
Warshall algorithm using our design vs. l1
(b = 256, n = 18432, p = 6)

9

12

15

18

21

10 12 14 16 18 20

n/b

G
FL

O
PS

Hybrid Design
Processor-only Design
FPGA-only Design

Figure 8. GFLOPS of LU decomposition
vs. n

b (b = 3000)

paper.

Figure 9 also compares the hybrid designs with the base-
line designs. Our design for LU decomposition achieves
1.3X speedup and 2X speedup over the Processor-only de-
sign and the FPGA-only design, respectively. In addition,
it achieves about 80% of the sum of the performance of the
two baseline designs. For Floyd-Warshall algorithm, our
design achieves 5.8X speedup and 1.15X speedup over the
Processor-only design and the FPGA-only design, respec-
tively. As the communication costs are smaller compared
to the computational load in the Floyd-Warshall algorithm,
our design achieves more than 95% of the sum of the per-
formance of the baseline designs.

We also compare the performance of our designs with
the performance predicted by the design model. In the pre-
diction, we use the same system parameters and the same
workload partition as in the experiments. However, we as-
sume all the communication costs and memory transfer time
are overlapped with the computations on the FPGA. Our de-

sign for LU decomposition achieves about 86% of the pre-
dicted performance. This is because in our implementation,
we used the atomic ACML routines for opLU, opL and opU.
In this case, a large part of the network communications
has to be performed before the routines start. On the other
hand, in our implementations for Floyd-Warshall, Tcomm

and Tmem are overlapped with Tf very well. Thus, our de-
sign achieves about 96% of the predicted performance. For
both applications, the design model has provided a fairly
accurate prediction.

7 Conclusion

In this paper, we proposed a design model for realizing
hybrid designs on reconfigurable computing systems. The
designs are hybrid in that they utilize both the processors
and the FPGAs in these systems. In our model, a system is
characterized by various parameters, including the floating-
point computing power of the FPGA and the processor, the

0

5

10

15

20

25

LU Floyd-Warshall

G
FL

O
PS

Hybrid Design
Processor-only Design
FPGA-only Design

Figure 9. Performance comparison with base-
line designs.

number of nodes, the memory bandwidth and the network
bandwidth. We used LU decomposition and Floyd-Warshall
algorithm as our example applications. Experimental re-
sults show that our designs utilize the computing power of
both the processors and the FPGAs efficiently. The perfor-
mance of our designs is more than 85% of the performance
predicted using the design model. In the future, we plan
to extend the proposed model so that it can be used for a
broader range of applications.

References

[1] AMD Core Math Library. http://developer.amd.
com/acml.aspx.

[2] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. Brayton,
and A. Sangiovanni-Vincentelli. Hw/sw partitioning and
code generation of embedded control applications on a re-
configurable architecture platform. In Proc. of the 10th
International Symposium on Hardware/Software Codesign
(CODES), Colorado, USA, May 2002.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd edition,
2001.

[4] Cray Inc. http://www.cray.com/.
[5] DRC, The Coprocessor Company. http://www.

drccomputer.com/.
[6] E. Anderson and J. Agron and W. Peck and J. Stevens

and F. Baijot and E. Komp and R. Sass and D. Andrews.
Enabling a Uniform Programming Model Across the Soft-
ware/Hardware Boundary. In Proc. of the 14th IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
California, USA, April 2006.

[7] G. Venkataraman and S. Sahni and S. Mukhopadhyaya. A
Blocked All-Pairs Shortest-Paths Algorithm. Journal of Ex-
perimental Algorithmics, 8, 2003.

[8] G. Govindu, R. Scrofano, and V. K. Prasanna. A Library of
Parameterizable Floating-Point Cores for FPGAs and Their

Application to Scientific Computing. In Proc. of Interna-
tional Conference on Engineering Reconfigurable Systems
and Algorithms, June 2005.

[9] G.R. Morris and R.D. Anderson and V.K. Prasanna. A
Hybrid Approach for Mapping Conjugate Gradient onto an
FPGA-Augmented Reconfigurable Supercomputer. In Proc.
of the 14th IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, California, USA, April 2006.

[10] Jaeyoung Choi and J. J. Dongarra and L. S. Ostrouchov and
Petitet and A. P. and D. W. Walker and R. C. Whaley. De-
sign and Implementation of the ScaLAPACK LU, QR, and
Cholesky Factorization Routines. Scientific Programming,
5(3):173–184, Fall 1996.

[11] M. Penner and V. Prasanna. Cache-Friendly Implementa-
tions of Transitive Closure. In Proc. of International Con-
ference on Parallel Architectures and Compiler Techniques,
Barcelona, Spain, September 2001.

[12] Mentor Graphics Corp. http://www.mentor.com/.
[13] Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard. Technical Report UT-CS-94-230, 1994.
[14] R. Scrofano and M. Gokhale and F. Trouw and V.K.

Prasanna. A Hardware/Software Approach to Molecu-
lar Dynamics on Reconfigurable Computers. In Proc. of
the 14th IEEE Symposium on Field-Programmable Custom
Computing Machines, California, USA, April 2006.

[15] Silicon Graphics, Inc. http://www.sgi.com/.
[16] SRC Computers, Inc. http://www.srccomp.com/.
[17] U. Bondhugula and A. Devulapalli and J. Dinan and J. Fer-

nando and P. Wyckoff and E. Stahlberg and P. Sadayappan.
Hardware/Software Integration for All-Pairs Shortest-Paths
on a Reconfigurable Supercomputer. In Proc. of the 14th
IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, California, USA, April 2006.

[18] U. Bondhugula and A. Devulapalli and J. Fernando and
Pete Wyckoff and P. Sadayappan. Parallel FPGA-based All-
Pairs Shortest-Paths in a Directed Graph. In Proc. of the
20th IEEE International Parallel and Distributed Process-
ing Symposium, Rhodes, Greece, April 2006.

[19] K. D. Underwood and K. S. Hemmert. Closing the Gap:
CPU and FPGA Trends in Sustainable Floating-Point BLAS
Performance. In Proc. of 2004 IEEE Symposium on Field-
Programmable Custom Computing Machines, California,
USA, April 2004.

[20] Xilinx Incorporated. http://www.xilinx.com.
[21] L. Zhuo and V. K. Prasanna. Scalable and Modular Algo-

rithms for Floating-Point Matrix Multiplication on FPGAs.
In Proc. of the 18th International Parallel and Distributed
Processing Symposium, New Mexico, USA, April 2004.

[22] L. Zhuo and V. K. Prasanna. Scalable Hybrid Designs for
Linear Algebra on Reconfigurable Computing Systems. In
Proc. of the 12th International Conference on Parallel and
Distributed Systems (ICPADS), Minnesota, USA, July 2006.

