Table-lookup based Crossbar Arbitration for Minimal-Routed, 2D Mesh and
Torus Networks

DaeHo Seo

Mithuna Thottethodi

School of Electrical and Computer Engineering
Purdue University, West Lafayette.
{seod,mithuna} @purdue.edu

Abstract

Crossbar arbitration—which determines the allocation of output
ports to packets in the input queues—is a performance-critical
stage in the overall performance of routers for input-queued net-
works. The overall performance of crossbar arbitration depends
on two metrics: (a) matching power — the ability of the arbiter
to maximize the number of matches between requesting inputs
and free outputs and (b) arbitration throughput — the number of
such matches per unit time. Ideally, crossbar arbitration should
maximize both metrics. Unfortunately, implementing high per-
formance matching schemes compromises arbitration throughput.
Similarly, simpler arbitration mechanisms that deliver high arbi-
tration throughput offer lower matching power.

The major contribution of this paper is the design of a table-
lookup based crossbar arbitration mechanism—TabArb—that
delivers superior matching and high arbitration throughput for
minimal-routed, two dimensional mesh and torus networks. The
two key innovations of TabArb are: (a) it forwards multiple re-
quests from each input port to multiple output ports to expose ad-
equate matching potential and (b) it employs precomputed tables
that store maximum cardinality matches for all possible request
combinations. QOur technique improves the saturation throughput
of adaptive routed mesh network by 14.8%. It offers little im-
provement for the DOR router due to limited opportunity.

1 Introduction

Crossbar arbitration! is a widely studied problem in in-
terconnection networks architecture with applications rang-
ing from IP routers, ATM routers, multiprocessor intercon-
nection networks and other input-queued networks [1, 4,
5,7,9, 10, 11, 14, 18]. Crossbar arbitration is required
in input-queued routers because the packets at the input
queues demand access to various output ports. The arbitra-

1-4244-0910-1/07/$20.00 (©2007 IEEE.
! Alternately referred to as “crossbar scheduling”, “switch allocation”,

LIS

“switch scheduling”, “switch arbitration”.

tion logic considers the requests from each input port and
grants output ports to a subset of requestors. An output port
may be granted to at most one input port and each input port
may accept at most one grant since multiple packets from an
input port cannot traverse the switch simultaneously.

The overall performance of crossbar arbitration depends
on two metrics: (a) Matching Power — the ability of the ar-
biter to maximize the number of matches between request-
ing inputs and free outputs and (b) arbitration throughput —
the number of such matches per unit time?.

Ideally, crossbar arbitration should maximize both met-
rics. Unfortunately, achieving high matching power com-
promises arbitration throughput because: (a) Maximizing
the match in logic is costly. Most sophisticated matching al-
gorithms incur long latencies to discover maximal matches
and (b) Requests for subsequent arbitrations depend on the
outcome of the immediately preceding (long latency) ar-
bitration. On the other hand, simpler arbitration schemes
that sacrifice matching power but more than compensate
for the loss of matching power by enabling higher arbitra-
tion throughput [11] have also been proposed. This paper
addresses the challenge of designing crossbar arbitration
mechanism that delivers the best of both worlds — supe-
rior matching power and high arbitration throughput — in
the context of minimal-routed, two dimensional mesh/torus
networks.

There are two key insights that our technique exploits:
First, arbitration is typically implemented as a two stage
process. The first stage selects a single request at an in-
put port which is then forwarded to the second stage. At the
second stage, the actual assignment of output ports to input
ports is determined. This approach wastes available match-
ing flexibility since output assignment is performed with-

2Fairness is an equally important third metric for crossbar arbitration.
However, our primary focus is on performance-related metrics because that
is the primary concern in the domain of our interest (multiprocessor inter-
connection networks and onchip networks). We do include anti-starvation
guarantees as a failsafe measure.

out knowledge of the entire request set at each input port.
Our approach forwards multiple (or all) requests to expose
matching flexibility which is then successfully harnessed.

Second, we recast the arbitration problem as a table-
lookup problem with the requests of all input ports forming
the index into the table and the contents of the table forming
the output grants. The table-lookup based approach shifts
the problem of discovering the optimal match offline. In-
stead, only the table lookup time is on the critical path. The
table-lookup is conceptual and can be implemented as hard-
wired combinational logic.

A naive implementation of the table-lookup approach
is expensive in terms of area overheads. We propose two
implementation optimizations that make TabArb feasible
for 2D networks. Our first optimization exploits the ob-
servation that several input request combinations never oc-
cur due to routing restrictions such as minimal routing and
dimension-ordered routing. Our second optimization ex-
ploits the insight that most of the performance gains of
TabArb can be captured by forwarding a partial set of re-
quests instead of full request forwarding (FuRF). Arbiters
that use traditional 2-stage arbitration with single request
forwarding can be seen as extreme form of partial request
forwarding (PaRF). We demonstrate that there exist other
design points in the PaRF design space which capture the
benefits of PaRF without sacrificing too much matching
power by forwarding the appropriate number of requests.
A key advantage of PaRF is that, unlike FuRF, it permits
pipelining of the arbitration process, thus increasing arbi-
tration throughput with a small decrease in matching power.
Certain points in the PaRF design space reduce the imple-
mentation overhead of TabArb as well as the lookup la-
tency.

This paper demonstrates that minimal-routed, two di-
mensional mesh and torus networks are ideal candidates
for table-lookup based arbitration because: (a) Sophisti-
cated matching logic, which rely on iterative [1, 10] or
wave-propagation [18] approaches, are slow. For example,
Mukherjee et.al. estimate that arbitration mechanisms with
high matching power consume 4 cycles [11] for the 2D torus
network of Alpha 21364 [12]. (b) TabArb implementa-
tion costs are small enough to allow a fast lookup and area
overheads are negligible. Even with an aggressive 10 FO43
clock cycle, our mechanism achieves single cycle arbitra-
tion for dimension ordered routers and 2-cycle, pipelined
arbitration for minimal, adaptive routers.

Simulations reveal that TabArb improves the satura-
tion bandwidth for minimal, adaptive routers by as much
as 14.8% for some traffic patterns. TabArb incurs a small
performance penalty for other traffic patterns in which arbi-

3“E0Q4” refers to the delay of a signal through an inverter that drives
four other inverters of the same size. This is a technology independent
measure of delay in circuits and is the metric of choice for timing analysis.

tration is not the primary bottleneck.

TabArb—does have a limitation in that it does not scale
to high radix routers [8] due to exponential growth of area
required to perform the table-lookup. However, high radix
routers are rarely implemented with an internal high radix
crossbar due to complexity. Kim et.al. [8] suggest hierar-
chical crossbar organization in which the high radix switch
is built using low radix sub-switches. TabArb may be em-
ployed in such low radix sub-switches to improve overall
performance of high radix routers, as well.

In summary, the main contributions of this paper are:

e We develop TabArb — a table lookup based cross-
bar arbitration mechanism that results in improved match-
ing power via multiple request forwarding. Table-lookup
based arbitration enables offline computation of the max-
imum cardinality matching for the set of forwarded re-
quests. The lookup delays are small enough to enable
single-cycle or 2-cycle arbitrations (assuming an aggressive
10 FO4 clock cycle) for DOR and minimal, adaptive net-
work configurations, respectively. TabArb achieves up to
14.8% increase in saturation throughput in a minimal, adap-
tive 8x8 mesh network over Alpha 21364’s arbitration algo-
rithm (SPAA [11]) for some configurations. Other configu-
rations, which present no opportunity for improvement via
improved arbitration observe a small performance penalty.

e Our Partial Request Forwarding (PaRF) mechanism
captures most of the matching power of full request for-
warding without any degradation in arbitration throughput.
Further, PaRF can also be used to simplify the table im-
plementation with corresponding area and lookup time im-
provements.

The rest of this paper is organized as follows: Section 2
provides a brief background on the switch arbitration prob-
lem and discusses related work. Section 3 describes our
table-based arbitration technique and analyzes its memory
requirements for various points in the design space. Sec-
tion 4 describes the evaluation methodology. We present
simulation results in Section 5. Section 6 summarizes and
concludes this paper.

2 Background and Related Work

Section 2.1 describes the baseline network and router ar-
chitecture we assume. Section 2.2 provides a brief back-
ground on the arbitration problem for input queued net-
works in general in the specific context of our domain of
interest — minimal-routed, 2D mesh/torus networks. Sec-
tion 2.3 discusses related work.

CREDITS OUT (ALL PCs and VCs) Routing
VC Allocation

Switch Arb.

CREDITS IN (ALL PCs and VCs)

INPUTf””””"””"””": ”””” ' OUTPUT
: PORTS

vivy

A
B
c
D
Ejection Ports

e
- S N
"""""""""""""""" e 4x4
wr L *D_’ CHOS;BARﬂ_>
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

Figure 1. Base Router Model

2.1 Baseline Network and Router Archi-
tecture

In this paper, we consider packet-switched, two-
dimensional mesh/torus networks. Each packet is com-
posed of individual flow control units (“flits”) with one
header flit, data flits and a tail flit. We assume a virtual
channel flow control [3] router with several virtual channels
per physical channel as shown in Figure 1.

The physical input ports are labeled X+, X-, Y+ and Y-
for the dimension (X/Y) and direction (+/-) they traverse.
Each flit arrives on a physical input port and is delivered
to the appropriate virtual channel buffer (input buffer as-
sociated with a virtual channel) by examining the virtual
channel identifier (VCID) included with each flit’s control
information (See Figure 1). It then progresses through var-
ious stages in the router before it is delivered to a neigh-
boring router. The first pipeline stage—the routing stage—
determines the packet’s possible output physical channels.
Next, the packet (i.e. header flit) contends for a virtual chan-
nel at the input port of the adjacent node. After successful
VC allocation, the packet competes for a switch port in the
switch arbitration stage. Though we externally show a 5x4
crossbar to account for the injection port, internally, we use
a 4x4 switch with separate injection multiplexers. A simi-
lar design has been used previously by Wang et.al. in the
context of other crossbar optimizations [21]. Our architec-
ture assumes four ejection ports (A, B, C or D in Figure 1).
The number of ejection ports is as recommended by Bal-
akrishnan et.al. [2] who demonstrate that a single ejection
port can be a bottleneck. Further, a flit headed toward an
ejection port does not block any other flit headed toward a
network port. The focus of this paper is on the arbitration of
the 4x4 crossbar connecting the network input ports to the

X =g Logic

/N | Based
q Arbitration

N | Fabric
Y-

(a) Logic-based Arbitration

Port Request Vector _Table Lookup Based Arbitration

0011
X+ T . MCM-TAB
0010

1000

Y- T 1

(b)TabArb Table-lookup based Arbitration

Figure 2. Arbitration Implementation

network output ports. Finally, on switch grant, the packet
is delivered across the crossbar and physical channel to an
input queue of the neighboring node. Our router pipeline
model assumes that there’s a one cycle delay after a flit is
delivered to the neighboring node before it’s input buffer is
marked free to allow for credit propagation.

2.2 Crossbar Arbitration

The crossbar arbitration stage matches requesting input
ports to free output ports such that no output port is assigned
to more than one input port and no input port is granted
more than one output port. Clearly, the higher the num-
ber of such matches, the better the performance since both
bandwidth and latency will improve.

The arbitration problem can be stated as a bipartite
matching problem. Consider a bipartite graph with two sets
of vertices. The first set consists of vertices corresponding
to each input port and the second set contains vertices cor-
responding to each output port. For each flit at the head of
the each of the queues at any input port, we add an edge in
the graph from its input port to the output ports it wants to
traverse. For example, Figure 2(a) shows a sample bipartite
graph assuming that the flits at the head of the queues of port
X+ want output ports Y+ and Y- (highlighted parts). Each
of the other edges may be similarly interpreted. Traditional
logic based arbiters consider requests from each input queue
and assert the grant signal for the winning contenders, as
shown in Figure 2(a). As long as the grants correspond to
some bipartite matching in the graph, it is deemed to be a
valid arbitration outcome since it ensures that (a) only one
flit leaves each input port and (b) no more than one flit is
headed to the same output port. Among all possible valid
outcomes, the maximum cardinality matching (MCM) is the

preferred outcome since it maximizes crossbar and link uti-
lization.

2.3 Related Work

There exists a large body of work on the crossbar arbi-
tration problem for input queued switches with many sug-
gested approaches [1, 4, 5,7, 9, 10, 11, 14, 18]. We only
provide a brief overview of selected literature.

Throughout this paper, we consider the SPAA arbitra-
tion algorithm [11] as the benchmark to compare against.
Though there exist many arbitration algorithms that have
significantly higher matching power than SPAA such as
Parallel Iterative Matching (PIM [1] and Wavefront Ar-
biter (WFA [18]), SPAA has been shown to achieve higher
overall throughput [11] (because of increased arbitration
throughput). SPAA uses simple two stage arbitration. In
the first stage (local arbitration) each port nominates the
least-recently selected (LRS) packet and forwards its request
to the output ports. In the second stage (global arbitra-
tion), each output grants the request of the least-recently
selected requestor. We make some minor changes to SPAA
to make it compatible with our baseline router pipeline and
our switch dimensions. The matching algorithms are ex-
actly as used in SPAA.

Peh et.al. provide details of the construction of logic-
based arbitration fabric [14]. Its matching power is likely to
be similar to that of SPAA due to use of local and global ar-
bitration schemes with round-robin (SPAA’s LRS policy is
also demand-slotted round-robin) arbitration at each level.
We discuss a generalized form of local and global arbitra-
tion called partial request forwarding in Section 3.2.

There exist other powerful arbitration mechanisms that
are geared towards Internet scale systems with VOQ-based
input queues or a combination of input, crosspoint and
output buffers [10, 15] which offer throughput and link-
utilization guarantees under various traffic assumptions.
However, multiprocessor interconnection networks and on-
chip networks which need good average case throughput
have typically used VC flow control with a limited num-
ber of virtual channel input queues rather than the larger
number of queues required for VOQ.

3 TabArb Arbitration Algorithm

Conceptually, our approach aims to replace the logic
based arbitration fabric with a table-lookup as shown in Fig-
ure 2(b). We define the Port Request Vector (PRV) as a bit
vector that encodes all the output port requests of any given
input port. One naive way to encode the PRV is to use a 4-
bit vector (one bit per output port). If the input port requires
an output port, the corresponding bit is set. For example,

the PRV for the X+ input port is shown to be “0011” in-
dicating that the port is requesting output ports Y+ or Y-.
The bit-vector formed by concatenating all PRVs is called
the Aggregate Request Vector (ARV). The ARV is a 16-bit
vector for the encoding described above.

The lookup table for TabArb uses the ARV to index
into a table and each entry contains the Aggregate Grant
Vector (AGV) that matches input and output ports. Since
the lookup table can be computed offline, the table can
be populated with AGVs that maximize the matching (i.e.,
the MCM) for any given ARV. The maximum cardinal-
ity matching represented by the AGV is shown with high-
lighted edges in Figure 2(b). The AGV is divided into sepa-
rate Port Grant Vectors (PGVs) and distributed to each port.
In the example shown in Figure 2(b), the PGV for port X+
is shown as “0010” to indicate that it was granted the Y+
port. The PGV can be smaller since each input port may
get no more than one grant. The grants can be recorded in
3 bits each identifying which, if any, of the four requested
ports has been granted. Thus, the AGV is 12-bits wide.

Note, our mechanism does not need to incorporate the
information on free output ports since our design assumes
flit-by-flit arbitration. Thus, every output port is free after
each cycle. There may be no free slots in the input queues
at the neighboring nodes. In such a situation, there will be
no request for that port anyway since flow control mech-
anisms (i.e., credit back-propagation) will ensure that no
packet competes for that port.

Since our conceptual table-lookup employs read-only ta-
bles, it is possible to implement the table lookup via com-
binational logic by treating the contents of the table as a
truth table. A naive combinational logic implementation of
the above technique would use the 16-bit ARV as its inputs
and generate the 12-bit AGV as its output. However, such
an implementation fails to exploit several possible optimiza-
tions that reduce the complexity of the table implementation
without reducing (or with minimal reduction of) the match-
ing power of the full MCM table.

The remainder of this section discusses optimizations
which exploit two specific properties. First, we exploit
the restrictions that routing algorithms may impose (Sec-
tion 3.1). Second, we discuss a technique to forward only
a subset of requests to the ARV without a significant degra-
dation in the matching power. Section 3.2 describes vari-
ants of this technique called partial request forwarding and
its impact on complexity. Section 3.3 quantifies the tim-
ing properties and area overheads of a combinational logic
based implementation of our arbiter. Section 3.4 describes
anti-starvation mechanisms for TabArb.

3.1 Exploiting Routing Restrictions

In this section, we describe how two common rout-
ing restrictions—minimal routing and dimension-ordered
routing—can be exploited to significantly reduce the com-
plexity of the TabArb lookup table.

Minimal Routing: Minimal routing algorithms ensure
that a packet gets closer to the destination with each net-
work hop. A packet at a particular input port cannot request
the same output port since it would essentially return to the
same node it came from, thus violating minimal routing.
We can exploit this observation to reduce the size of the re-
quest vectors with no loss of information. Accounting for
minimal routing, each packet may request a subset of three
possible ports. Incorporating this reduction produces a non-
trivial reduction in complexity since it reduces the length
of each PRV by one bit and the ARV by 4 bits. Logically,
this corresponds to a factor of 16 reduction in the size of
the truth table from 64K-entries to 4K entries. In general,
the delay through a combinational logic block need not be
proportional (or even correlated) to the size of the truth ta-
ble. However, we use the size of the truth table as an intu-
itive measure of the complexity for now. We demonstrate
that the relative rank ordering of complexities indicated by
truth table sizes are indeed preserved in the final area/delay
analysis in Section 3.3. Further, this scheme reduces the re-
quired size of the AGV to 8 bits because each PGV must
record one of four possibilities: a grant of one of three ports
or a grant of no port at all.

Dimension-Ordered Routing: Dimension ordered
routing (DOR), a popular and simple routing algorithm of-
fers another opportunity for further reducing the table size.
Without loss of generality, we assume that packets traverse
the X dimension before they traverse the Y dimension. A
packet entering on the Y- input port can only request the
Y+ output port or no port* at all. A request for the Y- port
would violate minimal routing and requests for the X+ or X-
ports would violate DOR. Similarly, a packet in the Y+ port
queue can either request the Y- port or not request any port.
Thus, the PRV of the Y+ and Y- ports can be represented
in one bit each. Since packets in the X+ and X- port can
still request any combination of the three ports, their PRVs
remain 3 bits wide. The ARV is now an 8-bit (34+3+1+1)
vector conceptually indexing into a 256 entry truth table.

From the above observations, we arrive at a 256-entry
truth table for minimal DOR routers and a 4K-entry truth
table for other minimal routers including minimal adaptive
routers. We demonstrate in Section 3.3 that the DOR arbiter
can be implemented with single-cycle access. However, the
more broadly applicable minimal adaptive router requires
two-cycle table-lookup. This poses a problem because of

“4This effectively means that it is requesting the ejection port which will
be handled outside the main crossbar.

the dependency between successive arbitrations. The PGV
of the i*" arbitration must be determined before PRV of the
(i+1)*" arbitration can be determined. For the 2-cycle arbi-
tration, it implies that a new arbitration can only commence
every other cycle. This reduction in arbitration throughput
is serious performance bottleneck and results in degraded
performance (i.e., lower saturation throughput). We address
this problem in the next section.

3.2 Partial Request Forwarding

Thus far, we assumed that each port’s PRV encodes the
requests of each flit that is at the head of a FIFO at that
port. Relaxing this condition to allow the PRV to reflect
only a fraction of all requests at that port offers an interest-
ing trade-off. An obvious disadvantage is that the match-
ing outcome of the arbitration may not be optimal since the
table-lookup has incomplete request information. On the
other hand, the key benefit is that it allows pipelining of ar-
bitration requests. The (i+1)*"* PRV is no longer dependent
on the i** PGV as long as it forwards requests of flits that
were not included in the 7** PRV.

In general, we consider all arbitration schemes which
forward only a partial view of the port’s requests to be par-
tial request forwarding (PaRF) schemes. PaRF defines a
space of possible designs. On one end of the spectrum is
the full request forwarding design described earlier. On the
other extreme is a design wherein the request from only
one flit is forwarded by each port. Intermediate design
points correspond to various matching power vs. arbitra-
tion throughput trade-offs. SPAA’s design corresponds to
an extreme point in the PaRF design space as it forwards
the request of only one flit’ in each PRV.

The second interesting outcome of PaRF is that the size
of the truth table (our measure of complexity) can be re-
duced if all combinations of output requests are not possi-
ble under the PaRF scheme. For example, consider a PaRF
scheme in which only one flit’s requests are being for-
warded. Further, assume that each flit may request at most
one output. Note, this assumption does not imply that rout-
ing restrictions are being imposed. For example, oblivious
routing algorithms request at most one output port though
the choice of that output port may be randomized. Even
adaptive routing algorithms may be “temporally adaptive”
as in the Alpha 21364. In “temporally adaptive” schemes,
the flit’s output requests are adaptive in time. For any given
arbitration, each flit requests a single output port. However,
if it fails the first time, the same flit may try for another port
in subsequent attempts.

STn the Alpha 21364 router, each port forwards the nominations of two
packets to two different SPAA arbiters. However, we exclude considera-
tion of the secondary arbiter since such arbiter duplication can be achieved
with any arbitration scheme.

For the above class of routing algorithms where each flit
can request at most one output port, consider the possible
port request combinations if exactly one flit’s requests are
forwarded. That flit may request one of the three possible
output ports (i.e., the number of ways to choose one ports
from three ports = (i)). It is also possible that it requests no
cross-bar ports at all since it may request the ejection port
(i.e., the number of ways to choose zero ports from three
ports = (g)). Hence, the number of unique bit combinations
represented by the PRV is at most 4 when using PaRF with
one request forwarding. The above observation can be ex-
ploited to re-encode the four unique PRVs in two bits. Thus,
a router with all ports forwarding only one request reduces
the table size by a factor of two for each port. This implies
that even a fully adaptive (albeit with temporal adaptivity)
router can achieve table size of 256. As stated before, the
matching power of PaRF scheme which forwards only one
request is lower. However, this data point represents an ad-
ditional matching-power vs implementation-cost trade-off
since it reduces the size of the table. Note, the PRV is a
3-bit vector whenever the port forwards more than 1 output
request.

Heterogeneous PaRF:

The number of requests forwarded from each port need not
be the same. We define the “PaRF< 1, 7, k,[> scheme to
mean that the scheme forwards the requests of up to 7 flits
from the X+ port, j flits from the X- port, % flits from the Y+
port and [flits from the Y- port. By this notation, the PaRF
variant discussed in the previous section is represented as
PaRF< 1,1,1,1>.

An alternate PaRF< 3,3,1,1 > configuration offers an
interesting design point. Because it forwards more requests
than PaRF< 1,1,1,1 >, its matching power is expected
to be higher. The PRVs for the ports are 3-bits, 3-bits, 2-
bits and 2-bits respectively resulting in a 10-bit ARV (or a
1K-entry truth table). Our results (Section 5.3) show that
PaRF< 3,3, 1,1 > is adequate to capture all the benefits of
TabArb.

3.3 Table Lookup Access Times and Area
Overheads

The previous sections used truth table sizes as a heuris-
tic measure of complexity. In order to quantify the over-
heads more precisely, we have obtained delay and area over-
heads as reported by a synthesized (using Synopsys’ De-
sign compiler) VHDL model of our mechanism. In this
section we briefly present the conclusions of our area and
timing measurements. We omit the detailed methodology
and area/delay results due to lack of space.

The three key conclusions are:

e When synthesized to optimize area, the DOR arbiter
can be accommodated in one 10 FO4 clock cycle.

However, the arbitration stage of the adaptive routers
(both PaRF and FuRF) require a two-stage arbitration
pipeline. While FuRF requires a pipeline bubble after
each arbitration attempt, PaRF can be fully pipelined
as described in Section 3.2. We refer to the shal-
low pipelined router architecture with a single-cycle
stage each for routing, VC allocation, switch arbitra-
tion and transfer as the ‘RVST’ pipeline. The DOR
router uses the RVST pipeline configuration. For the
adaptive routers, we use a deeper pipeline with two
stages of VC allocation and two stages of switch ar-
bitration, which we refer to as the ‘RV2S2T’ pipeline.

e The DOR (Adaptive, PaRF) configuration has modest
area overhead and requires the area equivalent of one
(four) input queue buffer(s) that holds eight flits of 64
bits each. For comparison, a router with five physical
input ports and four virtual channels per physical input
port has twenty (20) such input queues.

e The adaptive router with FuRF has significant area
overhead—Ilarger by two orders of magnitude com-
pared to the simpler configurations (i.e., DOR and
adaptive with PaRF). This represents a second draw-
back for the FuRF adaptive router since there is also an
arbitration throughput penalty due to the dependence
between consecutive arbitrations. As such, while we
include the FuRF adaptive router for comparison, our
recommendation is for the PaRF version.

3.4 Fairness

The previous sections focused purely on the two aspects
of arbitration performance: matching power and arbitration
throughput. This section examines the fairness of TabArb.
One possible concern with table-lookup based arbitration
schemes is that multiple attempts with the same ARVs gen-
erate the same AGVs. Thus, a contender that lost in one
arbitration attempt (either because it was not part of any
MCM matching or because it was not part of the MCM
matching stored in the table even though it was a part of an
alternate MCM matching) is consistently declined in each
subsequent attempt as well. This problem could lead to star-
vation wherein some contenders consistently lose out.

We adopt existing anti-starvation mechanisms, also used
in the Alpha 21364 router [11], into TabArb. This ap-
proach optimizes for performance assuming that starvation
is the uncommon case. However, starvation is guaranteed
not to occur since any packet that does get starved (as de-
tected by timeouts) supersedes any other packet. Multiple
anti-starvation requests are served in FIFO order. We ob-
served from our experiments that the effect of varying the
timeout threshold of anti-starvation mechanism is intuitive.
Too low a threshold results in reduced overall throughput

due to frequent invocation of the anti-starvation mechanism.
Too high a threshold results in the possibility of some pack-
ets suffering increased latencies. A threshold of 20 cycles
was experimentally found to be the best. We do not include
these results due to lack of space.

Extensions TabArb focuses on minimal, two dimen-
sional mesh and torus networks. This is a broadly applica-
ble class of networks that has sparked renewed interest with
the advent of onchip networks [20, 19, 13, 16]. TabArb
does not scale in area and delay to high radix routers or
non-minimal routing routers since they effectively increase
the length of the request vector. Some high-radix routers
may use hierarchical cross bars which are built with low-
radix crossbar subswitches [8]. TabArb arbitration may be
a candidate for allocation of subswitch ports.

Summary: In this section, we described the TabArb
arbitration algorithm which achieves table-lookup-based
maximum cardinality matching and multiple request for-
warding. The area overheads of TabArb are modest. The
only high-overhead version (FuRF adaptive) also suffers
from poor arbitration throughput. However, Partial request
forwarding can recapture high arbitration throughput with-
out significantly compromising on matching power. Fi-
nally, we demonstrated that PaRF also significantly reduces
the area overhead. In the next two section, we evaluate
TabArb in comparison with SPAA.

4 Evaluation Methodology

We use a modified version of the PoPnet [17] network
simulator. PoPnet models a four-stage router pipeline sim-
ilar to our basic RVST pipeline. We assume that the logic
delay of the routing stage and the physical traversal to the
neighboring node can be accommodated within one clock
cycle (10 FO4) each. The arbitration stage takes 1 or 2 cy-
cles depending on the configuration (see Section 3.3). For
the configurations where switch arbitration takes 2 cycles,
we assume that VC allocation also takes two cycles; oth-
erwise it takes one cycle. The anti-starvation logic in our
arbitration mechanism uses a timeout of 20 cycles. The net-
work was simulated for 100,000 cycles which was seen to
be adequate for the network to achieve steady state. The
reported latency includes queuing time before a packet is
injected into the network and is measured till the tail flit
is drained at the destination node. The channels are full-
duplex bidirectional links.

The basic router model assumes the architecture dis-
cussed in Figure 1. We evaluate the performance of
TabArb for two network configurations listed in Table 1.

e Lite network : This configuration uses a 4x4, 2D-
mesh topology and dimension ordered routing. This
is similar to the interconnection network used in the

Parameter lite aggressive
Topology 2D Mesh 2D Mesh
Network Size 4x4 8x8
Routing DOR Adaptive
Router Pipeline RVST RV2S2T
Packet size 1 flit 5 flit
VCs/PC 4 8
RF Scheme FuRF PaRF
PaRF scheme - <3,3,1,1>
Arb. Latency 1 cycle 2 cycles
Cycles b/w arbs. 1 1

Table 1. Network Configurations

RAW processor prototype [19]. We use single-flit
packets to simulate operand transport. This configu-
ration uses the RVST pipeline.

o Aggressive Network : For this configuration, we use
an 8x8, 2D mesh network with fully adaptive rout-
ing. The best performing scheme was the PaRF<
3,3,1,1 > scheme. This configuration uses the area-
optimized version of the table implementation which
corresponds to the RV2S2T pipeline. However, a new
arbitration can begin each cycle because of PaRF.

We use Duato’s adaptive routing algorithm with dead-
lock avoidance for the adaptive routing configurations [6].
We simulate a steady offered load at various injection rates.
We consider three different traffic permutations, uniform
random (ur), bit complement (bc) and matrix transpose
(mt). These communication patterns differ in the way a
destination node is chosen for a given source node with bit
co-ordinates (¢, _1,@y_2, - ..,01,09). The bit co-ordinates

for the destination nodes are (ap—1,an—2,---,a1,a00)
for complement and (a(n/2y—1 5 Gnj2)—2 » --- » Qo,
Gn—1,0n-2 -+ .,0(n/2)0 for matrix-transpose. We define

saturation throughput as the delivered throughput at which
average packet latency is twice the latency in an unloaded
network.

5 Results

The four primary conclusions from our simulations are:
(1) For the aggressive configuration, TabArb scheme
outperforms SPAA improving the saturation throughput
by 14.8% and 11.6% for ur and mt traffic patterns, re-
spectively. The improvement in performance is predomi-
nantly due to increased matching power. TabArb schemes
achieve the same arbitration throughput as SPAA (i.e., one
arbitration every cycle). TabArb provides no benefit for
the 1ite configuration.

Lite configuration

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0 rsPaa 60 rspan ——
FURF -8 FuRF &
& & 50 % 50
° 8 o
S S S
g g 40 g 40
> > >
2 2 2
g g 30 g 30
© o ©
5 3 5
[0} (<] (o}
g g 20 g 20
[[[
2 2 2
< < 10 < 10
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Throughput (flits / node / cycle)

(a) Uniform Random

Throughput (flits / node / cycle)

(b) Matrix Transpose

Aggressive configuration

Throughput (flits / node / cycle)

(c) Bit Complement

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
200 SPAA —+— 200 SPAA —+— 200 SPAA —+—
PaRF <3,31,1> —& PaRF <3,3,1,1> —& o PaRF <3,3,1,1> —&

150 150

100 100

Average Latency (cycles)
Average Latency (cycles)

50 | g 50

150

100

Average Latency (cycles)

50

0 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Throughput (flits / node / cycle) Throughput (flits / node / cycle) Throughput (flits / node / cycle)
(d) Uniform Random (e) Matrix Transpose (f) Bit Complement

Figure 3. Overall Performance

(2) There is a small performance penalty for the be traf-
fic pattern in both configurations. This is because bc is a
bisection-bandwidth bound pattern and crossbar throughput
is not a performance bottleneck.

(3) PaRF’s contribution in improving arbitration
throughput is extremely important for performance in the
aggressive configuration. The adaptive algorithm with
FuRF is worse than SPAA in spite of higher matching
power. However, the adaptive router with PaRF achieves
14.8% improvement in saturation throughput over SPAA.

(4) PaRF captures much of the matching power of FURF
when reasonable fractions of requests (e.g., < 3,3,1,1 >
and < 2,2,2,2 >) are forwarded. Significant degradation
in matching power is felt only at extreme data-points such
as the PaRF< 1,1,1,1 > case, where its matching power
is 27% lower than that of FuRF.

The remainder of this section describes the results in de-
tail. First, we describe the overall performance of TabArb
schemes. Next, we quantify the loss of matching power due
to PaRF. Finally, we evaluate the impact of loss of arbitra-
tion throughput.

5.1 Overall performance

The simulation results presented in Figs 3(a), (b) and (c)
correspond to the three traffic patterns (ur, mt and bc, re-

spectively) for the 1ite configuration. Similarly, Figs 3(d),
(e) and (f) correspond to the three traffic patterns for the
aggressive configuration. Each graph has two curves
— one each for SPAA and TabArb. Each graph has deliv-
ered throughput on the x-axis at two different scales: (a) the
x-axis below specifies the absolute value (flits/node/cycle)
of throughput and (b) the x-axis above normalizes delivered
throughput to network capacity. The graphs plot average
packet latency in cycles on the Y-axis. For any given curve,
the delivered throughput increases without much increase in
latency at low loads. This is as expected because network
packets do not experience contention before network satu-
ration. However, when load approaches saturation through-
put, we observe a sudden and sharp increase in latency. The
curve that saturates at the highest load represents the better
router.

There is no significant improvement for the 1ite con-
figuration. This is because the same phenomenon that
helped optimize the table implementation complexity of
TabArD (i.e., DOR routing restrictions) also limits the op-
portunity for TabArb to outperform DOR. When 50% of
the input ports (Y+ and Y-) offer no flexibility in choice
of output ports, the opportunity to improve performance
diminishes. TabArb improves saturation throughput by
14.8% and 11.6% for ur and mt traffic patterns, respec-
tively.

Matching Power (# matches / arb)
Matching Power (# matches / arb)

SPAA -
FuRF —&

0 0.2 0.4 0.6 0.8 1
200

SPAA —+— P
PaRF <1,1,1,1> - X
PaRF <2,2,2.2> |
150 PaRF <3,3,3,3>
PaRF <3,3,1,1>

FuRF ---o

100

50

Average Latency (cycles)

SPAA —+—
PaRF <1,1,1,1> -
PaRF <2,2,2,2>
PaRF <33,33>

FuRF -

Woxx

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
Input Queue Occupancy (fraction)

(a) Matching Power (FuRF, DOR)

Input Queue Occupancy (fraction)

(b) Matching Power (PaRF, Adaptive)

0 0.1 0.2 0.3 0.4 0.5
Throughput (flits / node / cycle)

(¢) Performance (PaRF)

0.6 0.8 1

Figure 4. Matching Power, Arbitration Throughput tradeoffs in TabArb

5.2 Matching Power

To measure matching power independently from perfor-
mance, we computed the average number of matches per
arbitration at various levels of queue occupancy. For exam-
ple, a point at the 0.5 mark along the X-axis corresponds
to a point where half the input VC queues have a flit at the
head of the queue as a candidate for switch arbitration.

Figure 4(a) compares the matching power of SPAA with
that of TabArb for the 1ite configuration. Note that the
matching power saturates fairly quickly and stays constant
beyond that. Since the table-lookup delay for the 1ite
configuration can be comfortably accommodated in a sin-
gle clock cycle of 10 FO4, we do not examine the matching
power of PaRF schemes for this configuration.

Figure 4(b) quantifies the loss in the matching power of
various PaRF schemes for the adaptive router configura-
tion. The graph has six (6) curves. One curve is for full
request forwarding (FuRF) and another is for SPAA. The
remaining four correspond to each of the following four
PaRF schemes: PaRF< 1,1,1,1 >, PaRF< 2,2,2,2 >,
PaRF< 3,3,1,1 > and PaRF< 3,3,3,3 >.

FuRF’s matching power is similarly 42% higher than
that of SPAA for the aggressive configuration. However,
as we show in the next section, FuRF’s performance is
severely degraded due to its non-pipelineable 2-cycle arbi-
tration latency.

The trends for PaRF are exactly as expected. Increas-
ing the amount of request forwarding results in improved
matching power but with diminishing returns. In practice,
we find that PaRF< 3,3,1,1 > offers adequate matching
power and increasing it beyond that offers little or no im-
provement in saturation throughput.

5.3 Importance of Arbitration Through-
put

From the above section, we observe that the matching
power of PaRF varies with the amount of request forward-

ing. Here, we examine the overall impact on performance
of the various PaRF schemes. Figure 4(c) plots the latency-
throughput curves for various arbiter configurations for the
adaptive router (aggressive) with the ur traffic pattern.

We observe that, other than at the extreme data-point
(i.e., PaRF< 1,1,1,1 >), there are significant gains in
saturation throughput. PaRF< 3,3,1,1 >, which is the
configuration with the smallest improvement in matching
power, captures almost all the improvement in performance.
Subsequent increase in request forwarding either does not
help, or actually hurts performance in the case of FuRF. We
observe that FuRF’s latency starts increasing at low load
levels and quickly escalates. This is primarily because of
reduced arbitration throughput.

6 Conclusion

Crossbar arbitration is a performance-critical step in
routers. The two metrics for evaluating crossbar arbitra-
tion mechanisms are (a) matching power and (b) arbitration
throughput. Previous arbiter designs have delivered on one
of the metrics to the exclusion of the other. The main con-
tribution of this paper is the development of a table-lookup
based arbitration algorithm for minimally routed, 2D net-
works that delivers both superior matching power and arbi-
tration throughput.

Our technique exploits two key insights. First, traditional
arbiters forward only one request from each input port as
contenders for the output ports, thus eliminating much of
the matching potential. Our design forwards multiple (or
all) requests from the input ports to the subsequent arbitra-
tion stage exposing much of the matching potential to the
arbiter. Second, the online computation of good matches
incurs significant delays. Our approach employs offline-
computed maximum cardinality match tables to maximize
matching power. The actual arbitration is reduced to a table-
lookup. Since the tables are read-only tables, the actual
implementation of table-lookup is achieved by hardwired
combinational logic. The area overhead of the combina-

tional logic is modest — equivalent to the area of four input
queues with eight entries each. Other optimizations include
(a) the utilization of DOR’s routing restrictions to reduce
implementation complexity and (b) application of partial re-
quest forwarding to increase arbitration throughput without
significantly degrading matching power.

With the optimizations in place, TabArb can operate in
a single 10 FO4 clock cycle for DOR routed mesh/torus net-
works. For adaptive routed networks, TabArb requires two
clock cycles, but the arbitration throughput is preserved.
Though, there are no gains for the DOR router (mainly
due to lack of opportunity), TabArb achieves a 14.8% im-
provement (over SPAA) in saturation throughput for adap-
tive routers.

Acknoledgements We would like to thank the anony-
mous referees for their feedback and suggestions to improve
this paper. This work is supported in part by NSF grant
CCF-0541385, Purdue Research Foundation XR Grant No.
6904010 and Purdue University.

References

[1] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and
Charles P. Thacker. High-speed switch scheduling for local-
area networks. ACM Trans. Comput. Syst., 11(4):319-352,
1993.

[2] S. Balakrishnan and D. K. Panda. Impact of multiple con-
sumption channels on wormhole routed k-ary n-cube net-
works. In Int’l Parallel Processing Symposium (IPPS ’93),
pages 163-167, 1993.

[3] W. J. Dally. Virtual-Channel Flow Control. [EEE Trans-
actions on Parallel and Distributed Systems, 3(2):194-205,
March 1992.

[4] Paolo Giaccone Devavrat Shah and Balaji Prabhakar. Ef-
ficient randomized algorithms for input-queued switch
scheduling. IEEE Micro, 22(1):10-18, January/February
2002.

[5] H. Duan, J. W. Lockwood, S. M. Kang, and J.D. Will.
High-performance OC-12/0C-48 queue design prototype for
input-buffered ATM switches. In INFOCOM’97, pages 20—
28, Kobe, Japan, April 1997.

[6] J. Duato. A New Theory of Deadlock-Free Adaptive Routing

in Wormhole Networks. IEEE Transactions on Parallel and
Distributed Systems, 4(12):1320-1331, December 1993.

[7]1 Paolo Giaccone, Devavrat Shah, and Balaji Prabhakar. An
implementable parallel scheduler for input-queued switches.
IEEE Micro, 22(1):19-25, January/February 2002.

[8] John Kim, William J. Dally, Brian Towles, and Amit K.
Gupta. Microarchitecture of a high-radix router. In ISCA
"05: Proceedings of the 32nd Annual International Sympo-
sium on Computer Architecture, pages 420-431, 2005.

[9] M. G. Ajmone Marshan, A. Bianco, and E. Leonardi. Rpa:
A flexible scheduling algorithm for input buffered switches.

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

IEEE Transaction on Communications, 47(12):1921-1933,
December 1999.

Nick McKeown. The islip scheduling algorithm for input-
queued switches. IEEE/ACM Trans. Netw., 7(2):188-201,
1999.

S. S. Mukherjee, F. Silla, P. Bannon, J. Emer, S. Lang, and
D. Webb. A Comparative Study of Arbitration Algorithms
for the Alpha 21364 Pipelined Router. In Proceedings of
the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP,
pages 223-234, 2002.

Shubhendu S. Mukherjee, Peter Bannon, Steven Lang,
Aaron Spink, and David Webb. The alpha 21364 network
architecture. In HOTI ’01: Proceedings of the The Ninth
Symposium on High Performance Interconnects (HOTI *01),
page 113, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

R. Mullins, A. West, and S. Moore. Low-latency virtual-
channel routers for on-chip networks. In Proceedings of the
31st annual international symposium on Computer architec-
ture, page 188. IEEE Computer Society, 2004.

L. S. Peh and W. J. Dally. A Delay Model and Specula-
tive Architecture For Pipelined Routers. In Proceedings of
the Seventh International Symposium on High-Performance
Computer Architecture (HPCA-7), pages 255-266, January
2001.

R. Rojas-Cessa, E. Oki, and H.J. Chao. Cixob-k: combined
input-crosspoint-output buffered packet switch. In IEEE
Global Telecommunications Conference, 2001. GLOBE-
COM 01, volume 4, pages 2654-2660, 2001.

DaeHo Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and
Mithuna Thottethodi. Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In ISCA ’05:
Proceedings of the 32nd annual international symposium on
Computer architecture, pages 432-443, 2005.

L. Shang, L. S. Peh, and N. K. Jha. Dynamic voltage scal-
ing with links for power optimization of interconnection net-
works. In Proceedings of the 9th IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA),
pages 79-90, Feb 2003.

Y. Tamir and H. C. Chi. Symmetric crossbar arbiters for vlsi
communication switches. IEEE Trans. Parallel Distrib. Syst.,
4(1):13-27, 1993.

M.B. Taylor, W. Lee, S. Amarainghe, and A. Agarwal. Scalar
Operand Networks: On-chip interconnect for ILP in Parti-
tioned Architectures. In Proceedings of the International
Symposium on High Performance Computer Architecture,
pages 341-353, 2003.

Michael Bedford Taylor and Others. The raw micropro-
cessor: A computational fabric for software circuits and
general-purpose programs. IEEE Micro, 22(2):25-35, 2002.
Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-
driven design of router microarchitectures in on-chip net-
works. In Proceedings of the 36th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, page 105. IEEE
Computer Society, 2003.

