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Abstract

High-radix switches are desirable building blocks for
large computer interconnection networks, because they are
more suitable to convert chip I/O bandwidth into low la-
tency and low cost than low-radix switches [10]. Unfortu-
nately, most existing switch architectures do not scale well
to a large number of ports. For example, the complexity
of the buffered crossbar architecture scales quadratically
with the number of ports. Compounded with support for
long round-trip times and many virtual channels, the over-
all buffer requirements limit the feasibility of such switches
to modest port counts. Compromising on the buffer siz-
ing leads to a drastic increase in latency and reduction in
throughput, as long as traditional credit flow control is em-
ployed at the link level. We propose a novel link-level flow
control protocol that enables high-performance scalable
routers based on the increasingly popular buffered crossbar
architecture to scale to higher port counts without sacrific-
ing performance. By combining credited and speculative
transmission, this scheme achieves reliable delivery, low
latency, and high throughput, even with crosspoint buffers
that are significantly smaller than the round-trip time.

1 Introduction

The role of the interconnection network in scientific as
well as commercial computer systems is of growing impor-
tance. The underlying trend is that the growing demand for
computing capacity will be met through parallelism at the
instruction, thread, core, and machine level.

As a consequence, the scale, speed, and efficiency of the
interconnects must grow significantly, for these reasons:

Increasing parallelism: More cores per processor, clus-
tering, massively parallel processing.
Computer busses are being replaced by switched net-
works to achieve bandwidth scalability.
The communication infrastructure (SAN, StAN, LAN,
IO, memory, cluster) is being consolidated to reduce
cost and improve manageability.
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Virtualization of computing infrastructure introduces
more variability (unpredictability) in the network load,
potentially harming application performance, scalabil-
ity, and overall efficiency. While performance remains
our main concern, efficiency is becoming a particularly
vexing issue in the light of strict constraints on power
and heat imposed on datacenters.

As neither busses nor legacy LAN/WANs can
meet all datacenter and high-performance computing
requirements—notably low latency, high bandwidth, high
reliability, and low cost—a number of networking technolo-
gies designed specifically for the datacenter environment
have emerged. Examples are Fibre Channel, commonly
employed in storage area networks (StAN), Myrinet and
QsNet (Quadrics), used for low-latency, high-bandwidth
inter-process communication in high-performance comput-
ing or clustering environments, and InfiniBand, designed
as a comprehensive datacenter interconnect.

Our focus is the design of the switching nodes used in
such networks, in particular with regard to their radix, i.e.,
the number of ports. Kim et al. show in [10] that the net-
work latency is minimized by selecting the optimal switch
radix, given the aggregate switch bandwidth feasible in cur-
rent technology. This is a given value independent of the
radix, i.e., the product of port count and port speed is fixed.
If the radix is smaller than the optimum, the end-to-end la-
tency increases because the hop count increases. On the
other hand, if the radix is larger than the optimum, the
serialization latency increases because of the reduced port
speed. The result indicates that as the aggregate bandwidth
increases, the optimal radix also increases. The authors es-
timate the optimal radices for 2003 and 2010 technologies
at 40 and 127, respectively. The overall network cost also
decreases as the radix increases, because for a given, fixed
network bisection bandwidth, a higher radix reduces the hop
count, thus requiring fewer switches and internal cables.

Modern routers are commonly based on crossbar
switches of the buffered or unbuffered variety. A detailed
discussion on the relative merits and drawbacks of buffered
vs. unbuffered crossbars would exceed the scope of this pa-
per. However, both scale poorly as their radix increases.



With unbuffered crossbars the scaling bottleneck is the cen-
tral scheduler: Obtaining a high-quality matching for a large
number of ports in a short time slot is extremely challenging
(see for instance [13]). With buffered crossbars the scaling
bottleneck lies in the aggregate buffer requirements, which
scale quadratically with the number of ports [7].

This scaling issue of buffered crossbars has received con-
siderable attention recently, with the majority of solutions
proposed so far focusing on architectural changes to the
switch core. Instead, we can derive more substantial bene-
fits by focusing on a router’s link-level flow control (LL-FC)
protocol, which governs buffer allocation and link traver-
sal. The main contribution of this paper is a new LL-FC
scheme that addresses the key requirements of computer in-
terconnects: (1) it enables full bandwidth utilization with
downstream buffers that are significantly smaller than the
round-trip-time bandwidth product, (2) it reduces latency
by eliminating the flow-control latency of conventional LL-
FC protocols, and (3) it provides reliable delivery.

The key novel aspect is that it combines speculative
and credited modes of transmission. The speculative mode
predominates when utilization is low to reduce latency,
whereas the credited mode predominates when utilization
is high to achieve high maximum throughput. Applied to
the buffered crossbar architecture, the proposed scheme can
substantially reduce the overall buffer requirements.

The remainder of the paper is organized as follows. Sec.
2 reviews the role of LL-FC in interconnection networks
(ICTNs) and some existing protocols. Sec. 3 explains the
details of our speculative flow control (SFC) scheme. In
Sec. 4 we apply SFC to the buffered crossbar architecture
and show how this reduces the overall buffer requirements.
In Sec. 5 we examine the performance of the proposed ar-
chitecture by means of simulation. Sec. 6 discusses imple-
mentation aspects. Finally, we conclude in Sec. 7.

2 Link-Level Flow Control

Despite a large body of research results [3, 5, 9, 11, 15]
accruing over the last few decades, the role of LL-FC in the
design of ICTNs is often confounded with related, yet sep-
arate, topics such as routing, congestion control, and dead-
lock management. Nevertheless, technologies such as Fibre
Channel, InfiniBand, Myrinet, or QsNet all feature some
form of LL-FC. Ethernet features grant-like PAUSE frames
(defined in IEEE 802.3x) that can be used to temporarily
throttle the sender on a full-duplex link. We proceed with a
review of the merits of LL-FC and some basic protocols.

Interconnection networks can be categorized as follows:

Lossless networks, which take every possible measure
in hardware not to lose any packet, such as InfiniBand,
Fibre Channel, RapidIO, PCIe, Myrinet, QsNet and

others. They rely on LL-FC to prevent data loss due to
buffer overflows. Transmission errors are typically re-
covered by a link-level retransmission mechanism im-
plemented in hardware.

Best-effort or lossy networks, which occasionally may
drop some packets and must rely on end-to-end retries
at higher layers to recover. Best known are TCP/IP and
ATM networks.

The crucial difference between best-effort and lossless
ICTNs is that, by design, the former allow—and even rely
on—packet loss, whereas the latter will never drop a packet
unless it is corrupted beyond repair. Best-effort networks
typically employ end-to-end flow and congestion control
in software (e.g., TCP). This reduces the complexity and
cost of the network nodes, at the expense of exporting the
problem from the network to the end nodes. This approach
is well suited to the WAN/LAN environment, but the in-
curred drawbacks of reduced performance and reliability
may be unacceptable for the datacenter environment. Re-
covery from packet drops incurs a significant latency. More-
over, the network resources already used by any packet that
is dropped are wasted, including the power consumed by
links and routers along the forwarding route thus far.

To prevent a source from being overly greedy and thus
exacerbating this problem, TCP employs slow start with an
additive-increase multiplicative-decrease (AIMD) window-
adjustment algorithm. In a datacenter environment, how-
ever, the slow start is undesirable as it introduces significant
latency until the full link bandwidth can be used.

Lossless networks, on the other hand, prevent buffer
overflows, offer faster response time in the case of corrupted
packets, do not suffer from loss-induced throughput limita-
tions, and allow bursty flows to start sending immediately
at full bandwidth. Furthermore, their goodput does not col-
lapse when loaded beyond saturation. On the downside,
LL-FC can cause congestion to propagate in multistage net-
works, thus inducing saturation trees.

An LL-FC protocol provides a closed feedback loop to
control the flow of data from a sender to a receiver. We
distinguish various LL-FC protocols by the semantics of
the control information used to inform the upstream sender
about the downstream receiver’s buffer status. The design of
an LL-FC protocol involves trading off buffer space, band-
width overhead, robustness, performance, and complexity.

The main objective of most LL-FC protocols is to regu-
late the flow of data from sender to receiver in such a way
that the receiver’s buffer is not forced to either drop packets
for lack of space (overflow) or idle unnecessarily (under-
flow). More generally, LL-FC protocols fulfill one or more
of the following purposes:



Buffer overflow avoidance: Eliminating avoidable
losses improves efficiency and reliability.

Buffer underflow avoidance: Preventing buffer under-
runs achieves work conservation at the link level.

Quality of Service (QoS): Per-service-class LL-FC in-
formation supports service differentiation (priorities,
classes, lanes, virtual channels).

Resource separation: By separately flow-controlling
individual buffer partitions, guarantees toward dead-
lock avoidance or forward progress can be made.
While this can be useful in conjunction with QoS sup-
port, it should be treated as an orthogonal issue.

Although LL-FC can prevent buffer overflows, packet
drops due to transmission errors can never be completely
avoided. Therefore, lossless networks often also employ a
link-level reliable delivery (LL-RD) mechanism to ensure
quick retransmission of corrupted packets. The purpose of
LL-RD is to ensure error-free, in-order, single-copy deliv-
ery, typically implemented using error detection (e.g. parity
or cyclic redundancy check) and, optionally, error correc-
tion (e.g., forward error-correcting code), along with a re-
transmission scheme (often referred to as automatic repeat
request–ARQ) to retry failed packets and recover the correct
packet order. Success and failure are communicated using
positive (ACK) and/or negative acknowledgments (NAK),
respectively. Preferably, LL-RD is implemented in hard-
ware for optimum performance.

The most common FC protocols are credit-, grant-, and
rate-based FC. In grant-based FC, also referred to as on-off
FC, the semantics of an FC message are either “stop send-
ing” or “start sending”. In credit-based FC, the semantics
are “permission to send up to data units” in the case of
absolute credits, or “permission to send up to additional
data units” in the case of relative (incremental) credits. Fi-
nally, the semantics of rate-based FC are either “send slower
(by a factor )” or “send faster (by a factor ).”

The round-trip time (RTT) is the sum of the latencies
and of the forward (data) path and the reverse (FC) path,
respectively: RTT . The RTT is often normal-
ized with respect to the packet duration. The normalized

round trip equals RTT where is the speed

of the data channel, the width of the data channel, and
the length of a data packet. The RTT plays a crucial

role in properly dimensioning the receiver buffer size
to achieve losslessness and work conservation.

Credit-based FC [9,11,15] typically uses relative (incre-
mental) credit updates for efficiency, and requires one round
trip worth of buffer space ( ) to achieve losslessness
and work conservation, whereas grant-based FC requires
two RTs worth of buffer space ( ) to do the same.

However, relative credit FC is a stateful protocol, meaning
that the current state as observed by the sender depends on
the history of FC information. On/off grant FC, on the other
hand, is stateless, meaning that the current state depends
only on the most recent FC information. Hence, credits are
more efficient, whereas grants are more robust.

We briefly review relative credit FC, considering a sim-
ple point-to-point scenario with one sender S and one re-
ceiver R communicating over a bidirectional link. Both S
and R have buffers to store packets; we assume fixed-size
packets (cells), although this is not a strict requirement. Ini-
tially, R advertises the number of credits to S—we assume
a granularity of one cell per credit, although this may vary
per implementation. S maintains a credit count that tracks
the difference between the aggregate number of credits re-
ceived and the number of credits consumed. S decrements
the credit count for every cell sent; when the count reaches
zero, no more cells can be sent until new credits arrive. R
issues a new credit every time a cell departs from its buffer.

The ratio between the normalized RTT and the receiver’s
buffer size (in cells) determines the maximum link uti-

lization max as follows: max

Consider the minimum turn-around time of a specific
credit; if the credit is issued at , it arrives at the sender
at . Assuming the sender has traffic queued up at that
time and immediately sends a cell consuming the credit, the
corresponding storage location will be reused at
at the earliest, so it follows that the turn-around time equals
RTT. Moreover, as there are credits, a maximum of

cells can be injected during one RTT, hence the maxi-

mum injection rate equals . This implies that

must hold to achieve full link utilization.

Consider the situation where, at the start of time slot ,
the receiver buffer is completely full, so that no free credits
are in circulation. During , the receiver removes one cell
from its buffer and issues a credit. The restart time is the
latency from until the sender can resume transmission. It
follows that the restart time of credit FC equals . It can
be shown that the worst-case restart time of grant FC equals

.

A major difference between credit and grant FC is that
credit FC operates losslessly with any buffer size greater
than zero, whereas grant FC requires at least one RTT worth
of overflow buffer space. However, performance suffers if
the downstream buffer size is less than cells. As Fig. 1
illustrates, in this case the RTT becomes a multiplicative
factor in the burst latency. Here, a burst of six cells is trans-
mitted through a crosspoint that has room for only two cells
(i.e., two credits). Between every pair of two cells, a latency
of one full RTT is incurred. Hence, the end-to-end latency
of the burst equals three times the RTT.
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A fourth, rarely used FC protocol is known as ACK/NAK
FC [4, Sec. 13.3.3]. With this protocol, the sender does
not maintain any state information about the receiver buffer.
The sender is free to send whenever it has data. When a
cell arrives at the receiver, it gets stored if there is room
or dropped if there is none. In the former case the cell is
acknowledged positively (ACK), otherwise it is acknowl-
edged negatively (NAK). The sender stores unacknowl-
edged cells in a retransmission buffer, and the receiver must
ensure that cells are reordered properly, because cell drops
lead to out-of-order arrivals.

This type of FC is rather unpopular because it is wasteful
of bandwidth, while having similar overall buffer require-
ments as credit FC. However, it does have two significant
benefits. First, the maximum link utilization does not de-
pend on the ratio . ACK/NAK FC can operate at full
link bandwidth with regardless of , as long as
the receiver buffer is not full. Second, the restart time is
equal to zero, because the condition to start transmitting
does not depend on the state of the receiver buffer. Because
reception is not guaranteed, the sender has a retransmission
buffer of size RTX to store cells that are waiting to be ac-
knowledged. The sender can only transmit when the re-
transmission buffer is not full. It follows that to obtain full
link utilization RTX must hold. Therefore, the overall
minimum buffer requirement equals RTX .

So far, we have only considered the case with a single
downstream buffer. However, in many applications, the re-
ceiver may have multiple separate buffers, each being flow-
controlled independently. A common example is a link that
supports multiple, say , virtual channels. To ensure that
each lane can make progress independently of the other
channels, each lane has a private buffer space that is man-
aged with its own credits. Another highly relevant example
is the buffered crossbar architecture (see also Sec.

4), which performs switching among inputs and out-
puts. This architecture features separate buffers at the
receiving end of each input link.

In the general case with downstream buffers, the over-
all buffer sizes under the requirement that each buffer must
be able to sustain full link bandwidth scale as for credit
FC ( receiver buffers) and for ACK/NAK FC (one
retransmission buffer and downstream buffers). Clearly,
the latter scales much better than the former. This advan-
tage derives from the fact that a single retransmission buffer
is sufficient because there are only cells in flight (one link)
regardless of the number of downstream buffers.

3 Speculative Flow Control

We propose a novel LL-FC protocol that combines the
properties of credits and ACK/NAK FC in such a way that
it shares the advantages of both. Because of its speculative
aspect, we refer to it as speculative flow control (SFC). SFC
is a point-to-point protocol in which a sender and a receiver
communicate over a bidirectional channel. For the purpose
of the discussion, the downstream channel (sender to re-
ceiver) carries data messages, i.e., cells, and the upstream
channel carries FC messages. The receiver may have multi-
ple ( ), independently managed buffers in which cells can
be stored. These buffers may correspond to, e.g., virtual
channels or to different output ports. We assume that the
sender maintains one queue corresponding to every down-
stream buffer to prevent head-of-line blocking. The receiver
issues separate credits for every buffer, i.e., every credit is
uniquely associated with one buffer. Correspondingly, the
sender maintains an available credit count for every buffer.

SFC combines credited and speculative modes of oper-
ation, with the credited mode taking precedence over the
speculative one. In the speculative mode, the sender is al-
lowed to transmit cells even without sufficient credits. The
following rules govern the operation of the SFC protocol:

A cell is eligible for credited transmission if the sender
has sufficient credits for the cell’s destination down-
stream buffer, i.e., the available credits represent at
least as much buffer space as is needed to store the en-
tire cell. The sender may perform a speculative trans-
mission in a given time slot if and only if no cell is
eligible for credited transmission. A transmitted cell
is referred to as speculative if there were insufficient
credits, otherwise it is referred to as credited.

The receiver drops an incoming cell if its buffer is full
or the cell is corrupted, out of order, or a duplicate.
For every dropped cell except for duplicates, a NAK
identifying the dropped cell is returned. To this end,
every cell carries a sequence number.



The receiver issues an ACK for a cell at the instant the
cell is removed from its buffer, i.e., when the corre-
sponding buffer space is freed up.

Each cell remains stored at the sender until it is posi-
tively acknowledged.

Each cell may be speculatively transmitted at most
once. All retransmissions must be performed as cred-
ited transmissions.

The sender consumes credit for every cell sent, i.e., for
speculative as well as credited transmissions.

The cells at the sender can be partitioned into unsent
cells and cells waiting for positive acknowledgment.
The latter group can be partitioned again along two
orthogonal lines: They are either unacknowledged or
negatively acknowledged and they are either specu-
lative or credited. When credits are available, spec-
ulative cells and negatively acknowledged cells take
precedence over unsent cells, which in turn take prece-
dence over unacknowledged credited cells. The latter
are only eligible for service after a certain expiry time
to deal with corrupted cells and ACKs.

In the remainder of this section, we will explain the ratio-
nale behind these rules.

implies that credited transmissions take strict prece-
dence over speculative ones. This ensures that the desirable
properties, specifically high utilization, of credits are pre-
served.

The receiver drops a cell if either the buffer is full (spec-
ulative cells only), the cell arrives out of order (OOO), or
an uncorrectable transmission error corrupted the cell. In
all of these cases, requires that the receiver returns a
NAK for the dropped cell. This NAK comprises a sequence
number uniquely identifying the cell. The receiver does not
send NAKs in response to duplicately delivered cells be-
cause there is no need for a retransmission; these duplicate
cells are discarded silently. In an alternative implementa-
tion, the receiver could accept OOO cells and perform re-
sequencing on a per-flow basis to ensure in-order delivery.
This reduces the number of retransmissions at the cost of
resequencing buffers and logic.

Instead of being communicated explicitly, credits are
conveyed implicitly by the acknowledgments. According to

the receiver returns a positive acknowledgment (ACK)
when a cell leaves, not when it enters, its buffer. Hence,
an ACK is equivalent to an incremental credit, whereas a
NAK is equivalent to an incremental credit for a dropped
cell. From the perspective of LL-RD, the ACK can be re-
turned upon entrance, but by delaying it until exit, the over-
head of LL-FC and LL-RD can be condensed into a single
FC message. Moreover, this approach enables cell replace-
ments, as discussed in Sec. 3.2. The main drawback is that
cells remain stored longer at the sender, so it impacts the

retransmission buffer dimensioning. NAKs, on the other
hand, are returned right after cell arrival.

According to , all cells remain stored in the sender’s
buffer until positively acknowledged. This holds for spec-
ulative as well as credited cells, even though credited cells
will not be dropped as a result of overflow. However, the
RD mechanism also covers other sources of cell loss, such
as unrecoverable transmission errors. Hence, SFC fully in-
tegrates LL-RD, dealing with protocol-specific as well as
protocol-independent causes of loss.

As excessive speculation may cause bandwidth wastage,
limits the number of speculations to at most one per cell.

Also, cells waiting for acknowledgement and negatively ac-
knowledged cells are not eligible for speculation.

specifies a conservative credit policy. This means
that a credit is consumed even though there may be no space
in the receiving buffer. Correspondingly, the receiver re-
turns a credit for every incoming cell, even the ones that
have been dropped. implies that the credit count may
be negative. The classification into speculative and credited
cells ( ) can be reformulated as follows: A cell selected
for transmission is credited if the corresponding credit count
is greater than or equal to zero after decrementing, and oth-
erwise it is a speculative cell. Any queue for which the
credit count is less than or equal to zero (before decrement-
ing) can only perform speculative transmissions. The bene-
fits of adopting are that all credited cells are guaranteed
to not be dropped because of buffer overflow and that cells
need not be explicitly marked as credited or speculative.

The purpose of is to expedite the reliable delivery
of speculative cells, which have a relatively high probabil-
ity of loss. As credited cells can only be dropped because of
physical-level errors (which are assumed to be rare) or being
OOO, they receive the lowest priority. To ensure that unac-
knowledged cells do not wait forever when a severe trans-
mission error damages the cell so badly that the receiver
does not even detect its presence or when the ACK/NAK is
lost, cells should be aged. Cells having an age over a certain
(conservative) threshold should be considered as negatively
acknowledged and treated as such.

The specific policies used to arbitrate among eligible
cells for either speculative or credited transmission can be
chosen according to preference. The only restriction is that
cells belonging to the same flow should be served in the
order of their arrival.

The SFC rules of operation specify that a cell should be
stored at the sender until acknowledged. This opens up
the possibility of replacing cells already stored at the re-
ceiver by newly arriving ones. Such replacements are useful
in several contexts, for example to support multiple levels
of priority. Using conventional credits, dedicated receiver
buffer space must be allocated to every priority to ensure



progress and prevent priority inversion [12]. This occurs
when low-priority cells hog the receiving buffer, thus pre-
venting higher-priority ones from overtaking them. With
SFC, it is possible to replace a low-priority cell when a
high-priority one arrives at a full buffer. To signal the
replacement, the receiver issues a NAK for the replaced
(dropped) cell.

However, this mechanism only works properly when the
sender’s retransmission buffer is larger than the downstream
buffer. Otherwise, injections of new cells would be pre-
vented by a full retransmission buffer. Hence, the “over-
size” of the retransmission buffer directly determines how
many replacements can be made. Alternatively, the replaced
cells could be removed from the retransmission buffer and
requeued in the regular sender buffer. In practice, this would
be difficult to implement in hardware because of expensive
dequeue operations at arbitrary points in the retransmission
buffer. This also creates sequencing issues and violates the
credit semantics if the sender buffer is also a receiver buffer
(e.g. in multistage networks).

A few potential fields of application for SFC are:

Datacenter interconnection networks: SFC enables a
mix of lossless and lossy traffic to coexist in the same
network. Furthermore, it simultaneously offers high
reliability for storage and system area networks, low
latency for parallel computing applications, and high
utilization.
Buffered crossbar switches: The buffer requirements
of this type of switch scale quadratically with the port
count. Applying SFC may reduce this requirement.
We study this application in detail in Sec. 5.
Quality-of-service: Providing QoS using conventional
credits requires pre-allocating buffer space to every
traffic class. With SFC, the buffer space can be shared
dynamically among multiple priorities, without lead-
ing to priority inversion (Sec. 3.2), which occurs when
low-priority traffic is stalled in a shared buffer, thus
preventing higher-priority traffic from entering.
Congestion control: The problem of downstream
buffer hogging is also responsible for tree saturation
[16] in lossless interconnects: Cells destined for a
“hot” (i.e., overloaded) node use up a disproportionate
share of network buffers. In severe cases, this can lead
to a collapse of aggregate network throughput. As SFC
enables replacement of cells in downstream buffers, it
may be useful for fighting tree saturation. This appli-
cation is left for future study.

4 An SFC-enabled Buffered Crossbar Switch

Having studied the role of LL-FC in interconnection net-
works and defined the SFC protocol, we now proceed with
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Figure 2. Combined- input- and crosspoint-queued
switch, .

a specific SFC case study, namely, the combined-input-
crosspoint-queued (CICQ) switch architecture (shown in
Fig. 2), which features upstream buffers (input queues) or-
ganized as virtual output queues (VOQs) and an
buffered crossbar switching core; the flow control protocol
is usually based on incremental credits.

Shared-memory switch architectures have been unable to
keep pace with the rising port counts and line rates, because
implementing a shared memory with the required aggregate
throughput is extremely difficult, the main limitation being
wiring rather than logic gates. The buffered crossbar has
emerged as a viable alternative to the shared-memory archi-
tecture. By dedicating a buffer to every input-output combi-
nation, all memories operate at one instead of times the
line rate.

Packet switches based on buffered crossbars have at-
tracted increasing attention [1, 8, 10, 14, 18, 21] in recent
years. The advantages of the CICQ architecture are that it
has a balanced distribution of scheduling complexity, mem-
ories that operate no faster than the line rate, and excellent
performance characteristics under a wide range of traffic
patterns without requiring speedup. Its main drawback is
that its memory requirements grow quadratically with .
When taking into account the (normalized) round trip be-
tween the line cards and the buffered crossbar as well as
support for priorities (or virtual channels), the overall
buffer size scales as . This linear dependency on
the RTT is a direct consequence of credit FC, as explained
in Sec. 2.3. As the switch radix increases, this memory
requirement quickly becomes prohibitively large. Despite
ever-increasing CMOS densities, the amount of buffering
available per crosspoint remains small. The key issue is
that there are individual memories, each with their own
(significant) control overhead. Several recent studies have
aimed at reducing the buffer requirements:



In [10], a hierarchical crossbar architecture is proposed
that partitions the ports into groups of , such that there are

subswitches, each having buffers only at its in- and
outputs, but no internal buffers. This reduces the overall
buffer area by a factor to , with .

The architecture described in [2] collapses all crosspoint
buffers belonging to the same output into one small output
queue that is managed with credits that are allocated on de-
mand to specific inputs using a request-grant protocol. Us-
ing this approach, the overall buffer area scales as .
This approach has three major drawbacks: (1) the minimum
latency increases by one additional RTT, (2) the write band-
width of the output buffers is higher than the line rate (it is
basically an output-queued switch), and (3) the output ports
are assumed to never be flow-controlled.

In [17], the authors propose an architecture that features
a load-balancing stage in front of the buffered crossbar.
Cells for a given output can be stored in any of the cross-
points associated with the destination output, which enables
sharing of the available buffer space and hence reduces the
overall buffer area by a factor to . However,
because multiple inputs may try to access the same cross-
point buffer simultaneously, this approach also requires a
request-grant protocol and a bipartite graph-matching algo-
rithm to resolve contention. This adds significant latency
and complexity.

In [20], the factor is addressed by implementing FIFO
buffers close to the buffered crossbar to cope with the RTT.
The overall buffer area scales as . Unfortu-
nately, this induces head-of-line blocking.

In [19] a rate-controlled CICQ switch is proposed. In-
stead of employing an LL-FC protocol, it exchanges VOQ
occupancy information among all input queues to deter-
mine suitable VOQ service rates. Using this approach, each
crosspoint scales by rather than , so the overall buffer
area scales as . Hence, this approach only makes
sense if . Moreover, it incurs significant worst-case
latency because of the global VOQ state exchange process.
As in [2], this approach assumes that the output ports are
never flow-controlled. Both schemes may lead to buffer
overflows when the outputs cannot always be served.

Four of these schemes achieve their buffer area reduc-
tion by modifying the switch architecture while keeping the
basic credit FC in place, whereas the last one [19] omits
LL-FC altogether.

We propose to tackle the buffer area issue by modify-
ing the LL-FC protocol rather than the architecture. The
SFC protocol is very well suited to buffered crossbars, be-
cause there are downstream buffers per input link, as de-
scribed in Sec. 2.5. Hence, we can expect to gain a sig-
nificant advantage from SFC. In general, the retransmis-
sion buffer size RTX should be dimensioned as follows:
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Figure 3. Latency–throughput characteristics with
uniform Bernoulli traffic. time
slots. , crosspoint memory size

, window size RTX .

RTX This ensures that the retransmis-
sion buffer can store at least a full round trip worth of cells
or all cells in the crossbar row, whichever is larger. In gen-
eral, the crosspoint buffer size should be sized such
that the total buffer space available per row is at least
cells. This ensures that the link can be fully utilized un-
der high load. Under this condition, RTX evaluates to

. In the ideal case, this implies , so
the total buffer space needed for a CICQ with SFC equals

RTX cells per row, or in to-
tal. As the total buffer space for a CICQ with conventional
credit FC equals cells, the aggregate buffer require-
ment is reduced by a factor of . In addition, half of the
memory required for SFC resides on the line cards, where
resources are generally less scarce and less expensive than
in the core.

5 Simulation results

We built a software model of the proposed architecture
with the OMNeT++ simulation environment to obtain its
performance characteristics by simulation. Specifically, we
measure the mean aggregate throughput and the mean la-
tency. The latency is measured per burst, i.e., from the time
the first cell of a burst enters the system until the last cell
exits. The results were obtained using the Akaroa2 envi-
ronment with a statistical confidence of at least 95% and a
precision of 0.4% on the throughput and 5% on the delay.

In our experiments, we study the effect of SFC on the
performance of a CICQ switch with and
ports. The arbitration policies at the VOQs and the out-
put queues are both longest queue first (LQF). We vary the
RTT and set the crosspoint buffer size to cells.1

We use Bernoulli and bursty arrivals with an average burst
size of 10 and 20 cells/burst. We measure the latency–
throughput characteristics with a uniform destination dis-

1Because of model implementation details, at least two cells per cross-
point are required.
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Figure 4. Latency–throughput characteristics with uniform and nonuniform traffic of varying burstiness.
time slots. Crosspoint memory size , window size RTX .

tribution and the throughput–nonuniformity characteristics
with a nonuniform destination distribution.

Figure 3 shows the results for uniform Bernoulli traffic.
In this case, enabling SFC makes no observable difference,
regardless of RTT. Because (a) there is enough buffer space
to cover one RTT, (b) the traffic is uniform, and (c) every
burst comprises just a single cell, the likelihood that there
is no opportunity for a credited transmission is very low;
hence, the effect of speculation is negligible.

Figures 4(a,b) show the latency–throughput results for
bursty traffic, whereas Figs. 4(c,d) show the latency im-
provement ratios obtained by using SFC, i.e., the latency
with SFC divided by the latency without SFC. We observe
a notable latency reduction, especially at low loads. More-
over, this difference increases with the RTT. As the cross-
point size is smaller than the average burst size, the tail of
a burst must often wait in the line card until the head of the
burst has exited the crossbar. This has the undesirable effect
of making the mean latency dependent on the RTT, which is
clearly visible in Figs. 4(a,b). The ratio between the mean
burst size and crosspoint size directly determines the

latency at very low loads (10%). The ratio evaluates

to 5 ( ), 4 ( ), 3 ( ), and 2 ( ),
respectively. These values correspond quite closely to the
ratio (RTT-multiple) between the mean latencies at 10% of
the “SFC off” curves in Fig. 4(a) and the RTT. The cause of
this high latency was illustrated earlier in Fig. 1.

This effect becomes more pronounced as the burst size
increases, as evidenced by Fig. 4(b), which shows results
for bursty traffic with an average burst size of 20 cells/burst.
The RTT-multiples at low load are around 10, 7, 5, and

4, respectively, which again correspond to the ratio .

These results demonstrate that when is much larger than

the crosspoint size, using SFC can reduce the average burst

latency by a factor up to .

The behaviour of SFC and non-SFC converges as the
load approaches 100%. This confirms that the interaction
of speculative and credited operation automatically adjusts
to the load level, with speculations predominating at low
loads, and credited transmissions prevailing at high loads.

Figures 4(e,f) show the maximum throughput as a func-
tion of the nonuniformity factor . The drastic differ-
ence between operation with and without SFC is due to
the ratio between and crosspoint size : the maximum
throughput without SFC is limited to when

, whereas SFC enables full throughput under unbal-
anced traffic, owing to its speculative mode of operation.
This illustrates that SFC can also be effective at high loads;
in general, SFC is effective when the achievable through-
put for a given crosspoint exceeds the rate supported by the
available credits. For example, this is the case with bursty
uniform traffic at low to medium loads or with strongly non-
uniform traffic.

The results also demonstrate that the difference in perfor-
mance increases with . For a given , as increases the
required crosspoint buffer size decreases because there
are more crosspoint buffers per row. As a result, the latency

ratio increases. In other words, the negative effect

on latency of small crosspoint buffers is exacerbated as the
switch radix increases, reinforcing the applicability of SFC
to high-radix computer interconnect switches. This behav-
ior is evident when comparing Figs. 4(g,h), which show the
results for = 64, burst sizes 10 and 20, and = 8, 16, 32,
and 64 time slots, with Figs. 4(a,b). The latency reduction
owing to SFC is even more pronounced in this case.

We have also studied the behavior with two traffic
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Figure 5. Latency–throughput characteristics with two priorities. Uniform traffic of varying burstiness.
time slots. , crosspoint memory size , window size RTX .

classes. As an example, we consider strict priority schedul-
ing, in which the higher priority always takes precedence.
Figure 5 shows the results for bursty traffic (mean burst size
10 and 20 cells), with = 8 and 32 time slots. Each subfig-
ure shows the delay vs. aggregate throughput characteristics
of priority 0 (P0, high), priority one (P1, low), and aggre-
gate (ALL), comparing the same system (a) without SFC,
(b) with SFC but without replacement, and (c) with SFC
and replacement. The replacement policy is activated when
an arriving cell finds the buffer full. If there are any cells
of lower priority, the incoming cell replaces the most recent
arrival of the lowest priority present in the buffer. In prin-
ciple, replacement can be applied to any QoS mechanism,
although the implementation complexity of the replacement
policy may be prohibitive.

First, speculation drastically reduces the latency of low-
as well as of high-priority traffic. With replacement, the
high-priority latency is further reduced. This gain does not
incur an increase of the mean latency of low-priority traffic.

6 Implementation Issues

SFC introduces some overhead on the upstream as well
the downstream channel. On the downstream channel, ev-
ery cell must carry a sequence number uniquely identifying
it within the current transmission window of the sender. As
the maximum window size equals RTX, the sequence num-
ber should be RTX bits long (assuming go-back- ).
The ACKs/NAKs that flow on the upstream path consist of
an ACK/NAK flag (1 bit), a buffer (crosspoint) identifier
( bits), a sequence number ( RTX bits), and
(optionally) a credit count (when using aggregated ACKs).
In a practical implementation, the FC information could be
piggybacked on data traffic travelling upstream, e.g. embed-
ded in the cell headers.

In a buffered crossbar switch, another concern is the
number of ACK/NAKs to convey per time slot [6]. In
principle, up to cells can depart from the same cross-
bar row. To reduce the required control channel bandwidth,
our model allows sending one NAK plus at most one ACK

per time slot. As this can lead to an accumulation of ACKs
(but not of NAKs), the crossbar must maintain a queue of
to-be-returned ACKs for every row. However, this issue is
common to all LL-FC schemes; when multiple events (ar-
rivals or departures) occur at once in the same row, multiple
FC events may be triggered.

The main hardware complexity burden of SFC rests on
the sender. First, a retransmission buffer is required with an
accompanying queuing structure. New entries are always
enqueued at the tail of the queue, but reads and dequeue
operations may occur at any point in the queue. Process-
ing an ACK/NAK involves finding the entry with the cor-
responding sequence number (and buffer ID) in the retrans-
mission queue. Upon ACK, the corresponding queue entry
(and any preceding ones) is removed. Upon NAK, the entry
is marked so that it becomes eligible for retransmission.

For every incoming cell, the receiver must determine
whether there is room in the destination buffer, and whether
the cell contains any errors, is in the correct order, or is a
duplicate. If there is an error, the cell is out of order, or the
buffer is full, the cell is dropped and a NAK returned. If
the cell is a duplicate, it is dropped without sending a NAK.
Otherwise, the cell is stored and the expected next sequence
number is incremented. The receiver issues an ACK for a
cell when it is removed from the buffer.

In the case of multiple downstream buffers, the number
of ACK/NAKs per time slot (as described above) also de-
termines the rate of operations on the retransmission queue.

To minimize the number of retransmissions caused by
out-of-order arrivals, the sender keeps track of the sequence
number of the last negatively acknowledged cell for every
downstream buffer. Further speculative transmissions to
this buffer are not allowed until that cell is positively ac-
knowledged. This reduces bandwidth wastage due to long
trains of OOO cells following an unsuccessful speculation.
Once the sender knows a cell was lost, further speculative
transmissions are useless as these are sure to be dropped. To
reduce the time during which no speculative transmissions
are allowed, this sequence number can be reset as soon as



the corresponding cell is sent credited instead of waiting un-
til the ACK is received, because the likelihood of a credited
cell being dropped is very low.

7 Conclusions

Motivated by the need for high-radix switches for com-
puter interconnection networks, we proposed a novel link-
level flow-control method: speculative flow control (SFC).
It specifically addresses the ICTN requirements of lossless-
ness, low error rates, and low latency. SFC combines cred-
ited and speculative modes of transmission, in which the
credited mode corresponds to conventional credit flow con-
trol, whereas the speculative mode allows “violations” of
the credit semantics. This allows significant reductions in
latency for bursty traffic. Furthermore, SFC impacts buffer
sizing in two ways. First, buffers that traditionally needed
to be allocated (partitioned) on a per-flow basis can now be
shared, leading to substantial buffer size reductions. Sec-
ond, buffers that needed to be dimensioned proportional to
the RTT to achieve full link utilization can now be signifi-
cantly reduced.

In the specific application to buffered crossbar switches,
SFC enables a drastic reduction of the buffer requirements
by relaxing the need to provide one full RTT worth of buffer
space per crosspoint. Our results show that the overall
buffer size can be reduced by a factor of , independent
of the RTT, while maintaining full system performance.

Acknowledgments

The authors are grateful to José Duato for discussions
on an early version of SFC, and to Ton Engbersen for his
insights and careful reviews of our work.

References

[1] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Il-
iadis. A four-terabit packet switch supporting long round-
trip times. IEEE Micro, 23(1):10–24, Jan./Feb. 2003.

[2] N. Chrysos and M. Katevenis. Scheduling in switches with
small internal buffers. In Proc. IEEE GLOBECOM 2005,
volume 1, pages 614–619, St. Louis, MO, Nov. 28–Dec. 2
2005.

[3] W. Dally. Virtual-channel flow control. IEEE Trans. on Par-
allel and Distributed Syst., 1(3):187–196, Oct. 1992.

[4] W. J. Dally and B. P. Towles. Principles and practices of in-
terconnection networks. Morgan Kaufmann, San Francisco,
CA, 2003.

[5] J. Duato. A new theory of deadlock-free adaptive routing
in wormhole networks. IEEE Trans. on Parallel and Dis-
tributed Syst., 4(12):1320–1331, Dec. 1993.

[6] F. Gramsamer, M. Gusat, and R. Luijten. Flow control
scheduling. Elsevier J. Microprocessors and Microsystems,
27(5–6):233–241, June 2003.

[7] M. Gusat, F. Abel, F. Gramsamer, R. Luijten, C. Minken-
berg, and M. Verhappen. Stability degree of switches with
finite buffers and non-negligible round-trip time. Elsevier J.

Microprocessors and Microsystems, 27(5–6):243–252, June
2003.

[8] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and
N. Chrysos. Variable packet size buffered crossbar (CICQ)
switches. In Proc. IEEE International Conference on Com-
munications (ICC 2004), pages 1090–1096, Paris, France,
June 20–24 2004.

[9] M. Katevenis, D. Serpanos, and P. Vatsolaki. ATLAS I: A
general-purpose, single-chip ATM switch with credit-based
flow control. In Proc. IEEE Hot Interconnects IV Sympo-
sium, pages 63–73, Stanford, CA, Aug. 15–17 1996.

[10] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microar-
chitecture of a high-radix router. In Proc. ISCA 2005, pages
420–431, Madison, WI, June 2005.

[11] H. Kung, T. Blackwell, and A. Chapman. Credit-based flow
control for ATM networks: Credit update protocol, adaptive
credit allocation, and statistical multiplexing. In Proc. ACM
SIGCOMM, pages 101–114, London, UK, Aug. 31–Sept. 2
1994.

[12] R. Luijten, C. Minkenberg, and M. Gusat. Reducing mem-
ory size in buffered crossbars with large internal flow control
latency. In Proc. IEEE GLOBECOM 2003, volume 7, pages
3683–3687, San Fransisco, CA, Dec. 1–5 2003.

[13] C. Minkenberg, F. Abel, P. Müller, R. Krishnamurthy, and
M. Gusat. Control path implementation of a low-latency
optical HPC switch. In Proc. Hot Interconnects 13, pages
29–35, Stanford, CA, Aug. 17–19 2005.

[14] M. Nabeshima. Input-queued switches using two schedulers
in parallel. IEICE Trans. Commun., E85-B(2):523–531, Feb.
2002.
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