
A Job Pause Service under LAM/MPI+BLCR for Transparent Fault Tolerance ∗

Chao Wang1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science, North Carolina State University Raleigh, NC
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN

mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7896

Abstract
Checkpoint/restart (C/R) has become a requirement for

long-running jobs in large-scale clusters due to a mean-
time-to-failure (MTTF) in the order of hours. After a failure,
C/R mechanisms generally require a complete restart of an
MPI job from the last checkpoint. A complete restart, how-
ever, is unnecessary since all but one node are typically still
alive. Furthermore, a restart may result in lengthy job re-
queuing even though the original job had not exceeded its
time quantum.

In this paper, we overcome these shortcomings. Instead
of job restart, we have developed a transparent mecha-
nism for job pause within LAM/MPI+BLCR. This mecha-
nism allows live nodes to remain active and roll back to
the last checkpoint while failed nodes are dynamically re-
placed by spares before resuming from the last checkpoint.
Our methodology includes LAM/MPI enhancements in sup-
port of scalable group communication with fluctuating num-
ber of nodes, reuse of network connections, transparent
coordinated checkpoint scheduling and a BLCR enhance-
ment for job pause. Experiments in a cluster with the NAS
Parallel Benchmark suite show that our overhead for job
pause is comparable to that of a complete job restart. A
minimal overhead of 5.6% is only incurred in case migra-
tion takes place while the regular checkpoint overhead re-
mains unchanged. Yet, our approach alleviates the need
to reboot the LAM run-time environment, which accounts
for considerable overhead resulting in net savings of our
scheme in the experiments. Our solution further provides
full transparency and automation with the additional bene-
fit of reusing existing resources. Executing continues after
failures within the scheduled job, i.e., the application stag-
ing overhead is not incurred again in contrast to a restart.
Our scheme offers additional potential for savings through
incremental checkpointing and proactive diskless live mi-
gration, which we are currently working on.
1 Introduction

Large-scale clusters with thousands of nodes often expe-
rience a mean-time-to-failure (MTTF) in the order of tens of

∗This work was supported in part by NSF grants CCR-0237570 (CA-
REER), CNS-0410203, CCF-0429653 and DOE DE-FG02-05ER25664.
The research at ORNL was supported by the Mathematics, Information
and Computational Sciences Office, Office of Advanced Scientific Com-
puting Research, and DOE DE-AC05-00OR22725 with UT-Battelle, LLC.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

hours. For example, BlueGene/L (BG/L) at Livermore Na-
tional Laboratory with a total of 65,536 nodes was experi-
encing faults at a rate of 48 hours during initial deployment
[16]. These faults occurred at the level of a dual-processor
compute card but implied that a 1024-processor midplane
had to be temporarily shut down to replace the card. As
another example, the work by Philp [21] extrapolates the
mean time between failure (MTBF) for petaflop machines
to be just 1.25 hours based on current system technology.

To prevent valuable computation to be lost due to fail-
ures, checkpoint/restart (C/R) has become a requirement for
long-running jobs. Current C/R mechanisms commonly al-
low checkpoints to be written to a global file system so that
in case of failure the entire MPI (Message Passing Inter-
face) job can be restarted from the last checkpoint. One
example of such a solution is LAM (Local Area Multicom-
puter)/MPI’s C/R support [24] through Berkeley Labs C/R
(BLCR) [12]. A complete restart, however, is unnecessary
since all but one node are typically still alive.

The contribution of this paper is to avoid a complete
restart and retain execution of MPI jobs as nodes fail, as
depicted in Figure 1. As such, we pause the MPI processes
on live nodes and migrate the MPI processes of failed nodes
onto spare nodes. We have developed a transparent mech-
anism as an extension to LAM/MPI+BLCR that reuses op-
erational nodes within an MPI job. Functional nodes are
rolled back to the last checkpoint, retaining internal com-
munication links within LAM/MPI+BLCR, before the cor-
responding processes are paused. Meanwhile, a failed node
is replaced with a spare node where the corresponding MPI
task is recovered from the last checkpoint. Hence, live
nodes remain active while failed nodes are dynamically and
transparently replaced. This solution removes any requeu-
ing overhead by reuses existing resources in a seamless and
transparent manner.

Our solution comprises several areas of innovation
within LAM/MPI and BLCR: (1) crtcp, one of the Request
Progression Interface (RPI) options [25] of LAM/MPI, is
enhanced to reuse the network connections between live
nodes upon the faults. (2) Lamd (LAM daemon) is com-
plemented with a scalable group communication framework
based on our prior work [29], which notifies the Lamd of
live nodes about replacement nodes. (3) Lamd is supple-
mented with a novel scheduler that transparently controls
periodic checkpointing and triggers migration upon node

(a) job full restart

(b) job pause + migrate

Nodes

failure

restart

lamboot
n0 n2n1 n3

mpirun

1 20checkpoint

lamboot
n0 n2n1

1 20

Nodes

failure

pause

lamboot
n0 n2n1 n3

mpirun

checkpoint

migrate

1 20

1 2
3

Figure 1. Pause & Migrate vs. Full Restart
failures while ensuring that live nodes are paused, which
prevents LAM/MPI from prematurely terminating a job. (4)
BLCR is supplemented with a job pause/restart mechanism,
which supports multi-threading.

We have conducted a set of experiments on a 16-node
dual-processor (each dual core) Opteron cluster. We as-
sess the viability of our approach using the NAS (NASA
Advanced Supercomputing) Parallel Benchmark suite. Ex-
perimental results show that the overhead of our job pause
mechanism is comparable to that of a complete job restart,
albeit at the added benefits of full transparency and automa-
tion combined with the reuse of existing resources in our
case. Hence, our approach avoids requeuing overhead by
letting the scheduled job tolerate the fault so that it can
continue to execute. We are furthermore investigating addi-
tional benefits of our scheme for incremental checkpointing
and proactive diskless live migration.

The paper is structured as follows. Section 2 presents the
design of our transparent fault-tolerance mechanism. Sec-
tion 3 identifies and describes the implementation details.
Subsequently, the experimental framework is detailed and
measurements for our experiments are presented in Section
4 and 5, respectively. Finally, the contributions are con-
trasted with prior work in Section 6, and the work is sum-
marized in Section 7.
2 Design

This section presents an overview of the design of
transparent fault tolerance with LAM/MPI+BLCR. The
approach extends the checkpoint/restart framework of
LAM/MPI with an integrated group communication frame-
work and a fault detector, an internal schedule mechanism
(Figure 3), the job pause mechanism and actual process mi-
gration (Figure 2). As a result, BLCR is supplemented with
the new capability of cr pause, the transparent job-pause
functionality.

In the following, the design of the protocol is given. As
depicted in Figure 3, the scheduler daemon acts as a coordi-
nation point between the membership daemon and mpirun,
the initial LAM/MPI process at job invocation. The main

paused MPI
process

paused MPI
process

failed MPI
process

live node

live node failed node

migrated
MPI process

existing
connection

failed

spare node

process
migration

new connection

new
connection

shared storage

failed

Figure 2. Job Pause and Migrate Mechanism
logical steps can be summarized as follows. 1) The mem-
bership daemon monitors the system and notifies the sched-
uler daemon upon the faults. 2) The scheduler daemon coor-
dinates the job pause for functional nodes and process mi-
gration for failed ones. 3) The nodes perform the actual
pause and migration work, as depicted in Figure 2. 4) All
active processes (MPI tasks) continue the MPI job.

1. membership daemon and scheduler daemon: initial-
ization through lamboot;

2. membership daemon: maintains the group member-
ship information and monitors for faults;

3. membership daemon: notifies the scheduler upon de-
tecting a fault;

4. scheduler daemon: selects replacement nodes for the
failed ones and notifies the respective mpirun pro-
cesses governed by the LAM runtime environment;

5. each notified mpirun: propagates the job-pause re-
quest to each MPI process on live nodes and sends a
process migration command to the replacement nodes;

6. each MPI process on live nodes: engages in job-
pause; meanwhile,

7. replacement nodes: restart from the checkpoint file to
migrate the process;

8. each MPI process on live nodes/replacement nodes
(migrated): continues/resumes execution.

The implementation details of this algorithm with respect to
LAM/MPI are given in the next section.
2.1 Group Communication Framework

and Fault Detector

In our prior work [29], we devised a scalable approach
to reconfigure the communication infrastructure after node
failures within the runtime system of the communication

layer. A decentralized protocol maintains membership of
nodes in the presence of faults. Instead of seconds for re-
configuration, our protocol shows overheads in the order
of hundreds of microseconds and single-digit milliseconds
over MPI on BG/L with up to 1024 processors.

We complemented lamd, the low-level communication
daemon of LAM/MPI running on each node, with this scal-
able group communication framework from our prior work.
We further designed a fault detector based on a single time-
out mechanism. Excessive delay in response from any pro-
cess to a message request is assumed to indicate process
(node) failure. In our framework, link failures are handled
similarly to node failures since the cause of a long com-
munication delay is not distinguished, i.e., different causes
of failure can be handled uniformly (and will be uniformly
referred to as “node failures” or simply “failures”). When
the detector determines a failure, it triggers the scheduler
through a message containing the ID of the failed node.
2.2 Internal Schedule Mechanism in

LAM/MPI

We next describe the mechanism to control a job’s sched-
ule upon node failure. This schedule mechanism is rooted
within the LAM runtime environment, independent of the
system-level batch scheduler governing job submission,
such as Torque/OpenPBS (Portable Batch System). The
protocol for the internal scheduler is as follows: It

• launches periodic checkpoint commands at a user-
specified frequency;

• determines replacement nodes for failed nodes when a
fault occurs; and

• launches job pause commands to mpiruns.
The mechanism has been implemented under the following
design principles: The scheduler

• is integrated into the run-time environment;
• is decentralized, without any single point of failure;

and
• provides good scalability due to the underlying group

communication framework and its own functional
layer on top.

The scheduler daemon is the main part of the schedule
mechanism. In addition, mpirun also ties in to the sched-
ule framework, most notably through the propagation of job
pause commands.

In our current implementation, the schedule mechanism
stores the information about the MPI job (such as mpirun-
pid@node-id, mpi-process-pid@node-id, etc.) on a reliable
shared storage or, in an alternative design, keeps them in
memory. Both approaches have pros and cons. Nonethe-
less, the overhead of maintaining and utilizing such infor-
mation is in the order of microsecond, regardless of the stor-
age location. Hence, compared to overhead for C/R of up to
tens of seconds, this bookkeeping overhead of the scheduler
is insignificant. In our implementation, mpirun is responsi-
ble for logging the information about the MPI job on shared

storage or in memory after a successful launch of the job.
During finalization of the job, mpirun will disassociate this
information.
2.3 Job-pause

As depicted in Figure 2, upon node failure, the job-
pause mechanism allows the processes on live nodes to re-
main active by rolling back computation to the last check-
point (rather than necessitating the traditional complete cold
restart of an MPI job under LAM/MPI, which would incur
long wait times in the job submission queues). At the LAM
level, job-pause reuses the existing connections among the
processes. Furthermore, at the C/R level (using BLCR), part
of the state of the process is restored from the checkpoint
state instead of a complete restart of the process. Currently,
we use the existing process and its threads without forking
or cloning new ones. Furthermore, we do not need to restore
the parent/child relationships (in contrast to cr restart), but
we still restore shared resource information (e.g., mmaps
and files). LAM uses the module of crtcp to maintain the
TCP connections (sockets) among the MPI processes.

BLCR restores the state of the MPI processes (i.e., the
sockets are kept open by the crtcp module during the
cr pause). Hence, we can safely reuse the existing con-
nections among the processes. Even though BLCR does not
support transparent C/R of socket connections, this does not
adversely affect us here since LAM/MPI relies on commu-
nication via crtcp rather than through lower-level network
sockets.

A pause of the MPI job process is initiated by mpirun. In
response, the following sequence of events occurs:

1. mpirun: propagates the job-pause request to each MPI
process on live nodes;

2. BLCR on live nodes: invokes the cr pause mecha-
nism;

3. paused process: waits for mpirun to supply the infor-
mation about the migrated process;

4. mpirun: updates the global list with information about
the migrated process and broadcasts it to all processes;

5. paused process: receives information about the mi-
grated process from mpirun;

6. paused process: builds its communication channels
with the migrated process;

7. paused process: resumes execution from the restored
state.

Similar to the checkpoint and restart functionality of
BLCR, the novel pause mechanism of BLCR also interacts
with LAM through a threaded callback function. The call-
back is provided as part of our LAM enhancements and reg-
istered at the initialization of crtcp. The pause mechanism
performs an ioctl() call to enter the pause state. As part
of the pause functionality, a process rolls back its state to
that of a former checkpoint, typically stored on disk. This
rollback is the inverse of checkpointing, i.e., it restarts a

process at the saved state. However, there are consequen-
tial differences. Pause/rollback reuses the existing process
without forking a new one. Furthermore, existing threads in
the process are reused. Only if insufficient threads exist will
additional ones be created (cloned, in Linux terms). Hence,
it becomes unnecessary to restore the Process ID (PID) in-
formation or re-create parent/child relationships from the
checkpoint data.
2.4 Process Migration

When the scheduler daemon receives a node failure mes-
sage from the membership daemon, it performs a migration
to transfer processes, both at application and runtime level,
from the failed node to the replacement nodes. This happens
in a coordinated fashion between the mpirun processes and
new processes launched at the replacement nodes,

Several issues need to be solved here: First, mpirun
launches a cr restart command on appropriate nodes with
the relevant checkpoint image files. In our system, the
scheduler daemon determines the most lightly loaded node
as a migration target, renames the checkpoint file to reflect
the change and then notifies mpirun to launch cr restart
from the relevant node with the right checkpoint file.

Second, the checkpoint files of all processes have to be
accessible for replacement nodes in the system. This en-
sures that, at the fault time, the process can be migrated to
any node in the system using the checkpoint file. We as-
sume a shared storage infrastructure for this purpose.

Finally, knowledge about the new location of the mi-
grated process has to be communicated to all other pro-
cesses in the application. Since we operate within the LAM
runtime environment, a node ID (instead of a node’s IP ad-
dress) is used for addressing information. Thus, migration
within the LAM runtime environment becomes transpar-
ent, independent of external system protocols, such as Net-
work Address Translation (NAT), firewalls, etc. Our system
also updates the addressing information on-the-fly instead
of scanning and updating all the checkpoint files, thereby
avoiding additional disk access overhead for writes.

At the point of process migration, the following se-
quence of events occurs:

1. mpirun: sends a process migration command
(cr restart) to the replacement node;

2. BLCR on the replacement node: executes the
cr restart mechanism referencing the checkpoint file
on shared storage;

3. restarted process: sends its new process information
to mpirun;

4. mpirun: updates the global list with information about
the migrated process and broadcasts it to all processes;

5. restarted process: builds its communication channels
with all the other processes;

6. restarted process: resumes execution from the saved
state.

Since all the information is updated at run-time, the normal
restart operation of BLCR is executed from the replacement
node without any modification.
3 Implementation Details

Our fault tolerance architecture is currently implemented
with LAM/MPI and BLCR. Our components are imple-
mented as separate modules to facilitate their integration
into the run-time environment of arbitrary MPI implemen-
tations. Its design and implementation allows adaptation of
this architecture to other implementations of MPI, such as
MPICH (MPI Chameleon) [6] and OpenMPI [15].
3.1 Group Communication Framework

and Fault Detector

Figure 3 depicts the framework for group communica-
tion implemented as a process of the lam daemon (lamd).
The so-called membership daemons in the LAM universe
communicate with each other and with the scheduler dae-
mons through out-of-band communication channel pro-
vided by the LAM runtime environment.

membershipd

schedulerdMPI app

mpirun lamd

membershipd

schedulerdMPI app

lamd

out-of-band
communication
channel

TCP
socket

Figure 3. Group Membership and Scheduler
3.2 Internal Schedule Mechanism in

LAM/MPI

As main part of the schedule mechanism, the scheduler
daemon is also implemented as a process of lamd commu-
nicating through the out-of-band communication channel,
just as the membership daemon does (Figure 3).

When the scheduler daemon receives a failure message
from the membership daemon, it consults the database to
retrieve information about the MPI job and the nodes in the
LAM universe. Based on this information, the most lightly
loaded node is chosen as a migration target. Alternate selec-
tion policies to determine a replacement node can be readily

plugged in. Next, a job pause command is issued to mpirun
through the scheduler daemon at the node on which mpirun
is launched.

Triggered by the scheduler, mpirun retrieves informa-
tion from an application schema file created during the last
checkpoint. This application schema specifies the argu-
ments required to initiate a cr restart on specified nodes.
We implemented an extension to mpirun that modifies and
enhances the application schema at run-time with the fol-
lowing information received from the scheduler:

• For the processes on the live nodes, replace cr restart
with cr pause using the respective arguments to the
command;

• For the processes to migrate, replace the node num-
ber of the failed node with the replacement node. Up-
date naming references referring to nodes with regard
to this file to reflect any migrations.

3.3 Job-pause

The pause implementation in LAM/MPI relies on the
out-of-band communication channel provided by lamd. Its
design is not constrained to the interfaces of LAM/MPI and
may be easily retargeted to other MPI or C/R implemen-
tations. In our case, crtcp [25] and cr [24] are utilized,
which represent the interface to the most commonly used
C/R mechanism provided by LAM (while other C/R mech-
anisms may coexist).

When a node fails or a communication link lapses,
the MPI-related processes on other live nodes will
block/suspend waiting for the failure to be addressed, which
realizes the passive facet of the job pause mechanism. On
the active side, we restore the failed process image from a
checkpoint file. This checkpoint information encompasses,
among other data, pending MPI messages. Hence, in-
flight data on the network does not unnecessarily have to
be drained at pause time. Consequently, a process can be
individually paused at arbitrary points during its execution.

Figure 4 shows the steps involved during the job pause
in reference to BLCR. A detailed account of the individual
events during checkpointing and restarting is given in the
context of Figures 1 and 2 of [12] and is abbreviated here
due to space constraints. Our focus is on the enhancements
to BLCR (large dashed box).

In the figure, time flows from top to bottom, and the pro-
cesses and threads involved in the pause are placed from
right to left. Activities performed in the kernel are sur-
rounded by dotted lines. The callback thread (right side)
is spawned as the application registers a threaded callback
and blocks in the kernel until a pause occurs. When mpirun
invokes the pause command of BLCR, it provides the pro-
cess id and the name of a checkpoint file to pause as an argu-
ment. In response, the pause mechanism issues an ioctl call,
thereby resuming the callback thread that was previously
blocked in the kernel. After the callback thread invokes the

thread1

thread2

running normally
blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()
unblocks

handler_thr

checkpoint

still running normally

receives signal, runs handlers,
and ioctl()

signal other threadsother work

barrier

barrier
cleanup

block

first thread restores
shared resource
 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Figure 4. BLCR with Pause in Bold Frame
individual callback for each of the other threads, it reenters
the kernel and sends a pause signal to each threads. These
threads, in response, engage in executing the callback sig-
nal handler and then enter the kernel through another ioctl
call.

Once in the kernel, the threads invoke the thaw command
using VMADump to take turns reading their register and
signal information from the checkpoint file. In our imple-
mentation, they no longer need to restore their process IDs
and process relationships as we retain this information. Af-
ter a final barrier, the process exits the kernel and enters user
space, at which point the pause mechanism has completed.

Once the MPI processes have completed the pause and
resume operation, they will wait for mpirun to supply infor-
mation about the migrated process before establishing con-
nections with the migrated process based on the received
information. Once the connections have been established,
the processes continue their normal execution.
3.4 Process Migration

Process migration after a failure is initiated on the re-
placement node when it receives a restart request from
mpirun. Within the callback handler, the migrated process
relays its addressing information to mpirun. This address-
ing information can later be identified as type struct gps in
the LAM universe. Next, mpirun broadcasts this informa-
tion to all other processes and, conversely, sends informa-
tion about all other processes (generated from the applica-
tion schema) to the migrated process.

Once the processes receive the addressing information
from mpirun, they reset the information in their local pro-
cess list before establishing a TCP connection between each
other. Notice that the connections among the paused pro-

cesses remain active, i.e., only the connections between the
migrated process and the paused processes need to be es-
tablished.

Another enhancement with LAM/MPI for process
migration is accomplished as follows. The LAM
daemon establishes a named socket visible through
the local file system (typically under the name
/tmp/lam-<username>@<hostname>/ or,
alternatively, location-dependent on the TMPDIR envi-
ronment variable or the LAM MPI SESSION PREFIX
variable). Since LAM initializes this location information
at startup time and never refreshes it thereafter, we force
a reset of the naming information at the replacement node
resulting in an update of the directory reference inside the
callback function of the migrated process.

The functionality to realize process migration discussed
so far enhances the LAM/MPI runtime system. In addition,
upon restarting a BLCR-checkpointed job on a different
node, we must ensure that the operating system on all nodes
supplies the exact same libraries across migration. Any li-
brary reference by an executable that is migrated has to be
portable across migrations. BLCR does not save state of
shared libraries (e.g., initialization state of library-specific
variables). As of late, some distributions of Linux are using
“prelinking” to assign fixed addresses for shared libraries
in a manner where these fixed addresses are randomized to
counter security attacks. We had to deactivate the prelink-
ing feature in our system to provide cross-node compatible
library addresses suitable for process migration.

4 Experimental Framework
We conducted our performance evaluations on a local

cluster that we control. This cluster has sixteen compute
nodes running Fedora Core 5 Linux x86 64 (Linux kernel-
2.6.16) connected by a Gigabit Ethernet switch. Each
node in the cluster is equipped with four 1.76GHz pro-
cessing cores (2-way SMP with dual-core AMD Opteron
265 processors) and 2 GB memory. A 750 GB RAID5 ar-
ray provides shared file service through NFS over the Gi-
gabit switch, which is configured to be shared with MPI
traffic in these experiments. We extended the latest ver-
sions of LAM/MPI (lam-7.2b1r10202) and BLCR (blcr-
0.4.pre3 snapshot 2006 09 26) with our job pause mecha-
nism for this platform.

5 Experimental Results
We assessed the performance of our system in terms of

the time to tolerate faults for MPI jobs using the NAS Par-
allel Benchmarks (NPB) [31]. NPB is a suite of programs
widely used to evaluate the performance of parallel systems.
The suite consists of five kernels (CG, EP, FT, MG, and IS)
and three pseudo-applications (BT, LU, and SP).

In the experiments, the NPB suite was exposed to class
C inputs running on 4, 8, and 16 nodes. IS was excluded

from experiments due to its extremely short completion
time (≈10 seconds on 16 nodes), which did not reliably al-
low us to checkpoint and restart (with about the same over-
head). All job pause/restart results were obtained from five
samples with a confidence interval of ±0.1s for short jobs
and ±3s for long jobs with a 99% confidence level.

Prior work already focused on assessing the cost of com-
munication within the LAM/MPI and BLCR environments
to checkpoint and restart MPI jobs [12, 10]. Our job pause
and process migration mechanism decreases the communi-
cation by avoiding to re-establish the connections among
the paused processes. Yet, the benefits of our approach lie
in its applicability to proactive fault tolerance and incremen-
tal checkpointing. Our experiments are targeted at captur-
ing the overhead of our approach, comparing it to prior ap-
proaches and analyzing the cause of its cost.
5.1 Checkpointing Overhead

Our system periodically takes snapshots of the MPI jobs
at checkpoints yielding a transparent fault tolerance mech-
anism. Jobs can automatically recover by continuing from
the most recent snapshot when a node fails. Figures 5, 6,
and 7 depict the checkpoint overhead for 4, 8 and 16 nodes.
As shown by these results, the overhead of job-pause C/R
is uniformly small relative to the overall execution time of
a job (benchmark), even for a larger number of nodes.

0

200

400

600

800

1000

1200

1400

BT CG EP FT LU MG SP

Se
co

nd
s

No Checkpoint Single Checkpoint

Figure 5. Single Checkpoint on 4 Nodes

0

100

200

300

400

500

600

700

BT CG EP FT LU MG SP

Se
co

nd
s

No Checkpoint Single Checkpoint

Figure 6. Single Checkpoint on 8 Nodes
Figure 8 depicts the measured overhead for single check-

pointing relative to the base execution time of each bench-
mark (without checkpointing). For most benchmarks, the
ratio is below 10%. Figure 9 depicts the corresponding time

0

50

100

150

200

250

300

350

400

450

BT CG EP FT LU MG SP

Se
co

nd
s

No Checkpoint Single Checkpoint

Figure 7. Single Checkpoint on 16 Nodes
for single checkpointing. This time is in the order of 1-12
seconds, except for MG and FT as discussed in the follow-
ing.

MG has a larger checkpoint overhead (large checkpoint
file), but the ratio is skewed due to a short overall execution
time (see previous figures). In practice, with more realis-
tic and longer checkpoint intervals, a checkpoint would not
be necessitated within the application’s execution. Instead,
the application would have been restarted from scratch. For
longer runs with larger inputs of MG, the fraction of check-
point/migration overhead would have been much smaller.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT
 4

BT
 9

BT
16

CG
 4

CG
 8

CG
16

EP
 4

EP
 8

EP
16

FT
 4

FT
 8

FT
16

LU
 4

LU
 8

LU
16

M
G

 4

M
G

 8

M
G

16

SP
 4

SP
 9

SP
16

Execution Time Checkpoint Overhead

Figure 8. Single Checkpoint Overhead

0

5

10

15

20

25

30

BT
 4

BT
 9

BT
16

CG
 4

CG
 8

CG
16

EP
 4

EP
 8

EP
16

FT
 4

FT
 8

FT
16

LU
 4

LU
 8

LU
16

M
G

 4

M
G

 8

M
G

16

SP
 4

SP
 9

SP
16

Se
co

nd
s

223.668

Figure 9. Single Checkpoint Time
As shown in prior work [12], checkpoint times increase

linearly with the application’s virtual memory (VM) size for
processes that consume significantly less than half of the

system’s physical memory. However, when a process uti-
lizes a VM size approaching or exceeding half the physical
memory on the system, overheads increase up to an order of
magnitude. This artifact explains the relatively high cost of
FT for checkpointing (Figures 5, 8 and 9) and pause/restart
(Figure 10) when it is run on just four nodes. For a larger
number of nodes, the problem size is split such that smaller
amounts of the VM are utilizes, which eliminates this prob-
lem. This property of checkpoint overhead relative to VM
utilization is not inherent to our solution; rather, it is inher-
ent to the checkpoint mechanism used in combination with
the operating system.

Table 1 depicts the size of the checkpoint files for one
process of each MPI application. The average file size is
135 MB on 16 nodes, 259 MB for 8 nodes, and 522.91
MB for 4 nodes. Writing many files of such size to shared
storage synchronously may be feasible for high-bandwidth
parallel file systems. In the absence of sufficient band-
width for simultaneous writes, we provide a multi-stage so-
lution where we first checkpoint to local storage. After lo-
cal checkpointing, files will be asynchronously copied to
shared storage, an activity governed by the scheduler. This
copy operation can be staggered (again governed by the
scheduler) between nodes. Upon failure, a spare node re-
stores data from the shared file system while the remaining
nodes roll back using the checkpoint file on local storage,
which results in less network traffic.

Table 1. Size of Checkpoint Files [MB]
Node # BT CG EP FT LU MG SP

4 406.90 250.88 1.33 1841.02 185.51 619.46 355.27
8 186.68 127.17 1.33 920.82 99.50 310.36 170.47

16 111.12 63.50 1.33 460.73 52.61 157.31 100.39
Overall, the experiments show that the checkpoint/restart

overhead of the MPI job

1. is largely proportional to the size of the checkpoint file
(Table 1 and Figure 9); and

2. is nearly the same at any time of the execution of the
job.

The first observation indicates that the ratio of com-
munication overhead to computation overhead for check-
point/restart of the MPI job is relatively low. Since check-
point files are, on average, large, the time spent on stor-
ing/restoring checkpoints to/from disk accounts for most of
the measured overhead. This overhead can be further re-
duced. We are currently investigating the potential for sav-
ings through incremental checkpointing and proactive disk-
less live migration, which would reduce the checkpoint and
pause overheads, respectively.

In our experiments, communication overhead of the ap-
plications was not observed to significantly contribute to the

In our experiments, we simply copy exactly one checkpoint file to
shared storage, namely the file of the node whose image will be migrated.

overhead or interfere with checkpointing. This is, in part,
due to our approach of restarting from the last checkpoint.
Hence, our autonomic fault-tolerance solution should scale
to larger clusters.

The second observation about checkpoint overheads
above indicated that the size of the checkpoint file remains
stable during job execution. The NPB codes do not allocate
or free heap memory dynamically within timesteps of exe-
cution; instead, all allocation is done during initialization,
which is typical for most parallel codes (except for adap-
tive codes [30]). Thus, we can assume the time spent on
checkpoint/restart is constant. This assumption is critical to
determine the optimal checkpoint frequency [32].
5.2 Overhead of Job Pause

As mentioned in the implementation section, the job
pause mechanism comprises two parts: cr pause within
BLCR and the pause work at the LAM level. Experi-
ments indicated that the overhead of cr pause is almost the
same as that of cr restart. Though we reuse existing pro-
cesses and avoid restoring the parent/child relationship as
cr restart does, we still need to restore the entire shared
state (mmaps, files, etc.), which is generally large and ac-
counts for the main overhead of cr pause/cr restart. The
overall effect on our scheme is, however, not bounded by the
roll-back on operational nodes. Instead, it is constrained by
process migration, which uses cr restart to restore the pro-
cess from the checkpoint file on the replacement node. The
pause mechanism at the LAM level actually saves the over-
head to reconnect sockets between the processes. This is
reflected in Figures 10, 11, and 12, which show that our ap-
proach is performing nearly at par with with the job restart
overhead for 4, 8 and 16 nodes. Yet, while job restart re-
quires extra overhead for rebooting the LAM subsystem of
processes, our approach does not incur this cost as it reuses
existing processes.
5.3 Membership/Scheduler Performance

The decentralized group membership protocol, adopted
from our prior work [29] and integrated in LAM, has been
shown to yield response times in the order of hundreds of
microseconds and single-digit milliseconds for any recon-
figuration (node failure) under MPI. This overhead is so
small that it may be ignored when considering the restart
overhead in the order of seconds / tens of seconds.

The overhead of our new scheduler is also small. The im-
pact of scheduling is actually spread over the entire execu-
tion of the MPI job. Yet, when considering fault tolerance,
only the overheads to (a) determine the replacement node
and (b) trigger mpirun need to be accounted for. Any global
information about the MPI job is maintained by mpirun at
job initiation and termination. The overhead to determine
the replacement node and to trigger mpirun is also in the or-
der of hundreds of microseconds and, hence, does not sig-
nificantly contribute to the overall overhead of C/R.

5.4 Job Migration Overhead

The overhead of process migration represents the bottle-
neck of our fault tolerance approach. The job-pause mech-
anism of other (non-failed) nodes results in lower overhead,
and the overhead of the group membership protocol and our
novel scheduler is insignificant, as explained above. Let us
consider the potential of our approach for job migration in
contrast to a full restart. Figures 10, 11, and 12 show that the
performance of job pause is only 5.6% larger than a com-
plete job restart (on average for 4, 8 and 16 nodes). Yet, job
pause alleviates the need to reboot the LAM run-time en-
vironment, which accounts for 1.22, 2.85 and 6.08 seconds
for 4, 8 and 16 nodes. Hence, pause effectively reduces the
overall overhead relative to restart.

0

0.5

1

1.5

2

2.5

3

3.5

BT CG EP FT LU MG SP

Se
co

nd
s

Job Restart
LAM Reboot
Job Pause and Migrate

31.45+1.22 32.11

Figure 10. Pause and Migrate on 4 Nodes

0

1

2

3

4

5

6

7

BT CG EP FT LU MG SP

Se
co

nd
s

Job Restart

LAM Reboot

Job Pause and Migrate

Figure 11. Pause and Migrate on 8 Nodes

0

1

2

3

4

5

6

7

8

9

10

BT CG EP FT LU MG SP

Se
co

nd
s

Job Restart
LAM Reboot
Job Pause and Migrate

Figure 12. Pause and Migrate on 16 Nodes
Our approach has several operational advantages over

a complete restart. First, job pause enables seamless and
transparent continuation of execution across node failures.
In contrast, a complete restart may be associated with a
lengthy requeuing overhead in the job submission system.

Second, our approach is suitable for proactive fault toler-
ance with diskless migration. In such a scenario, healthy
nodes would not need to roll back their computation. In-
stead, only the image of the unhealthy node is sent to a
replacement node, which seamlessly picks up computation
from there. The only effect on healthy nodes is that their
socket connections have to be updated, which our scheme
already supports. We are pursuing this approach, which
with our novel job pause mechanism can now be realized.

The behavior of FT in Figures 10, 11, and 12, which
differs from other codes, can be explained as follows. As
previously mentioned, the checkpoint file of FT for 4 nodes
exceeds half the physical memory. As a result, its pause
and restart time goes up by an order of magnitude, as docu-
mented previously in the BLCR work [12].

Furthermore, consider the overhead of EP in Figures 9,
10, 11, 12. The checkpoint/pause&migrate/restart over-
head of EP is becoming more dominant as we increase the
number of nodes. This is caused by the small footprint of
the checkpoint file (about 1 MB), which results in a rela-
tively small overhead for storing/restoring the checkpoint
file. Thus, the overhead of the migration combined with
job pause mainly reflects the variance of the communica-
tion overhead inherent to the benchmark, which increases
with the node count.
6 Related Work

A wide range of methods and systems to support fault
tolerance (FT) have been developed in the past [23, 1, 5, 14,
17, 20, 7, 8, 11], mostly in the context of middleware where
scalability was not the prime objective. Later approaches
addressed this shortcoming and considered point-to-point
as well as collective communication in the context of MPI
[9, 2, 3]. Our work enhances LAM/MPI [24], which previ-
ously did not scale well at 1000 nodes or more, with a scal-
able group communication subsystem based on our prior
work [29]. Besides scalability, our subsystem supports FT
to sustain node failures.

A number of systems have been developed that com-
bine FT with the message passing implementation of MPI,
ranging from automatic methods (checkpoint-based or log-
based) [27, 24, 6] to non-automated approaches [4, 13].
System checkpoint-based methods commonly rely on a
combination of operating-system support to checkpoint a
process image (e.g., via the BLCR Linux module [12]) com-
bined with a coordinated checkpoint negotiation using col-
lective communication among MPI tasks. User-level check-
pointing, in contrast, relies on runtime library support and
may require source preprocessing of an application and typ-
ically inflicts lower overhead, yet fails to capture critical
system resources, such as file descriptors [18, 22]. Log-
based methods rely on logging messages and possibly their
temporal ordering, where the latter is required for asyn-
chronous non-coordinated checkpointing. MPICH-V [6]

implements three such protocols. It uses Condor’s user-
level checkpoint library [19]. Non-automatic approaches
generally involve explicit invocation of checkpoint routines.

Our focus is on LAM/MPI+BLCR (coordinated system-
level checkpointing) [26, 24]. LAM/MPI+BLCR requires
a complete system restart where target node information,
such as IP addresses, cannot be changed and checkpointing
is not fully automated. This severely limits its applicabil-
ity. Prior work extended this LAM/MPI+BLCR function-
ality to support migration of selected checkpoint images to
new nodes [10]. Similar work extended the HA-OSCAR
(High Availability Open Source Cluster Application Re-
sources) distribution not only with compute-node failover
(equivalent to migration with a complete start) but also to
head-node failover (active-standby) in clusters [28]. This
required modifications to LAM’s hard-coded internal ad-
dressing information within the checkpointed file images
followed by a complete job restart. Job submission frame-
works, such as Torque, are oblivious to such changes if the
new job is carefully constructed such as to resemble the
originally submitted one. In contrast to this work, we take
LAM/MPI+BLCR to yet another level with our novel job
pause mechanism that supports migration without restart,
i.e., by retaining functioning process images and rolling
back to the last checkpoint. Our approach is independent
and transparent of any higher-level frameworks, such as job
submission frameworks. More importantly, users do not
lose their allocated time of a running job, i.e., instead of
requeuing the restarted job and waiting for its execution,
execution commences from the last checkpoint without no-
ticeable interruption.
7 Conclusion

This work contributes a fresh approach for transparent
C/R through our novel job pause mechanism. The mech-
anism, implemented within LAM/MPI+BLCR, allows live
nodes to remain active and roll back to the last checkpoint
while failed nodes are dynamically replaced by spares be-
fore resuming from the last checkpoint. Enhancements to
LAM/MPI include (1) support of scalable group commu-
nication with fluctuating number of nodes, (2) transparent
coordinated checkpointing, (3) reuse of network connec-
tions upon failures for operational nodes, and (4) a BLCR
enhancement for the job pause mechanism. We have con-
ducted experiments with the NAS Parallel Benchmark suite
in a 16-node dual-processor Opteron cluster. Results in-
dicate that the performance of job pause is comparable to
that of a complete job restart, albeit at full transparency and
automation. A minimal overhead of 5.6% is only incurred
in case migration takes place while the regular checkpoint
overhead remains unchanged. Yet, our approach alleviates
the need to reboot the LAM run-time environment, which
accounts for considerable overhead resulting in net sav-
ings of our scheme in the experiments. Furthermore, job

pause reuses existing resources and continues to run within
the scheduled job, which can avoid staging overhead and
lengthy requeuing in submission queues associated with tra-
ditional job restarts. Our experiments also indicate that, af-
ter the initialization phase, checkpoints are constant in size
for a given application, regardless of the timing of check-
points. Our job pause approach further offers an addi-
tional potential for savings through incremental checkpoint-
ing and proactive diskless live migration, both of which are
subject to future work.
References

[1] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. The Totem single-ring ordering and mem-
bership protocol. ACM Transactions on Computer Systems,
13(4):311–342, Nov. 1995.

[2] T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and
J. Dongarra. Scalable fault tolerant protocol for paralle run-
time environments. In Ero PVM/MPI, 2006.

[3] T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and
J. Dongarra. Self-healing network for scalable fault tolerant
runtime environments. In Austrian-Hungarian Workshop on
Distributed and Parallel Systems, 2006.

[4] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski.
Architecture of LA-MPI, a network-fault-tolerant MPI. In
Int’l Parallel and Distributed Processing Symposium, 2004.

[5] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and
W. Chiu. Coyote: a system for constructing fine-grain con-
figurable communication services. ACM Trans. Comput.
Syst., 16(4):321–366, 1998.

[6] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V: To-
ward a scalable fault tolerant MPI for volatile nodes. In Su-
percomputing, Nov. 2002.

[7] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Automated application-level checkpointing of MPI pro-
grams. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, June 2003.

[8] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill.
Collective operations in an application-level fault tolerant
MPI system. In International Conference on Supercomput-
ing, June 2003.

[9] R. Butler, W. Gropp, and E. L. Lusk. A scalable process-
management environment for parallel programs. In Euro
PVM/MPI, pages 168–175, 2000.

[10] J. Cao, Y. Li, and M. Guo. Process migration for mpi ap-
plications based on coordinated checkpoint. In Int’l Confer-
ence on Parallel and Distributed Systems, pages 306–312,
2005.

[11] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault tol-
erance in large systems. In Workshop on High Performance
Computing Reliability Issues, 2005.

[12] J. Duell. The design and implementation of berkeley lab’s
linux checkpoint/restart. Tr, Lawrence Berkeley National
Laboratory, 2000.

[13] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. In
Euro PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, volume 1908, pages 346–353, 2000.

[14] R. Friedman and R. van Renesse. Strong and weak virtual
synchrony in Horus. Technical Report TR95-1537, Cornell
University, Computer Science Department, Aug. 24, 1995.

[15] J. Hursey, J. M. Squyres, and A. Lumsdaine. A checkpoint
and restart service specification for open mpi. Technical
report, Indiana University, Computer Science Department,
2006.

[16] IBM T.J. Watson. Personal communications. Ruud Haring,
July 2005.

[17] I. Keidar. Group communication, June 12 2000.
[18] M. Litzkow. Remote unix - turning idle workstations into

cycle servers. In Usenix Summer Conference, pages 381–
384, 1987.

[19] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of UNIX processes in the Con-
dor distributed processing system. Technical Report UW-
CS-TR-1346, University of Wisconsin - Madison Computer
Sciences Department, April 1997.

[20] D. Malki, D. Dolev, and R. Strong. A framework for parti-
tionable membership service, Aug. 19 1995.

[21] I. Philp. Software failures and the road to a petaflop ma-
chine. In Workshop on High Performance Computing Reli-
ability Issues. IEEE Computer Society, 2005.

[22] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under Unix. In Usenix Winter
Technical Conference, pages 213–223, January 1995.

[23] M. L. Powell and B. P. Miller. Process migration in DE-
MOS/MP. In Symposium on Operating Systems Principles,
pages 110–119, Oct. 1983.

[24] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Du-
ell, P. Hargrove, and E. Roman. The LAM/MPI check-
point/restart framework: System-initiated checkpointing. In
Proceedings, LACSI Symposium, Sante Fe, New Mexico,
USA, October 2003.

[25] J. M. Squyres, B. Barrett, and A. Lumsdaine. Request
progression interface (RPI) system services interface (SSI)
modules for LAM/MPI. Technical Report TR579, Indiana
University, Computer Science Department, 2003.

[26] J. M. Squyres and A. Lumsdaine. A component architecture
for lam/mpi. In European PVM/MPI Users’ Group Meeting,
number 2840 in Lecture Notes in Computer Science, pages
379–387. Springer-Verlag, Sep/Oct 2003.

[27] G. Stellner. CoCheck: checkpointing and process migration
for MPI. In IEEE, editor, International Parallel Processing
Symposium, pages 526–531, 1996.

[28] A. Tikotekar, C. Leangsuksun, and S. L. Scott. On the sur-
vivability of standard mpi applications. In Int’l Conference
on Linux Clusters: The HPC Revolution, May 2006.

[29] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L.
Scott. Scalable, fault-tolerant membership for mpi tasks on
hpc systems. In International Conference on Supercomput-
ing, pages 219–228, June 2006.

[30] A. Wissink, R. Hornung, S. Kohn, and S. Smith. Large scale
parallel structured amr calculations using the samrai frame-
work. In Supercomputing, Nov. 2001.

[31] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler. Ar-
chitectural requirements and scalability of the NAS parallel
benchmarks. In Supercomputing, 1999.

[32] J. W. Young. A first order approximation to the optimum
checkpoint interval. Commun. ACM, 17(9):530–531, 1974.

