
Optimizing Inter-Nest Data Locality Using Loop Splitting and Reordering

Sofiane Naci

The Computer Laboratory, University of Cambridge
JJ Thompson Avenue
Cambridge CB3 0FD

United Kingdom
Sofiane.Naci@cl.cam.ac.uk

Abstract

With the increasing gap between processor speed and
memory latency, the performance of data-dominated pro-
grams are becoming more reliant on fast data access, which
can be improved using data locality optimization. Most
studies in this area focus on optimizing data locality in in-
dividual loop nests. However, in many embedded appli-
cations, data access patterns exhibit a significant amount
of inter-nest reuse. In this paper, we present a compiler
strategy that optimizes inter-nest data locality using code
restructuring and loop transformations. Our approach cap-
tures data reuse between all loop nests in the program and
then splits and reorders the nests so that those sharing ar-
rays are closer together. The transformed program is then
further optimized using loop transformations. We improve
on previous studies by using global program analysis and
Integer Linear Programming to find the best nest ordering.
The approach has been tested on many data-intensive em-
bedded kernels and our simulation results indicate promis-
ing performance improvements.

1 Introduction
Array-intensive programs have been the target for opti-
mization for many years. However, the majority of locality
optimization techniques found in literature focus on im-
proving locality in single loop nests which are optimized in
isolation [14, 20]. This kind of optimization improves data
locality within the loop nest while in most array-intensive
applications, arrays are typically accessed in more than
one nest and there exists major data reuse between loops

1-4244-0910-1/07/$20.00 c©2007 IEEE.

accessing the same data. In their detailed study on the
quantification of data locality in loop nests, McKinley and
Temam [15] have shown that 80% of cache misses are
inter-nest, i.e. occuring on data that was previously fetched
to the cache in another loop nest. This clearly indicates that
new techniques targeting locality optimization in multiple
loop nests are needed.

While intra-nest optimization can improve data locality
in each nest at a time, they fail to capture inter-nest data
reuse. Optimizing multiple loop nests at a time requires
more advanced analysis and informative representations of
the program. Traditional techniques such as loop fusion
[9, 13] and reversal [10] have been used in this area
but their benefits are diminishing because of increasing
program complexity. Global fusion algorithms also have
some limitations. Kennedy and McKinley [11] use fusion
and distribution to improve parallelism. However they do
not handle fusion preventing dependencies and loops with
non-identical iteration spaces. Ding [7] illustrates the use
of loop fusion in reducing storage requirements through
an example, but does not provide a general solution.
More recently, Verdoolaege et al. [19] proposed a greedy
algorithm for incremental loop fusion, using loop shifting
to adjust the loop indexes. However, the dependence
analysis performed using a graph model on a low level of
abstraction may lead to unnecessary shifting and make the
algorithm inefficient.

Inter-nest locality has also been directly targeted by [1]
and [10]. In [1], Ahmed et al. propose a technique based on
the generalization of multiple loop iteration spaces into a
unified space, which is then optimized for better data local-
ity. The main limitation to this approach is the fact that not
all loop nests necessarily share arrays, which reduces the

scope of the approach and incurs major overheads. More
recently Kandemir et al. [10] targeted the problem using
loop reversal. Given two consecutive loop nests which
access the same array, their approach applies reversal to
a the second loop nest in order to take advantage of the
elements left in the cache at the end of the execution of the
previous loop. The approach is more suitable for programs
composed of successive loops sharing the same data and it
may not succeed in optimizing complex programs where
many (adjacent) loop nests share more than one array, due
to possible conflicts in array access patterns. These issues
have been addressed in this paper.

To demonstrate the idea, consider the example shown in
Figure 1.

for i = 1 to N do

 A[i] = i + 2

 D[i] = i

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

s += A[k]

 B[k] = k + 2

 D[k] = D[k - 1] + 1

for i = 1 to N do

 A[i] = i + 2

 D[i] = i

for j = 1 to N do

 C[j - 1] = j

for k = N to 1 do

s += A[k]

 B[k] = k + 2

 D[k] = D[k - 1] + 1

for i = 1 to N do

 A[i] = i + 2

for k = 1 to N do

s += A[k]

for i = 1 to N do

 D[i] = i

for k = 1 to N do

 D[k] = D[k - 1] + 1

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

 B[k] = k + 2

(a) (b) (c)

Figure 1. Running example program. (a) Orig-
inal. (b) After loop reversal [10]. (c) After loop
splitting and reordering

Program (a) accesses four arrays in three loops. Arrays
A and D are shared between loops 1 and 3 and are accessed
using the same pattern. The program can be optimized
using Kandemir et al.’s approach [10] as shown in Figure
1(b). The third loop is reversed such that elements of
arrays A and D are accessed before being replaced in the
cache. This would work well on simpler programs where
data is shared by adjacent loop nests. However, in this
example, loops sharing the same arrays are further apart in
the program and Kandemir’s approach returns diminishing
results as will be empirically shown in Section 4. Assuming
the cache is smaller than the total size of the arrays in the
program, this is mainly due to cache capacity misses caused
by accesses to array C in the middle loop nest, which fills
the cache causing elements of the arrays A and D to be
replaced before being reused in the third loop nest.

To overcome this problem and take better advantage

of inter-nest reuse, it is important to analyze how differ-
ent arrays are shared among different loop nests in the
whole program. In order to improve locality between
two loop nests sharing the same data, we need to (1)
allow a maximum amount of the data to be in the cache
between the execution of the two nests; and (2) allow the
second loop nest to use this data while it is still in the cache.

In this paper, we present an inter-nest data locality
optimization technique based on loop splitting and re-
ordering to place loops referencing the same arrays closer
together. An example is shown in Figure 1(c) where
the nests in Figure 1(a) have been split and the resulting
nests reordered. The transformed program in then further
enhanced by loop transformations. Previous studies such
as [6] and [11] also adopted loop scheduling for fusion, but
using graph formulations. The problem of loop scheduling
is a very special case of scheduling Directed Acyclic
Graphs (DAGs), which is known to be NP complete [18].
As a result, solutions based on Integer Linear Programming
(ILP) can be practical, especially if the number of variables
and constraints remain small.

The main contributions and limitations of this work are:

• We introduce loop splitting and reordering as a pro-
gram transformation to improve inter-nest locality.

• We measure inter-nest locality by analyzing array ac-
cesses in all the loop nests of the program at procedure
level. We generalize the nest distance, previously in-
troduced in [15], and use it as our cost function.

• We formulate the loop nest reordering problem in In-
teger Linear Programming (ILP) to find the best loop
ordering, taking into account data dependencies.

• We evaluate the effectiveness of our approach using a
set of array-intensive applications from the embedded
domain and show how the approach can be integrated
with loop reversal and fusion for better results.

• In this study, we assume loop nests are rectangular in
shape in order to allow loop reversal. Furthermore,
we assume that there are no array accesses contained
within conditional statements. Extensions to the work
are discussed in Section 5.

The remaining of this paper is organized as follows. In
Section 2 we present our optimization technique and ex-
plain how to formulate the loop reordering problem in ILP.
In Section 3 we show how the approach is used to optimize
inter-nest locality. In Section 4 we outline our experimental
results. Finally, Section 5 concludes the paper and summa-
rizes the ongoing and future work.

2 Loop Splitting and Reordering
2.1 The Nest Distance
An inter-nest cache miss is a miss on data that was previ-
ously fetched in another loop nest. When optimizing for
inter-nest locality, the natural question that arises is how
far apart the nests are in the program. We quantify this
information by calculating the global nest distance.

Definition 1. The global nest distance in a program
is the total number of loop nests separating each two loops
referencing the same array.

Two references occurring in the same loop nest have
nest distance 0 while two references occurring in adjacent
nests have a nest distance 1. The nest distance is calculated
for each array in the program individually. Assume a
program containing n loop nests L1, . . . , Ln and accessing
m arrays A1, . . . , Am. The nests are numbered r1 to rn,
where ri is the order of Li in the program for 1 ≤ i ≤ n.
Initially, ri = i.

Definition 2. Two loop nests Li and Lj are said to
share an array A, denoted Li

A
⇐⇒ Lj , if Li and Lj access

elements of A.

Definition 3. The nest distance of an array A in a
program is the total number of loop nests separating each
two loops sharing A.

The nest distance dx of array Ax is calculated as:

dx =

n
∑

i,j=0

ri,j where

ri,j =

{

ri − rj if Li
Ax

⇐⇒ Lj and ri > rj

0 otherwise

}

The total nest distance in the program, D, is the sum of the
nest distances of all arrays:

D(L1, . . . , Ln) =

m
∑

x=1

dx

2.2 Motivation
When two loop nests that share a certain array are far apart
in the program, i.e. the shared array has a large nest dis-
tance, elements of the array are more likely to be evicted
from the cache by the time control reaches the second loop
nest, which results in poor inter-nest locality. This issue

is overcome by minimizing the nest distances of shared ar-
rays. Studies like [15] have shown that because of cache or-
ganization, more than 60% of inter-nest reuse occur within
short nest distances of at most 4, and more than 25% of
inter-nest misses are within nest distance 1, i.e. between
adjacent nests, assuming the nests share at least one array.
This clearly indicates the importance of reducing the nest
distance in order to take full advantage of inter-nest data
reuse. The nest distance is reduced by loop splitting and
reordering. This transformation minimizes cache capacity
misses and increases the potential of inter-nest data locality
optimization.

2.3 Loop Splitting
Loop splitting is not always legal and may be bound by
data dependencies between statements in the loop body.
In order not to harm temporal and spatial locality within
the loop nest, loop splitting aims to separate disjoint
statement only, i.e. statements within the loop nest that use
disjoint sets of data. These are placed in separate loop nests.

To illustrate the idea, consider again the original exam-
ple shown in Figure 1(a). After applying loop splitting, the
transformed program is shown in Figure 2(a). The program
now contains six loops accessing a single array each.

Loop splitting used in this context is an important step
of the transformation. It prepares the program for loop
reordering and further loop optimizations. In addition to
this, where the original program contains imperfectly nested
loops, the number of these is reduced by loop splitting,
which results in better gains by loop transformations such
as fusion.

2.4 Loop Reordering Using ILP
The aim of loop reordering is to localize data in the
program by bringing loops that share the same arrays closer
together. This is modeled and solved using Integer Linear
Programming (ILP). The task is to assign new order values
to loop nests such that the objective function is minimized,
while maintaining a set of constraints. We use the nest
distance as the objective function, and use constraints to
(1) express data dependencies, for example indicate that
a given loop nest must execute before another one; (2)
express the uniqueness of each order value assigned to a
loop nest; and (3) specify the range of possible order values.

Consider a program with k loop nests L1, . . . , Lk. Let
ri be the order of Li in the program for 1 ≤ i ≤ k. Initially,
ri = i. The aim of nest reordering is assigning a new order
value from the range (1, k) for each ri with 1 ≤ i ≤ k,

for i = 1 to N do

 A[i] = i + 2

for i = 1 to N do

 D[i] = i

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

s += A[k]

for k = 1 to N do

 B[k] = k + 2

for k = 1 to N do

 D[k] = D[k - 1] + 1

L3

L2

L1

L4

L5

L6

for i = 1 to N do

 A[i] = i + 2

for k = 1 to N do

s += A[k]

for i = 1 to N do

 D[i] = i

for k = 1 to N do

 D[k] = D[k - 1] + 1

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

 B[k] = k + 2

L2

L4

L1

L6

L3

L5

(a) (b)
for i = 1 to N do

 A[i] = i + 2

for k = N to 1 do

s += A[k]

for i = 1 to N do

 D[i] = i

for k = N to 1 do

 D[k] = D[k - 1] + 1

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

 B[k] = k + 2

L2

L4

L1

L6

L3

L5

for i = 1 to N do

 A[i] = i + 2

 s += A[k]

for i = 1 to N do

 D[i] = i
 D[k] = D[k - 1] + 1

for j = 1 to N do

 C[j - 1] = j

for k = 1 to N do

 B[k] = k + 2

L2,6

L1,4

L3

L5

(c) (d)

Figure 2. Running example program. (a) Af-
ter loop splitting. (b) After loop splitting and
reordering. (c) Combining with loop reversal.
(d) Combining with loop fusion

such that the nests accessing shared arrays are brought
closer together.

Solving the problem in ILP is illustrated through the ex-
ample shown in Figure 2(a). The program contains six nests
L1, L2, L3, L4, L5 and L6 with order values 1, 2, 3, 4, 5 and
6 respectively. We have L1

A
⇐⇒ L4 and L2

D
⇐⇒ L6, so

D(L1, L2, L3, L4, L5, L6) = (r4 − r1) + (r6 − r2)

Due to data dependencies, L1 and L2 must execute before
L4 and L6 respectively. So we formulate the reordering
problem as:

minimize (r4 − r1) + (r6 − r2)
where r1 < r4 and

r2 < r6 and
(r1, r2, r3, r4, r5, r6) is a permutation
of (1, 2, 3, 4, 5, 6)

which has an obvious solution (r1, r2, r3, r4, r5, r6) =

(1, 3, 5, 2, 6, 4). The corresponding program for this
solution is shown in Figure 2(b). In general, the formulated
problems are not large and can be computed efficiently.
In our framework, we used the freely available ILP solver
lp solve [3].

Note that this step is concerned with array accesses and
is independent on the structure or depth of the loops. Al-
though imperfectly nested loop may still be present after
loop splitting, they will not affect the reordering. In ad-
dition to this, since a given array is typically accessed in
loops having the same depth, the reordering will also result
in grouping loops having the same depth together.

3 Inter-nest Locality Optimization
Loop splitting and reordering presented in the previous sec-
tion is a powerful enabling transformation for optimizing
inter-nest data locality using loop transformations. In this
paper, we consider the combination of loop fusion and loop
reversal, which have been traditionally used for this matter.
Other loop transformations, such as skewing and strip min-
ing, are also known to result in performance gains and will
be considered in future extensions to this work.

3.1 Combination with Fusion and Reversal
Inter-nest locality can be improved by cross loop trans-
formations. The main works in this area include loop
fusion [9, 13] and reversal [10]. Loop fusion enhances
both temporal and spatial locality and is best used when
the two loop bodies to be fused share the same array(s).
Loop reversal on the other hand allows a loop nest to
take advantage of data elements left in the cache after the
execution of previous nests.

In this study, we investigate the benefits that loop fusion
and reversal can add to the presented approach. Loop split-
ting and reordering increase the number of candidate loops
for fusion and make it more beneficial, as the candidate
loops are more likely to be accessing similar arrays. As for
loop reversal, loop splitting and reordering reduce the num-
ber of capacity misses and therefore increase the benefits of
loop reversal for inter-nest data locality optimization.

3.2 Optimization Algorithm
The optimization technique presented in this paper is sum-
marized below:

1. Apply loop splitting on each loop nest to place disjoint
statements in separate nests.

2. Apply loop reordering to minimize the nest distance of
the program.

(a) Formulate the ILP problem.
(b) Solve the problem to find the new reordering.
(c) Transform the program.

3. Apply loop fusion recursively.

4. Apply loop reversal using Kandemir’s method [10].

Note that the third step may not be applied all the time
due to data dependencies issues. The loop fusion algorithm
used in this study is a simple one which fuses two candidate
loop nests if there are no data dependencies between them
and their loop headers are identical. The candidate nests
must also be adjacent and access the same array(s). Loop
fusion is applied recursively in order to allow more than two
loops to be combined. Other details regarding the applica-
tion of loop fusion and loop reversal are omitted due to the
lack of space and can be found in [9, 13, 12].

4 Experiments
4.1 Setup

Version Loop transformations applied
R Reversal only, according to [10].
SR Splitting + reordering, then Reversal.
SF Splitting + reordering, then fusion.
SFR SF version + reversal.

Table 1. Versions of the programs used in the
experiments

Our inter-nest data locality optimization algorithm has
been implemented using the SUIF 2 experimental compiler
infrastructure [2]. We used eight embedded kernels to test
the effectiveness of the algorithm; fir, an array version of
the DSPStone’s 2-D FIR filter [21]; k14, a C version of
kernel 14 of the Livermore benchmark which implements
a 2-D particle in cell algorithm [16]; k18, a C version of
kernel 18 of the Livermore benchmark which calculates
an explicit hydrodynamics fragment [16]; lms, an array
version of the DSPStone’s true LMS algorithm [21]; iir,
a 1-D LMS adaptive second-order IIR filter [8]; lnb, a
Linear Boundary Value problem solver [17]; nlb, a Non-
Linear Boundary Value problem solver [17]; and inv, an
eigenvalue problem solver using the inverse power method
[17]. Using SUIF 2, we applied different combinations
of the transformations described in Sections 2 and 3 and

we generated four transformed versions of each original
program as described in Table 1. The characteristics
of each benchmark and details of its transformation are
summarized in Table 2.

Benchmark A ADS L R S RS SF
fir 6 200 5 2 8 3 4
k14 10 1000 4 1 8 4 6
k18 9 175 4 2 9 5 7
lms 2 128 5 1 8 3 5
iir 13 300 6 2 9 4 6
lnb 4 780 3 1 8 4 3
nlb 5 2000 5 1 10 4 5
inv 6 235 8 3 14 7 5
Key
A: The number of arrays
ADS: The approximate data size (KB)
L: The number of loops, originally
R: The number of reversed loops
S: The number of loops after splitting
RS: The number of reversed loops after splitting
SF: The number of loops after splitting + fusion

Table 2. The transformations performed on
the benchmarks

The original benchmark programs and the transformed
versions were compiled using a cross gcc compiler with
the highest optimization level (-O3) to stress the analysis.
The programs were then simulated using SimpleScalar’s
sim-cache simulator [4]. The simulator’s memory hi-
erarchy was configured as shown in Table 3. We use typi-
cal figures from the embedded system domain for the level-
1 data cache, the level-2 unified cache and the data TLB
(Translation Lookaside Buffer), where C denotes the ca-
pacity or the total size, B the block/page size, Assoc. the
associativity and Lat. the access latency in clock cycles.

Part C B Assoc. Lat.
L1 D-cache 16 KB 32 B 4 1
L2 U- cache 256 KB 32 B 4 6
Data TLB 16 entries 4 KB 4 75
Main memory N/A N/A N/A 150

Table 3. SimpleScalar’s memory configura-
tion

4.2 Results and Discussion
Using the simulator, we collect information about the
memory hierarchy performance, calculate L1, L2 and TLB
miss rates and compute the effective data access time EAT
= (1 − m)a + mp where m is the miss rate recorded at
the L1 cache, a is the access latency of the L1 cache and p
is the miss penalty of the L1 cache. In this case where we
have two levels of cache, the miss penalty of the L1 cache
is essentially the effective access time of the L2 cache.
In our calculation, we also take into account the penalty
of TLB misses. All the obtained results are expressed as
percentage improvements with respect to the original code.
Note that the reported improvements are observed within
the main loop kernel, which is the most costly operation of
the program. Improvements obtained by running the whole
program have reached 90 to 95% of the reported figures.

Figure 3(a) shows the percentage improvements in L1
data cache miss rate. On average, we record miss rate
improvements of 1.50, 1.84, 8.63 and 11.31% for the four
transformed versions R, SR, SF and SFR respectively.
This shows the benefits of loop splitting and reordering
for inter-nest locality. It can be seen that in six out of
the eight benchmarks used, the SR transformation of the
program resulted in more improvements compared to the
R transformation. While the difference is rather small, the
results show that coupling loop splitting and reordering
with loop fusion brings significant performance benefits
and can reduce the L1 cache miss rate by up to 3 times.

Note that in two of the programs, namely f14 and
iir the SR version did not result in any improvements
in terms of L1 data cache miss rate. This is mainly due
to overheads incurred from having many more loop nests
in the program compared to the original and R versions.
To investigate this case further, Figure 3(b) shows the
percentage improvements in miss rates averaged over all
components of the memory hierarchy. This includes the
L2 cache misses and the data TLB misses. The figure
shows that even when there are no significant improve-
ments recorded in the L1 data cache, other components of
the memory hierarchy still benefit from the transformations.

To see the benefits of reduced miss rates in the memory
hierarchy, we show in Figure 3(c) the percentage improve-
ments in the effective data access time. The figure depicts
significant reductions in data access time and shows that the
R transformation is outperformed by the other transforma-
tions in all the benchmarks used. On average, we record im-
provements of 12.60, 16.90 and 22.35% for the SR, SF and
SFR versions respectively while the average improvement
gained by the R version is only 7.15%. All these results in-
dicate that the presented approach outperforms the one pre-

0

10

20

30

40

fir k14 k18 lms iir lnb nlb inv

Im
p

ro
v
e

m
e

n
t
(%

)

R (loop reversal)

SR (loop splitting + reversal)

SF (loop splitting + fusion)

SFR (loop splitting + fusion + reversal)

(a)

0

10

20

30

40

fir k14 k18 lms iir lnb nlb inv

Im
p

ro
v
e

m
e

n
t
(%

)

R (loop reversal)

SR (loop splitting + reversal)

SF (loop splitting + fusion)

SFR (loop splitting + fusion + reversal)

(b)

0

10

20

30

40

fir k14 k18 lms iir lnb nlb inv

Im
p

ro
v
e

m
e

n
t
(%

)

R (loop reversal)

SR (loop splitting + reversal)

SF (loop splitting + fusion)

SFR (loop splitting + fusion + reversal)

(c)

Figure 3. Percentage improvements in (a) L1
data cache miss rate (b) average memory
system miss rate (c) effective data access
time

sented in [10] when dealing with more complex programs.

4.3 Effects on Code Size
To investigate the effects of our approach on code size, we
measured the size of our benchmarks after loop splitting and
after loop splitting and fusion. The percentage changes with
respect to the original program are illustrated in Figure 4.
The figure shows that splitting increases the code size for
all benchmarks, by up to 27%. However, applying loop fu-
sion reduces it back to its original value in most cases. For
some becnhmarks, we still record a slight (less than 5%)
increase compared to the original code size. For others, fu-
sion actually makes the code even smaller than originally.
These figures indicate that although loop splitting increases
the size of the code, it enables better loop fusion, which
could make the code more compact than before.

-30

-20

-10

0

10

20

30

fir k14 k18 lms iir lnb nlb inv

C
h

a
n

g
e

 i
n

 c
o

d
e

 s
iz

e
 (

%
)

Loop splitting + reversal

Loop splitting + fusion + reversal

Figure 4. Effects of splitting and fusion on
code size

4.4 Effects of Cache Size
In order to analyze the effects of cache size on the effec-
tiveness of the approach, we run the same experiments de-
scribed in Section 4.1 with different L1 cache sizes, while
keeping the other memory hierarchy parameters unchanged.
Figure 5 shows the average improvements recorded for all
the benchmarks in the Effective Access Time and miss rates
for different cache sizes. The first remark that can be drawn
from the figures is that combining fusion and reversal al-
ways outperforms the other combinations. The figures also
show that the simplest approach, consisting on loop reversal
only, is the worst one in terms of performance benefits.

0

5

10

15

20

25

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

0

5

10

15

20

25

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

(a) (b)

Figure 5. Effects of cache size (a) on effective
data access time (b) on average miss rate

The level of improvements is highly dependent on the
cache size. However, increasing the cache size does not
necessarily result in more performance. To explain this,
consider a simple example where a cache of capacity C
is organized into blocks of size B. When an array of size
N is accessed sequentially, the number of cache misses is
N/B. If we access the same array in two different loop
nests, we distinguish two cases. If N < C the total number
of misses is N/B since all accesses in the second nest hit
in the cache. Note that in this case, inter-nest optimization

does not bring any extra benefits. As a result, we focus
on the case where N > C. In this case, we record 2N/B
misses, where N/B of them are compulsory misses, due to
loading data for the first time, and the remaining N/B are
capacity misses due to data being evicted from the cache.
By applying loop reversal on the second nest, we save C/B
of the capacity misses recorded in the second nest. This
therefore results in a benefit ratio of C/2N , reaching a
maximum 50% improvement when C = N . This shows
that with a small cache, i.e. C is small, the improvements
become negligible as shown in Figure 5 for the cache
sizes of 4 and 8KB. When C is much larger than N , this
improves the performance of the original program and
renders the improvements brought by the transformation
small too. This is shown in figures for cache size of 32KB.

0

10

20

30

40

50

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

0

10

20

30

40

50

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

1

k14 (a) k14 (b)

0

10

20

30

40

50

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

0

10

20

30

40

50

4 8 16 32

L1 cache size (KB)

Im
p

ro
v
e

m
e

n
t
(%

)

(R) loop reversal
(SR) loop splitting + reversal

(SF) loop splitting + fusion
(SFR) loop splitting + fusion + reversal

lms (a) lms (b)

Figure 6. Effects of cache size on k14 and
lms (a) on effective data access time (b) on
average miss rate

These changes in performance vary for each benchmark
according to the size of the data and the length of the ar-
rays handled by the program. Figure 6 shows, for example,
the effects of changing the cache size on the performance
of the k14 and lms benchmarks. For k14, we observe
dramatic changes in performance for different cache sizes.
The improvements are small for small and large sizes and
significantly better for a 16KB cache. For lms however,
we observe a more constant improvement ratio across dif-

ferent sizes with slight degradation for large caches. The
main reason for these differences is the amount of data han-
dled by the program. As shown in Table 2, k14 uses 10
arrays accessed in several loop nests which causes more
cache misses and makes the effects of the transformation
with respect to the cache size more visible. On the other
hand lms uses only 2 arrays which reduces the number of
cache misses and leaves a smaller room for optimization
compared to k14.

5 Conclusions and Future Work
In this paper we have demonstrated that there exists a signif-
icant amount of performance benefits that can be obtained
by inter-nest data locality optimization. The algorithm pro-
posed in this paper targets this point and achieves significant
improvements when combined with existing loop transfor-
mations. Our experiments show that our framework im-
proves cache miss rate by up to 31%, leading to a 38% faster
data access time. However, the approach can be improved
in many ways. The cost function introduced in this paper is
simple and may lead to suboptimal results in special cases
when, for example, two loop nests share an array but ac-
cess non-overlapping sections of it. This problem can be
overcome by introducing weights when calculating the nest
distance, related to the number of array elements that are
effectively shared between the nests. This is the subject of
current ongoing extensions. We are also aware that the ef-
fectivness of the approach highly depends on the size of the
cache and the arrays in the program. This limitation will
be overcome by combining the approach with simple data
transformations that change the size of arrays such as ar-
ray composition/decomposition [5] and other loop transfor-
mations like strip-mining. In addition to the above, future
studies will investigate how to generalize the approach to
optimize inter-procedural locality.

References
[1] M. Ahmed, N. Mateev, and K. Pigalli. Synthesizing Trans-

formations for Locality Enhancement of Imperfectly-Nested
Loop Nests. In Proceedings of the 14th International Con-
ference on Supercomputing, pages 141–152, 2000.

[2] G. Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B. Mur-
phy, and C. Sapuntzakis. An Overview of the SUIF2 Com-
piler Infrastructure. Technical report, Stanford University,
2000.

[3] N. Berkelaar. lp solve Mixed Integer Linear Programming
solver, version 5.5.0.8. ftp://ftp.es.ele.tue.nl/pub/lp solve.

[4] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report 1342, Computer Sciences De-
partment, University of Wisconsin, 1997.

[5] G. Chen, M.Kandemir, U. Sezer, and A. Nadgir. Array Com-
position and Decomposition for Optimizing Embedded Ap-
plications. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 2003.

[6] A. Darte. On the Complexity of Loop Fusion. Parallel Com-
puting, 26(9):1175–1193, 2000.

[7] C. Ding. Improving Effective Bandwidth Through Compiler
Enhancement of Global and Dynamic Cache Reuse. PhD
thesis, Rice University, 2000.

[8] P. Embree. C Algorithms for Real-Time DSP. Prentice Hall,
1995.

[9] A. Fraboulet, K. Godary, and A. Mignotte. Loop Fusion
for Memory Space Optimization. In Proceedings of the In-
ternational Symposium on System Synthesis, pages 95–100,
2001.

[10] M. Kandemir, I. Kadayif, A. Choudhary, and J. Zambreno.
Optimizing Inter-Nest Data Locality. In Proceedings of the
International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, pages 127–135, 2002.

[11] K. Kennedy and K. S. McKinley. Maximizing Loop Par-
allelism and Improving Data Locality via Loop Fusion and
Distribution. In Proceedings of the 6th International Work-
shop on Languages and Compilers for Parallel Computing,
pages 301–320, 1994.

[12] R. Leupers. Code Generation for Embedded Processors. In
Proceedings of the 13th International Symposium on System
Synthesis, pages 173–178, 2000.

[13] P. Marchal, J. I. G’omez, and F. Catthoor. Optimizing the
Memory Bandwidth with Loop Fusion. In Proceeding of the
International Conference on Hardware/Software Codesign
and System Synthesis, 2004.

[14] K. McKinley, S. Carr, and C. Tseng. Improving Data Lo-
cality with Loop Transformations. ACM Transactions on
Programming and Systems, 18(4):424–453, 1996.

[15] K. McKinley and O. Temam. Quantifying Loop Nest Lo-
cality Using SPEC’95 and the Perfect Benchmarks. ACM
Transactions on Computer Systems, 17(4):288–336, 1999.

[16] F. McMahon. The Livermore Fortran Kernels: A Computer
Test Of The Numerical Performance Range. Technical Re-
port UCRL-53745, Lawrence Livermore National Labora-
tory, 1986.

[17] S. Nakamura. Applied Numerical Methods in C. Prentice
Hall International Editions, 1993.

[18] J. Ullman. NP-complete Scheduling Problems. Journal of
Computer and System Sciences, 10:384–393, 1975.

[19] S. Verdoolaege, M. Bruynooghe, G. Janssens, and
F. Catthoor. Multi-Dimensional Incremental Loop Fusion
for Data Locality. In Proceedings of the IEEE 14th Inter-
national Conference on Application-specific Systems, Archi-
tectures and Processors, 2003.

[20] M. E. Wolf and M. S. Lam. A Data Locality Optimizing
Algorithm. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 30–44, 1991.

[21] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr. DSP-
stone: A DSP-Oriented Benchmarking Methodology. In
Proceedings of the Conference on Signal Processing Appli-
cations and Technology, 1994.

