

Evaluation of Stream Virtual Machine on Raw Processor

Jinwoo Suh, Richard Lethin†, Stephen P. Crago, Janice O. McMahon, and Dong-In Kang

University of Southern California
Information Sciences Institute
3811 N. Fairfax Dr. Suite 200

Arlington, VA, 22203
{jsuh,crago,jmcmahon,dkang}@isi.edu

†Reservoir Labs, Inc.
632 Broadway Suite 803

New York, New York, 10012
lethin@reservoir.com

Abstract

Stream processing exploits the properties of stream
applications such as parallelism and throughput-oriented
nature of the applications. One of the most recent
approaches is community-supported Morphware Stable
Interface (MSI) [11] used as a stable abstraction between
High-Level Compilers (HLC) and Low-Level architecture-
specific Compilers (LLC). We focus on one part of the
MSI, the Stream Virtual Machine (SVM) [4][7][11]. We
implemented a High-Level Compiler that produces SVM
output renderings and SVM implementation. The SVM is
implemented with the Raw Compiler as the LLC and an
accompanying library. We also implemented stream
applications such as matrix multiplication, FIR bank, and
Ground Moving Target Indicator (GMTI) using the
implemented compilers. These applications are optimized
and the results are analyzed. The results show that the
SVM framework is generally suitable for streaming
applications on Raw processor.

 The authors gratefully acknowledge the extraordinary support of the
MIT Raw team for the use of their compilers, simulators, Raw chip, and
their generous help.
The authors acknowledge Morphware Forum [2] for the Streaming
Virtual Machine standard upon which this implementation was
performed.
This effort was sponsored by Defense Advanced Research Projects
Agency (DARPA) partially under agreement number F30602-01-C-0171
through the Air Force Research Laboratory, USAF and under grant
number NBCH1050022 through the Dept. of Interior National Business
Center (NBC). The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsement, either
expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), Air Force Research Laboratory, or the U.S.
Government.
The authors appreciate proofreading by Susan Reckitt.

1-4244-0910-1/07/$20.00 ©2007 IEEE

1. Introduction

In this paper, we describe the implementation of a
streaming model of execution using a proposed standard
streaming API, and evaluate the performance results for
the implementation running on the Raw research
microprocessor [8][16]. In our streaming execution model,
finite-duration tasks running on programmable hardware
computational cores read operands from local on-chip
memories, and write results back to local memories.

We expect the access patterns to local memory to be
regular, e.g., sequential, which assists with getting
performance from the hardware cores. Data movement
between the on-chip local memories and off-chip
memories is via explicit initiation of transfers. If there are
multiple cores on the chip, it is also possible to set up
direct links to transfer sequences of data directly from core
to core.

Based on the hypothesis that this execution model is
general and reflects the means by which contemporary
processors are programmed to achieve high performance
when executing programs with substantial amounts of data
parallelism1 as are found in signal processing, a standard
way of describing computations in this model was
developed.

This is the Stream Virtual Machine (SVM) framework
[7][11]. The SVM framework consists of two parts, a set
of C-idiomatic API for expressing computations in this
execution model, along with a standard way for writing
machine models (in an XML syntax) that describe
hardware targets. One use of the SVM framework is as an
intermediary between two compilers; a High Level
Compiler (HLC) that is responsible for analyzing the input
code and performing coarse grain transformations of the

1 The basis for this hypothesis is that all contemporary processors are
implemented in CMOS and that they face the same physical factors in
any organization (e.g., communication costs dominating computation
costs) that tries to push performance.

application, such as extracting parallelism and coarse grain
load balancing, and a Low Level Compiler (LLC) that
maps the tasks of the SVM to the hardware computational
cores, performing standard compiler transformations such
as instruction selection, register allocation, and instruction
scheduling.

The output of the High Level Compiler is the
application code after it has been mapped into the
streaming execution model as expressed in the SVM form.
Like all compilers, HLC uses an abstract machine model
as a basis for the feasibility constraints and cost functions
that drive the transformations and optimization. A HLC
has been developed for SVM called R-Stream, and
machine models and LLCs have been developed for Raw
[8] [16], MONARCH [15][17], TRIPS [1][14], and Smart
memories [9][10]. These research projects are being
conducted within the DARPA Polymorphous Computer
Architecture (PCA) research program [4] and with the
coordination of the Morphware Forum [11].

In this paper, we experimented with the R-Stream 2.1
HLC and a low level compiler for Raw architecture (See
Figure 1). We implemented the SVM LLC by using Raw’s
C compiler and implementing the rest of the SVM API as
library. We, then, implemented several stream applications
such as matrix multiplication, FIR filter banks, and
Ground Moving Target Indicator (GMTI) [2]. These
applications are optimized and analyzed.

The rest of the paper is as follows: Section 2 describes
the SVM framework and the architecture of Raw processor.
Section 3 describes the High Level Compiler and how we
use the Raw C compiler and a library of calls to be an LLC
for the SVM form. Section 4 describes the applications
implemented. Section 5 shows the implemented results
and analysis results are presented. Section 6 concludes the
paper.

Figure 1. HLC and LLC implementation for Raw

2. Stream Virtual Machine and Raw
Processor

2.1. Stream Virtual Machine [7][11]

The Stream Virtual Machine (SVM) framework [7][11]
is a draft standard API within a set of standards intended to
allow expressions of multiple levels of mapping of signal-
knowledge processing applications to a class of
programmable processors called Polymorphous Computer
Architectures (PCAs). The API framework is designed to
allow the integration of tools and design flows that allow
the development of such applications, mappings, and
systems in a way that achieves performance (FLOPS/W)
that is competitive with ASIC, but which is based on
programmable hardware.

The main idea of the SVM framework is developing a
stream virtual machine that can be used universally for
multiple languages and multiple architectures. The SVM
framework exposes parallelisms and communications in
applications using SVM APIs such that a tool chain can
optimize application performance by utilizing the exposed
information.

The HLC generates SVM API based code. The
mapping of the application to the architecture is also
expressed in SVM API. There are several main concepts in
the SVM. One of them is kernel. The SVM API provides
the kernel abstraction as a unit of computation. Kernels
consist of computation expressed with a restricted subset
of C, operate on a set of input and output streams, may
contain local state, and generally encapsulate clean, data-
parallel code. Kernels can be asynchronously monitored
and controlled from a control thread running on a different
processor [7].

Another concept in SVM is stream. A stream is a
collection of sequential records of data. The streams can
be in memory or communication channel (FIFO). The
streams can be sent to a kernel that is a collection of
computation. When a stream is input to a kernel, the
records in the stream are consumed by the kernel
sequentially and the kernel computes output that is sent to
output stream sequentially. A block of data that can be
accessed randomly (in contrast to sequentially) is called
block. The data in the block can be accessed in any order.
There are several APIs that control the kernels such as
start, stop, and pause kernel operations. There are SVM
APIs describing dependencies between kernels.

HLC uses machine model to generate tailored code for
target architecture. The machine model describes the target
machine abstractly using universal descriptions. Currently
the machine model contains one primary master that is
used initially to execute a serial code and to start other
components. When a parallelized code is executed,
secondary masters2are called by the primary master.

2 The use of secondary masters is outside the SVM specification. At the
August 2006 Morphware meeting, we agreed not to extend the SVM
specification to allow secondary masters.

Stream kernels

Raw

Raw C

Compiler
SVM

Library

R-Stream 2.1

LLC

HLC

SVM API Code

Machine
model

The secondary masters are responsible for preparation
of input data and calls stream processors. The stream
processors are responsible for execution of the
computations. The machine model also describes other
resources such as DMA, local memory, global memory,
and networks.

Finally, the SVM code is compiled using LLC to
generate binary code for a target platform. LLC is
responsible for software pipelining, detailed routing of
data items, management of instruction memory, and
interfacing between stream processors and control
processors [11].
With the SVM approach, when a new language or a new
architecture is introduced, it can leverage the work done
before. For example, if a new architecture is introduced, it
can write an LLC for the architecture and use existing
HLC with no or little modifications.

2.2. Raw Processor [8] [16]

Microprocessor manufacturing technologies have been
advanced rapidly, and as a result, more and more
transistors are populated in a processor. One of the
resulting technical challenges from such advances is power
dissipation problem. One of the solutions for the power
problem is using multi-cores (multi-tile) with a little lower
clock speed in a processor. By using multi tiles in a
processor, the overall power dissipation problem is eased.

Another advantage of the multi-tiles in a processor is
short signal travel distance. One of the main contributing
factors for rapidly increasing performance of the
processors was rapidly increasing clock speed and chip
area. As the clock speed increases and chip area increases,
it takes more and more cycles for a signal to travel from
one side to the other side. Thus, by using multi-tiles, each
tile occupies a fraction of the chip space. So, it is easier to
make a faster processor since the signals need to travel
only a short distance.

One example is the Raw chip implemented at
Massachusetts Institute of Technology (MIT) [8] [16]. The
current Raw implementation contains 16 tiles on a chip
connected by a low latency two-dimensional mesh
network. The Raw prototype board has been tested up to
300 MHz and is expected to operate at higher frequency as
the processor itself was successfully tested at higher
frequency. Peak performance using the 300 MHz board is
4.8 GOPS.

Each tile has a MIPS-based RISC processor with
floating-point units and a total of 128 KB of SRAM, which
includes switch instruction memory, tile (processor)
instruction memory, and data memory. Raw uses general
parallelism, which includes streaming, ILP, and data
parallelism.

The Raw has four networks: two static networks and
two dynamic networks. Communication on the static
networks is performed by a switch processor in each tile
 [13]. The switch processor is located between the
computation processor and the network. It provides

throughput to the tile processor of one word per cycle with
a latency of three cycles between nearest neighbor tiles.

One additional cycle of latency is added for each hop in
the mesh through the static networks. When the dynamic
network is used, data is sent to another tile in a packet. A
packet contains header and data. If the data is smaller than
a packet, dummy data is added to make a packet. If the
data is larger than the packet, multiple packets are sent.
The memory ports are located at the 16 peripheral ports of
the chip. All tiles can access memory either through the
dynamic network or through the static network.

In Raw, network ports are mapped to registers so that
accessing registers corresponds to communication. This
feature is useful to reduce the number of instructions
significantly when the code is optimized as it eliminates
load/store operations. This is exploited in our
implementation of matrix multiplication and FIR banks as
shown in Section 5.

3. High Level Compiler (HLC) and Low
Level Compiler (LLC)

3.1. HLC

In our experiments, we used the R-Stream 2.1 high-
level compiler [12]. R-Stream 2.1 is an experimental
research compiler written with the objective of performing
high-level mapping transformations from a common
expression of an application to multiple PCA architectures,
using the SVM as the means for expressing the mapped
application.

R-Stream 2.1 accepts application written in a C dialect
that simplifies the extraction of program semantics,
particularly with respect to abstraction of arrays. This C
dialect is nicknamed “Gumdrop.” The distinctive feature
of Gumdrop is the ability to indicate that references to
arrays are abstract. The separation of the extensional
semantics of arrays from the intentional semantics of
arrays provides the HLC greater flexibility in mapping,
especially in the presence of distributed local memories in
separate address spaces, which is a common feature of all
of the PCA architectures (and in general seems to be a
feature of other high performance embedded architectures,
such as IBM’s Cell [5] or Clearspeed’s [3]).

R-Stream 2.1 was designed to use the Gumdrop abstract
array extensions after experience with the Brook language
in our R-Stream 1.0 compiler. The R-Stream designers
concluded that the principal benefit of the stream
abstraction in Brook was the separation of the intentional
and extensional semantics of storage elements, but that
exposing the stream abstraction to the programmer caused
the programmer to over-specify the mapping. This is
because the stream abstraction is inherently one
dimensional. The use of this abstraction in the SVM
reflects the view that abstraction is a useful way to express
an efficient physical execution model, where some inner or
near inner loop is “streamed.” However, for the

programmer, it is overly constraining: attempts to express
multi-dimensional algorithms (such as operations over
three dimensional radar cubes in GMTI) in Brook are
baroque code expressions with early physical bindings that
are far from efficient execution. To accept them, the HLC
would be forced to “undo” much of what programmers
were writing in order to get good mappings. Writing loops
over abstract arrays is much more natural for programmers.

Abstract arrays represent both a limit to the R-Stream
2.1 compiler and an inherent limitation of the C language.
R-Stream 2.1 does not have passes to raise code that is
written in terms of C references to abstract arrays. Mainly,
this is driven by the fact that this is a very hard problem to
do in general and that it is easy to write code in C where it
is impossible to raise arrays. Other limitations of the 2.1
mapper surface in the Gumdrop dialect, such as the
requirement that loops to be mapped have explicit
indication of the iteration variable (as “do loops”), that
loops have simple stride expressions and fixed extents, and
that array sizes be static and known at compile time.

R-Stream 2.1 performs the following mapping steps:
loop unrolling, loop interchange, partial fusion, tiling, and
high-level software pipelining. The loop interchange,
fusion, and tiling are based on greedy algorithms that
attempt to find fusions of stages in an algorithm like
GMTI. Such fusion of stages allows producer-consumer
locality to be exploited, saving chip IO bandwidth. This
fusion transformation is interesting because the stages in
an application like GMTI can be separated by various
“corner turns” so the fusion cannot generally be along an
inner dimension as is most common; the fusion has to
comprise two dimensions. Furthermore, this fusion is
constrained by the fixed local memory capacity of the
distributed memory of the processors.

R-Stream 2.1 also performs high-level software
pipelining, performing a fixed static scheduling of the tiles
(as “kernels in SVM terminology) across processors and in
time. This is performed with a high-level modulo
scheduling. Thus, in the GMTI example, several “cubes”
corresponding to different samples can be in flight
simultaneously. R-Stream 2.1 arranges for double-
buffering of local memory and generates bulk memory
read and write operations (stream copy in SVM
terminology) which correspond to DMA operations.

While R-Stream 2.1 can map across multiple PCA
chips, this often is due to simplifications in the machine
model for each of the chips. It is possible to model Raw as
a single unified processor comprised of multiple Raw tiles
acting synchronously, or as a chip multiprocessor with
independent tiles. In our experiments, we model Raw as
having independent tiles.

While the transformations that R-Stream 2.1 can
perform are relatively powerful and illustrative, the
implementation of the transformations is somewhat rigid.
The sequence of transformations to be performed is fixed,
and structured closely to correspond to the needs of the
GMTI implementation we have. Limitations in the R-
Stream 2.1 implementation prevent the compiler from

performing certain simple “cleanup” optimizations before
output is emitted. The reliance on fixed iteration extents,
simple loops, and known array extents is deeply baked in
to the mapper. The newer version of the compiler, R-
Stream 3.0, is being built to address these limitations [13].

3.2. LLC

In our implementation of LLC, instead of building
standalone compiler, we leveraged the available gcc
compiler tailored for Raw by using library approach to
SVM construction. In this approach, we build a library for
SVM APIs that is used for an SVM code (See Figure 1).
Although this approach does not provide full optimizations
that may be provided by full SVM compiler, it enabled us
to access the SVM framework in a short time period with
minimal cost. In our current implementation, all SVM
APIs in the specification are implemented.

The library provides several functions to support the
SVM APIs. One of them is maintaining kernel data
structure. When a kernel is started, the kernel data
structure is passed to the secondary master. However,
since the kernel start API is non-blocking API, it may
return even before the kernel started. If the caller returns
from a function in which the API is called, the memory
space for kernel data structure can be freed and when the
secondary master is ready to execute the kernel, the kernel
data structure is not available. To solve this problem, our
library maintains a copy of the kernel data structure in
library memory space.

Another function that library provides is handling of
data buffer for streams through dynamic networks. The
dynamic network guarantees the order of data between two
tiles. However, if two sender tiles send data to a
destination tile, the order of the data in the receiver tile is
not known at compile time. Thus, the library needs to
identify the source of data whenever a packet of data
arrives. Also, if a data being received belongs to a stream
that is to be received later, then the data needs to be stored
in a buffer. The library keeps buffers for storing such data
for proper operation of the dynamic network.

4. Signal Processing Applications

In this paper, we implemented two kernels and one
compact application: matrix multiplication, FIR bank, and
GMTI that are described in this section.

4.1. Matrix multiplication

Matrix multiplication, C = AB, calculates an output
matrix C from A and B, where A, B, and C are matrices.
We implemented systolic matrix multiplication and
mapped as shown in Fig. 2. A matrix data travels from left
to right, and B matrix data travels from top to bottom.
Each tile in the path of A and B computes matrix
multiplication using incoming data from tiles on left and
up sides. The result data travels to right side destination

tiles. The matrix sizes for A and B are 3 by 128, 128 by
256, respectively.

4.2. FIR bank

FIR bank is one of the kernel benchmark suite [2]
specified by Massachusetts Institute of Technology
Lincoln Laboratory. The FIR bank implements a set of M
FIR filters and each FIR filter m, m ∈ {0, 1, …, M-1}, has
a set of impulse response coefficients wm[k], k ∈ {0, … K-
1}. It is mathematically specified as:

1,...,1,0for],[][][
1

0

−=−= ∑
−

=

Nikwkixiy
K

k
mmm

.

The filters are distributed over tiles such that each tile
has M/T filters, where T is the number of tiles. Each tile
computes its own filters. Therefore, there is no
communications among tiles. The FIR is implemented in
frequency domain which is more efficient than time
domain when data size is large. Therefore it requires FFT,
complex product, and IFFT operations. In this
implementation, a few optimizations in application level
were performed: i) the bit-reversal operations are
eliminated by bit-reversing filter coefficients and ii) using
radix-4 FFT and radix-4 IFFT.

The parameters for the results reported in this paper are:
K=12, N=32, and the length of the input data is 1024
complex data.

Figure 2. Matrix multiplication

4.3. Ground Moving Target Indicator (GMTI) [2]

GMTI is a compact application that represents airborne
radar applications used to locate a target on the ground [2].
It consists of several stages: Time Delay and Equalization
(TDE), adaptive beamform, pulse compression, Doppler
filter, space-time adaptive processing, target detection, and
target parameter estimation. TDE and pulse compression
stages are mainly convolution in frequency domain. Thus,
they consist of FFT, multiplication, and IFFT operations.
Other stages mainly include matrix operations and FFT
operations.

5. Implementation Results

To assess the SVM framework for Raw, we used matrix
multiplication, FIR bank, and GMTI. The matrix

multiplication and FIR bank were hand-coded using SVM
APIs so that HLC is bypassed that allowed us to isolate the
issues related to HLC. The code was then compiled using
LLC that consists of SVM library and Raw C compiler.
The code was executed on Raw hand-held board. GMTI is
written in C-dialect code (“Gumdrop” code) that provides
hints to HLC, and then compiled with HLC. The output
code from HLC expressed in SVM APIs is compiled with
LLC, and then executed on Raw processor.

The performance results for matrix multiplication are
shown in Figure 3. The figure shows the number of cycles
used for computation of each multiplication-addition pair,
i.e., the total number of execution cycles is divided by the
number of multiplication-addition pair in the matrix
multiplication. On Raw, multiplication and addition each
needs one cycle to execute. Thus, the lower bound of the
number of cycles for a multiplication-addition pair is two.
Figure 3 shows the number of cycles for a multiplication-
addition pair as a function of the number of words per
communication. The number of words per communication
is the message size in words when a tile sends a message
to a neighbor tile or a tile in the rightmost column for
result data sending.

1

10

100

1000

1 2 4 8 16 32 64 128
Number of words per communication

N
um

be
r o

f c
yc

le
s

SVM library
Hand-optimization
Lower bound

Figure 3. Matrix multiplication results

The curve in Figure 3 named “SVM Library” shows the
performance when a full implementation of SVM API is
used. The curve shows that the initial cost of the
communication using library approach can be amortized
over a long sequence of data. This is a good property since
stream processing tends to have a long sequence of data.
Note that the performance of the library may be optimized
depending on the situation.

In matrix multiplication, we optimized it in several
ways. One way is utilizing available multiple networks
among tiles so that a network between two tiles handles
only one stream. Then, the overhead for managing
multiple streams in a network can be eliminated. Another
optimization was using hand-assembly code for critical
section of the code. This allows us to use minimal number
of instructions and optimal instruction scheduling.

The last optimization is using network ports as
operands as described in Section 2. The curve named

A source

B source

C destination

Matrix multiplication

“Hand-optimization” in Figure 3 shows the performance
when these optimizations were applied. The most
optimized results show that it takes only about 10% more
overhead than the theoretical lower bound, and the main
reason for the overhead was due to the loop outside of the
deepest loop and software pipeline overhead.

FIR bank was specified for two data sets in
Polymorphous Computing Architecture (PCA) kernel
benchmark specification [2]. The first set is a large data
set: number of filters = 64, number of input data = 4096,
and the number of filter coefficients = 128. The second
data set is a small size: number of filters = 32, number of
input data = 1024, and the number of filter coefficients =
12.

It is implemented manually using SVM APIs. We
performed several optimizations including all three
optimizations applied for matrix multiplication. An
additional optimization applied for FIR bank is using
broadcast capability of switch processor that reduces the
workload for tile processor. In the broadcasting scheme,
when a switch processor receives data from a source, it
duplicates the data and sends one to the computing
processor and sends the other to another destination switch
processor which performs the same operation.

The FIR bank are optimized in several ways in
algorithmic level: using radix-4 FFT, elimination of bit-
reversal, using overlap-save method, minimization of
address calculations using offsets, and preventing register
spilling by restricting the number of registers used. The
implementation results are shown in Figure 4 and Figure 5.
In Figure 4, UB denotes upper bound considering only
floating point operations. Since there are 16 tiles each of
which can compute one floating point operation, the UB is
16 floating point operations per cycle.

IUB denotes the upper bound when load/store
operations are considered as well as the number of floating
point operations. Since the load/store operations were
inevitable in our FIR bank implementation that uses
Radix-4 FFT, the IUB is a “practical” upper bound. The
performance in Figure 4 is obtained when input and output
data are in cache so that time to access the external
memory is not considered. Our results show that the hand-
optimized results are very close to the “practical” upper
bound with only about 10% overhead.

The result denoted as “compiler optimization” is
obtained using LLC with algorithmic optimizations only.
It shows about three times of the difference between hand-

optimized performance which are mainly due to additional
instructions and non-optimal instruction schedules.

Figure 5 shows the effect of accessing data from
memory. It takes about 16% additional cycles when data is
accessed from memory. The additional cycles are not
significant since in FFT computation, memory access is
not frequently performed due to the fact that once data is
loaded from memory to cache, then the data is used many
times before final result is stored in memory.

Figure 6 and Figure 7 show the results of GMTI
implementation. Figure 6 shows the execution schedule of
each processor including a primary master, secondary
masters, and stream processors. Note that tile 0 is mapped
to the primary master, one secondary master, and one
stream processor in time-shared mode. Other tiles are
mapped to one secondary master and one stream processor.
The execution schedule shows parallelization of HLC.

0

2

4

6

8

10

12

14

16

Fl
oa

tin
g

po
in

t o
ps

 p
er

 c
yc

le UB

IUB

Hand Optimization

Compiler Optimization

Figure 4. Throughput results for FIR bank (data from

cache)

0

300000

600000

900000

Hand Optimization Compiler Optimization

N
um

be
r o

f c
yc

le
s

 Data from cache

Data from
memory

Figure 5. Latency results for FIR bank

Figure 6. GMTI execution schedule

The application is parallelized up to 12 processors.

Note that HLC actually can parallelize up to the maximum
number of tiles on Raw processor, i.e., 16 parallelization.
However, there was a problem in execution of four tiles
that prevented execution of 16-tile version code and we are
investigating the problem. Fig. 6 shows that some portions
of the application are not parallelized due to serial nature
of the portions of the application. However, the available
slots may be used by using software task pipeline
technique. The utilization (number of floating point
operations/(number of floating point unit * number of
execution cycles)) is about 0.5%. Some of the reasons for
the low utilization are the empty schedules in Fig. 6, many
load/store operations, and some redundant operations.

Since GMTI is a large application, analyzing the
performance using our rigorous steps including
optimizations is not feasible. Therefore, we chose one
stage, Time Delay and Equalization (TDE), in the GMTI
and performed optimizations and compared the result that
is shown in Figure 7. In Figure 7, x-axis shows several
steps in TDE. In each step, the first bar marked as “R-
Stream” shows the performance of using HLC and LLC
with only algorithmic optimizations used in FIR banks.
The next bar marked as “direct copy” shows the
performance when data is moved without using SVM calls.
Then, hand-assembly performance shows when critical
sections of the code are optimized using hand-assembly.

Figure 7. Breakdown of the cycles for the first stage (TDE) of GMTI

0

50000

100000

150000

200000

250000

300000

350000

move to
local

kernel
call

copy zero fft mul ifft back move to
global

R-Stream
Direct copy
Hand assembly

ILB
FLB

* SM: secondary master
 SP: stream processor
 Bars represent kernel executions or primary master executions

PM
SM/SP 0
SM/SP 1
SM/SP 2
SM/SP 3
SM/SP 4
SM/SP 5
SM/SP 6
SM/SP 7
SM/SP 8
SM/SP 9
SM/SP 10
SM/SP 11
SM/SP 12

Tile 0

Tile 1
Tile 2
Tile 3
Tile 4
Tile 5
Tile 6
Tile 7
Tile 8
Tile 9
Tile 10
Tile 11
Tile 12

10 20 30
Execution cycles (Million cycles)

The ILB denotes the “practical” lower bound that
include load and store operations as well as floating point
operations. Note that the hand-assembled code
performance is close to the ILB.

The bar marked as “FLB” shows the lower bound when
only floating point operations are considered. The results
show that the hand-optimized code obtains very close
performance to the “practical” lower bound that is
expected to be obtained if HLC and LLC incorporate the
optimization techniques we applied. The performance of
the R-Stream is also encouraging as the difference
between the R-Stream and hand-optimization code is only
about three times for major computation parts even when
the R-Stream is in prototype stage.

The results also reveal where the current tool chain
needs improvement. One of the improvements needed is
better capability of parallelization. Although current HLC
parallelizes up to the maximum number of processors, in
some stage in GMTI, it fails to parallelize the code due to
memory constrains. We expect HLC can parallelize these
sections with better code analysis capability. Another area
of improvement is data movement as shown in Figure 7,
and we are working to improve these.

6. Conclusion

The authors have presented implementations of SVM
framework for Raw processor. We implemented R-Stream
as an HLC. HLC performs parallelization of the code and
was able to generate up to the maximum number of
processors in several stages in GMTI. We build SVM
library to be used for LLC in conjunction with the C
compiler for Raw. Using the tool chain, we implemented
several signal processing kernels and a compact
application. The implemented tool chain enables full path
from high level stream languages to the processor and
quick assessment of the SVM approach.

The implementation results show that the current tool
chain in SVM framework provides a reasonably good
performance in several key sections of the code. We
applied several manual optimizations to understand the
performance issues in SVM framework and were able to
obtain the performance very close to the theoretical peak
performance of the kernels. We expect similar
performance improvement can be obtained using
optimizations when the HLC and LLC are mature enough.

7. References

[1] D. Burger, S.W. Keckler, K.S. McKinley, et al., "Scaling to
the End of Silicon with EDGE Architectures," IEEE
Computer, 37 (7), pp. 44-55, July, 2004.

[2] W. Coate and J. Lebak, “Morphing Scenarios For The
GMTI Portion Of The PCA Integrated Radar Tracker,”
Massachusetts Institute of Technology Lincoln Laboratory,

2004.

[3] Clearspeed, http://www.clearspeed.com/aceleration
/technology, 2006

[4] Defense Advanced Research Projects Agency,
http://www.darpa.mil/ipto/Programs/pca/index.htm, 2006.

[5] M. Gschwind, “Chip Multiprocessing and the Cell
Broadband Engine,” Computing Frontiers, May 2006.

[6] R.J. Haney, J.M. Lebak, M.A. Alexander, H. Chan, P.A.
Jackson, and E.L. Wong, “Polymorphous Computing
Architecture (PCA) Kernel Benchmark Measurements on
the MIT Raw Microprocessor,” ESC-TR-2006-063,
Massachusetts Institute of Technology Lincoln Laboratory,
2006.

[7] P. Mattson, W. Thies, L. Hammond, M.V. Raytheon,
“Streaming Virtual Machine Specification,” Version 1.0.1,
http://www.morphware.org , March 2005.

[8] J. Miller and A. Agarwal, “Software-based Instruction
Caching for Embedded Processors,” Proceedings of the
Twelfth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-XII), San Jose, CA, October 2006.

[9] F.Labonte, P. Mattson, I. Buck, C. Kozyrakis and M.
Horowitz, "The Stream Virtual Machine," PACT,
September 2004.

[10] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M.
Horowitz. Architecture and Circuit Techniques for a
Reconfigurable Memory Block. ISSCC, February 2004.

[11] Morphware forum, http://www.morphware.org, 2005.

[12] Reservoir Labs., “R-Stream - Streaming Compiler,”
http://www.reservoir.com/r-stream.php, 2006.

[13] E. Schweitz, R. Lethin, A. Leung, B. Mester, “R-Stream, a
Parametric High-Level Compiler,” High Performance
Embedded Computing Workshop, 2006.

[14] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B.
Yoder, D.C. Burger, K.S. McKinley," Compiling for EDGE
Architectures," 2006 International Conference on Code
Generation and Optimization (CGO), March, 2006.

[15] J. Suh and J. O. McMahon, “Implementations of FIR for
MONARCH Processor,” 10th High Performance
Embedded Computing Workshop, Boston, MA, Sept. 2006.

[16] M. B. Taylor, et. al, “Evaluation of the Raw
Microprocessor: An Exposed-Wire-Delay Architecture for
ILP and Streams,” Proceedings of International Symposium
on Computer Architecture, München, Germany, June 2004.

[17] M. Vahey, et. al, “MONARCH: A First Generation
Polymorphic Computing Processor,” 10th High
Performance Embedded Computing Workshop, Boston,
MA, Sept. 2006.

