
Enhancing Portability of HPC Applications across High-end Computing
Platforms

Magdalena Sławińska, Jarosław Sławiński, Dawid Kurzyniec, Vaidy Sunderam

Dept. of Math and Computer Science, Emory University
400 Dowman Drive

Atlanta, GA 30322, USA
{magg, jaross, dawidk, vss}@mathcs.emory.edu

Abstract

Fast hardware turnover in supercomputing centers, stim-
ulated by rapid technological progress, results in high het-
erogeneity among HPC platforms, and necessitates that ap-
plications are ported and adapted frequently. The cutting-
edge nature of the hardware mandates customized perfor-
mance tuning, which, coupled with continuously growing
application complexity, makes the process inherently and
increasingly challenging. In this paper, we analyze build
procedures of a representative set of HPC applications,
and attempt to identify commonalities that can be exploited
to enhance cross-platform portability. We then propose a
novel method for reducing non-portabilities while preserv-
ing high performance. The approach, based on profiles that
capture and isolate non-portable features at various lev-
els, requires only a moderate amount of changes to existing
makefiles. It leverages the expertise of system designers and
administrators, and reduces burdens placed on application
scientists. As a proof of concept, we discuss the application
of our methodology to enhancing portability of the Milc ap-
plication across heterogeneous HPC platforms.

1 Introduction

Vigorous technological progress in the area of high per-
formance parallel computing and networking results in fast
hardware turnover in supercomputing centers and research
labs around the globe. About a third of the entries from
the Top 500 list drops out every six months [3] and is re-
placed by faster machines. Diversity within installations is
therefore commonplace. For instance, machines presently

1-4244-0910-1/07/$20.00 c©2007 IEEE.

utilized at the National Center for Computational Sciences
(NCCS) at Oak Ridge Research Laboratory (ORNL) range
from Cray X1E MSP, to Cray XT3 running Catamount mi-
crokernel, to SGI Altix SMP based on Intel Itanium2 pro-
cessors, to a Linux-based visualization cluster. The typical
life span of a single machine is 2 years, and new systems
are deployed about twice per year. At the same time, ap-
plications running on these resources grow more and more
sophisticated, and exhibit much longer life spans. Indeed,
some current applications have been already ported to over a
hundred different platforms during their life time [4, 6, 10].

The process of adapting HPC applications to emerg-
ing platforms is intrinsically challenging because of the
cutting-edge nature of the target platforms. To maximize
performance, dedicated tools, compilers, and specific op-
timization techniques must be used. Straightforward port-
ing, even though often possible, may lead to significant per-
formance degradation [5]. Furthermore, rapid technolog-
ical development makes optimization a moving target, as
each new compiler release may include a new set of op-
timization flags and techniques. Traditionally, this prob-
lem had been approached by application scientists through
meticulous, manual, trial-and-error procedures, involving
re-writing declarative parts of build files from scratch for
every application on every new system. However, with
applications increasing in complexity, this approach is no
longer viable. By some estimates [12], build-related efforts
can contribute to as much as 30% of the development costs,
and it is clear that these efforts should not be repeated when
the application is ported to a new platform. Furthermore, we
note that tuning requires expertise at the hardware and sys-
tem level – expertise that is a burden and but a necessary evil
for application scientists as it detracts from their ultimate,
application-related scientific objectives. We also note that
automated build technologies recently gaining popularity in
the HPC application community, notably GNU Autotools,

do not provide a panacea to portability-related problems
since they still require the user to provide system-specific
configuration parameters and tuning flags.

In this project, we have attempted to analyze past ap-
plication porting scenarios accumulated in their build files
over the years, trying to identify potential traits and patterns
with the hope that they can be exploited to simplify the pro-
cess in the future. In Section 3, we present an analysis of
build systems from a representative set of high-performance
applications, highlighting discovered trends, commonali-
ties, and differences across a baseline set of heterogeneous
platforms. Our initial observations allow us to propose
a new methodology for porting and tuning HPC applica-
tions. The methodology, described in Sections 4 through 6,
is based on the concept of profiles that isolate build pro-
cedures from variable parameters. We capture platform-
specific and system-specific intricacies (e.g. compiler flags
and options) into hardware and system profiles that contain
the aggregated knowledge of vendors and administrators.
Application build files can then be shielded from specific
toolkits and suites by referring to their abstract capabilities
(e.g. “compile with loop unrolling”, or “preserve strict FP
semantics”), thus greatly improving portability. We demon-
strate that our methodology requires only moderate modifi-
cations to existing build files, and we propose tools to facil-
itate the migration process (Section 6). Finally, in Section 7
we present the Milc application [1] use case to illustrate the
viability of our approach.

2 Related Work

Portability and build-related aspects have been recog-
nized to incur increasingly significant development costs
in the high performance scientific computing applications
arena [8]. The current common practice in addressing the
cross-platform build issue has been simply to maintain sep-
arate versions of makefile “includes” for each architecture
or even particular machines, containing predefined sets of
experimentally selected configuration and tuning parame-
ters [4, 6, 10]. Clearly, this approach makes code main-
tenance and development difficult, and does not cope well
with porting codes to emerging architectures. Recently, a
trend to migrate to GNU Autotools [15] can be observed.
However, converting makefile-based applications to GNU
Autotools requires significant effort [12], and introduces
its own compatibility issues (e.g. requiring compatible ver-
sions at the user’s and developer’s sides [7]). Also, as a
general-purpose technology, GNU Autotools does not fully
address all aspects characteristic to the HPC domain, such
as cross-compilation, use of restricted microkernels, and
tuning to the hardware environment.

Another way to tackle the build problem is to provide
a uniform environment that supports universal build pro-

cedures. In the HPC arena, Eclipse PTP [14] provides a
standard GUI-oriented development and run-time interface
to heterogeneous systems. Our project can be perceived as
complementary to Eclipse PTP in that it supplies Eclipse
plugins that enhance the IDE with additional support for
the build process.

The other important aspect of the build problem is how
to acquire and manage the information necessary for the
successful build. The Environment Modules project [9,
13] provides users with a tool to manage their computa-
tional environments where configuration information for
various packages and libraries installed on a given com-
puter system is captured in the form of modules that can
be loaded and unloaded dynamically and automatically to
modify the user’s environment variables such as PATH or
LD_LIBRARY_PATH. We take this concept further and
propose profiles to: (1) dynamically switch among different
configurations; and (2) rectify the configuration informa-
tion related to distinct domains such as hardware, system
software, and the application itself, and separate it from the
actual build files.

3 Study of Build Configuration

We have examined build processes in two groups of com-
putational applications: 37 applications from LCF (Leader-
ship Computing Facility) at ORNL [11] and 29 applications
from OpenScience [2]. The results are summarized in Ta-
ble 1.

Applications from the LCF group cover a wide spectrum
of computational science: physics, nanoscience, climate,
biology, chemistry, computer science, engineering. For the
applications from OpenScience, we focused on two most
numerous groups: Chemistry and Bioinformatics (Life Sci-
ence). Information about the configuration/installation pro-
cedures was obtained from source codes (if they were avail-
able) or from web pages (installation instructions).

As Table 1 indicates, most applications use either GNU
Autotools (38% LCF, 45% OpenScience) or proprietary
makefiles (43% LCF, 35% OpenScience). The remaining
applications rely on custom scripts (shell, Perl, Python) ei-
ther for the actual build or to generate makefiles. To port
build files to new platforms, the user is required to set
appropriate environment variables, set/modify variables in
makefiles, and, in a few cases, make changes in the include
and source files (e.g. changing macro definitions, or fine-
tuning low-level routines). The resulting sets of configura-
tion parameters tuned for a particular platform or machine
are usually retained with the application, providing a start-
ing point for porting to a similar architecture in the future.
In most cases, different applications on the same baseline
platform tend to use similar tools, compilers, and command-
line switches; nevertheless, significant differences occur in

Group Build steering methods
LCF
(37)

OpenScience
(29)

GNU Autotools • environment variables
• ./configure parametrization
• modification of configuration files or file

structures (e.g. copy some configuration
files into a given directory)

14 38.00% 13 45.00%

Shell scripts • the same as for Autotools
• script modification (hard because of many

conditional structures)

3 8.00% 1 4.00%

Makefile(s) • the same as for shell scripts
• choice of predefined makefiles

16 43.00% 10 35.00%

Scripts → makefiles(s) or
templates script →
makefiles(s) templates
repository of specific
architectural 'profiles'

• a script generates makefile(s) and after it
the user can run makefile that is made
according to passed parameters. Scripts
can use some repositories (as profiles) to
create a proper makefile.

• the same as for shell scripts

3 8.00% 3 10.00%

Other • environment variables
• modification in build files
• interactive methods

1 3.00% 2 7.00%

Table 1. Installation procedures of two applications sets: LCF and OpenScience. Percentages may
not sum up to 100% due to round-off errors.

build and source files due to: proprietary names of variables
(e.g. IRAT, debug), references to macro definitions
in header files (e.g. # define HAVE_IEEEFP_H 1),
conditional expressions (e.g. if [$ debug] ...),
or commented-out variables.

In summary, porting of build files of HPC makefile- as
well as Autotools-based applications is rather cumbersome
and requires specific knowledge from domains of the hard-
ware, operating system and the application itself. In the
following sections, we propose a novel approach to address
this problem and reduce deployment-related burdens placed
on application scientists.

4 Through Profiles to Portability

Experiences from our “build” research show that in gen-
eral, information about configuration and installation pa-
rameters could be extracted from current build files and
stored in separate configuration files that we call profiles.
We identify several different profile types, focusing on as-
pects of hardware, system, user-level, and application con-
figuration, and facilitating separation between different ar-
eas of expertise (Figure 1). Hardware profiles store in-
formation about processor type, processor speed, available
cache memory, interconnect type, etc. that could be pro-

vided by hardware vendors. System profiles, prepared by
site administrators, contain data related to a given system
deployment: paths to compilers, libraries, building tools,
categorized switches for a given compiler (optimization,
debug, ...), and so on. User profiles capture user pref-
erences and settings by augmenting or partially overrid-
ing system defaults, much in the same way that user-level
/home/user/.profile files complement system-wide
/etc/profile files for shell configuration. While sys-
tem and user profiles describe how the software is installed,
application profiles answer the question what to install.
They are provided by developers and store application-
specific tuning preferences, macro definitions or specific
variables and may override or select among values defined
at the system and user level. Ideally, application profiles
refer to abstract, standardized capabilities rather than indi-
vidual tools and command-line switches, so that porting an
application to a new platform requires minimal effort pro-
viding that hardware, system and/or user profiles contain
correct values.

As an example, consider a makefile-based application
(Figure 2). In order to make the configuration portable, the
developer must identify non-portabilities in makefiles such
as compilers’ names, optimization parameters, macro def-
initions, paths, etc. Next, he or she has to move the con-

cc -g prog.c -o prog

xlc -q64 -g -O3 -qmaxmem=32768 -qstrict...

ecc -tpp2 -g prog.c -o prog

Building of portable applications

CRAY

Providers
Admins

Application
profile

Hardware
profileSystem

profile

getprop

Hardware
profileSystem

profile

getprop

Hardware
profileSystem

profile

getprop

IBM pSeries SGI Altix

User
profile

CC=`getprop CC` OPT=`getprop OPT`
$CC $OPT prog.c -o prog

User

Eclipse plug-ins

Figure 1. The process of making the applica-
tion build portable

figuration parameter values to appropriate profiles, and sub-
stitute their use in build files with the appropriate data re-
trieval expressions. Then, further configuration (including
tuning and porting to new architectures) may be performed
by modifying the appropriate profiles.

The described methodology allows adoption of existing
build mechanisms, such as proprietary makefiles, with rel-
atively little effort (as the modifications are confined and
have to be made only once) and partially relieves compu-
tational scientists from providing full suite of configuration
parameters, since most of them are supplied by vendors and
administrators in the hardware and system profiles. Still,
the end-user can easily customize the build at various levels
through user profiles.

5 Profile Design

The basic role of profiles is simply to provide key-value
mappings for configuration parameters. Given the need
to manage large collection of such mappings and to re-
flect relationships between them, a tree structure comes
as a natural organizational choice. We have decided to
use XML for the internal profile representation, due to its
well-known advantages such as self-documentation, ease
of processing, and support for “low-profile” editing using
the simplest command-line tools. The actual key-value
mappings are represented in the profile by the “Item” el-
ements. Filesystem-like hierarchies can be built using the
“Group” and “Link” elements, analogous to directories and

symbolic links in a Unix file system. Two important fea-
tures in the proposed mapping scheme are profile inher-
itance and dynamic recursive resolution. Profile inheri-
tance allows profiles to extend upon one another. For in-
stance, a user profile may extend upon the system pro-
file, and may selectively override individual items or even
whole tree branches from its parent. Dynamic recursive
resolution allows the item (or group) element values to re-
fer back to other items and groups within the profile. For
instance, the value for the “/build/CFLAGS” group can
be defined as “${OPT} ${INCLUDE} ${LIB} ${ARCH}
${WARN}”, a collection of subgroup definitions. The reso-
lution of ${/build/CFLAGS} would then lead to recursive
evaluation and concatenation of “build/CFLAGS/OPT”,
“/build/CFLAGS/INCLUDE”, etc. The ${OPT} expression
above defines a (here, relative) reference to a named group
(or item) in the profile. Run-time substitution, combined
with profile inheritance, introduces an important feature:
it allows the user to selectively override sub-expressions
from the parent profile. For instance, it is possible to mod-
ify the optimization options of the C compiler by redefin-
ing the “/build/CFLAGS/OPT” group alone in the user pro-
file, leaving other options intact. In fact, this simple model
turns out to be powerful enough to be able to support condi-
tional expressions, and to allow system profiles to virtualize
configuration options into abstract capabilities, as will be
demonstrated in Section 7.

6 Eclipse Portlug-in Tool

As a proof-of-concept we have developed the plugin for
Eclipse we dubbed Portlug-in (Portability Plug-in). As we
mentioned in Section 2, we chose Eclipse due to the par-
ticular relevance of Eclipse PTP to the scientific and HPC
computing community.

With the Portlug-in wizard the user (i.e. someone who
ports an application) creates the new Portlug-in project.
Next, the tool allows the user to import the applica-
tion’s source code, and it aids him/her in identifying non-
portabilities (e.g., hard-coded variable values) in existing
makefiles. These hard-coded values can then be substituted
by getprop tool invocations. The getprop program al-
lows extraction of data from profiles based on the supplied
parameter name; to do that, it performs the necessary recur-
sive substitutions and traverses the profile inheritance graph
as needed. Finally, the tool aids the user in uploading mod-
ified source and configuration files (scripts, makefiles, etc),
as well as the appropriate profiles, to the remote site.

7 Experimental Evaluation

In order to verify the viability of our approach, we
converted the Milc application (version 6.20sep02) [1] ac-

CC=cc
#CC=gcc

CC=
getprop

Old application build
system

CC:
default CC
OPT:
CPU

Application profile

Adapted, portable build
system

User

CC OPT:
CPU/memory
CC suites:
cc
gcc

CPU:
64 bit
Brand
Memory:
4GB

Hardware profileSystem profile

HPC System

Administrator HPC provider

CC choice:
gcc suite
Prefix:
/home/usr/
myApp/

User profile

Developer

Creation

Modification

Figure 2. Application, user, system and hardware profiles

...
1. Compiler
CC = gcc # (cc89 gcc xlc gcc pgcc cl g++)
...
#-------------- SUN SPARC -----------
#for Ultra
#OCFLAGS= -fast -dalign -libmil -fsimple=2 -fns
...
4. Code alternatives
usually unchanged
CODETYPE= -DFAST
...
Complete set of compiler flags - do not change
CFLAGS = ${OCFLAGS} ${CODETYPE}
...
prefetch.o: prefetch.c
${CC} -g ${OCFLAGS} -c prefetch.c

include Make_template
#!!! we have to change the header file still
(comment-out define HAVE_IEEEFP)

Figure 3. The original makefile for building
Milc libraries

cording to the profile-based methodology in order to make
it directly portable between the following heterogeneous
computer systems: IBM SP4 (SuSE Linux 9.1 x86-64,
gcc|pgcc + mpich), Dell Intel (RedHat Linux 8.0, pgcc|gcc
+ lammpi), and Sun (SunOS 5.10, cc|gcc + mpich). In the
course of this experiment, we succeeded in producing Milc
builds equivalent to those resulting from hand-tuned make-
files. For brevity, we demonstrate the system profile details
only for the SunOS Sparc platform.

Figure 3 shows a fragment of the original makefile of
Milc libraries. First, as we mentioned in Section 4, non-

...
CC = ‘getprop applications/milc/CC‘
...
OCFLAGS = ‘getprop applications/milc/OCFLAGS‘
...
CCFLAGS = ‘getprop applications/milc/CCFLAGS‘
...
usually unchanged
CODETYPE = ‘getprop applications/milc/CODETYPE‘
...
CFLAGS = ${OCFLAGS} ${CCFLAGS} ${CODETYPE}
...
prefetch.o: prefetch.c

${CC} -g ${OCFLAGS} -c prefetch.c

include Make_template

Figure 4. The modified makefile for building
Milc libraries with getprop expressions

portabilities such as compiler names, flags, etc., must be
identified in this makefile and substituted with getprop
expressions (Figure 4). Figures 5 and 6 present the resulting
system and application profiles, respectively. Although at
first glance they might look complicated, we note that only
a single, platform-independent application profile is needed,
so that it can be written once and distributed as a part of the
application. Further, the system profile is non-application-
specific, so it can be supplied by the site administrator; the
burden on the application scientist is thus minimized. It is
helpful to think of the profiles in the context of a registry
organized as a tree where relevant branches are stored in
sub-profiles. The retrieval of actual values from a set of
profiles treated as a single entity is the task of getprop.

The system profile (Figure 5) contains two main branches
/sys and /config. While the system group contains ac-
tual values concerning the system such as compiler suites
(paths, flags for debug, optimization, etc), the config branch
describes which alternative configuration variant should be
applied by specifying abstract capabilities (e.g. abstract op-
timization options). The application profile (Figure 6) states
which flags and options should be applied to the given ap-
plication (/apps). Similar to the system profile /config,
the application profile /config fine tunes the optional pa-
rameters.

In order to effectively switch among relevant parts
of the system profile, e.g. to choose between differ-
ent compiler suites, we utilize previously described fea-
tures of the profile, namely: links and dynamic recur-
sive resolution. For instance, consider resolving the
value of OCFLAGS. The application profile points to
/sys/build/currentSuite/CFLAGS that leads to
<Link> (/sys/build/currentSuite) in the system
profile. At this point we recursively resolve the reference
/config/sys/build/suite (still in the system pro-
file) that leads to the value ./suites/gnu. By contin-
uing this process, we finally arrive at the CFLAGS value
of -O2. As mentioned before, the combination of recur-
sive resolution with inheritance allows powerful seman-
tics, including conditional evaluation. For instance, con-
sider the resolution of /apps/milc/CCFLAGS. The user
profile refers back to the “headers” section in the system
profile to detect whether a particular header file is present
in the system. If so, the additional macro definition (-
DHAVE_IEEEFP), meaningful to the application at the
source file level, is added to the compiler flags.

8 Summary

In this paper, we address the problem of HPC software
portability across heterogeneous high-end machines. Our
research shows that many applications continue to use pro-
prietary makefiles or shell scripts as their build technol-
ogy. We propose a novel, lightweight approach to enhanc-
ing legacy application portability through the use of profiles
which group and organize configuration parameters, facili-
tating their reuse across applications and platforms. With
the Milc application use case, we demonstrate that migra-
tion to profiles is a relatively simple process, requiring only
focused, one-time modifications in legacy build files. Since
profiles encapsulate specific knowledge about the hardware
platform, computer system, and application requirements,
the application scientist that uses, ports, and tunes the ap-
plication at hand is mostly relieved from the burden of the
low-level expertise needed for achieving the optimal build.
Nevertheless, users can still customize the build process ac-
cording to their needs through user profiles.

Our future research will concentrate on refining the def-
inition and structure of profiles. We also intend to perform
experiments with LCF applications at ORNL. Additionally,
we intend to evaluate the feasibility of our methodology for
Autotools-based applications.

References

[1] The MILC Code (version: 6.20sep02). http:
//www.physics.utah.edu/\%7Edetar/milc/
milcv6.html.

[2] The OpenScience Project. http://www.
openscience.org/links/, 2006.

[3] Top500 lists. http://www.top500.org/lists,
2006.

[4] WRF v. 2.1.2. http://www.mmm.ucar.edu/wrf/
users/download/get_source2.html, 2006.

[5] Computing Research Association. Report of workshop on
the roadmap for the revitalization of high-end computing.
Washington, D.C., June 2003. Available at http://www.
cra.org/Activities/workshops/nitrd/.

[6] CPMD Consortium. CPMD ver 3.11.1. http://www.
cpmd.org/cpmd_download.html.

[7] M. B. Doar. Practical Development Environments, Chapter
5. O’Reilly, Oct 2005.

[8] P. F. Dubois, G. K. Kumfert, and T. G. W. Epperly. Why
Johnny can’t build. Computing in Science and Engineering,
5(5):83–88, Sep/Oct 2003.

[9] J. L. Furlani and P. W. Osel. Environment modules project.
http://modules.sourceforge.net/.

[10] Gordon research group at Iowa State University. The
General Atomic and Molecular Electronic Structure Sys-
tem (GAMESS). http://www.msg.ameslab.gov/
GAMESS/GAMESS.html, 2006.

[11] D. B. Kothe. National Leadership Computing Fa-
cility – Bringing Capability Computing to Science.
CAMS High End Computing for Nuclear Fus-
sion Science and Engineering Workshop, Feb 2006.
http://www.inl.gov/cams/workshops/
highendcomputing/d/national_leadership_
computing_doug_kothe.pdf.

[12] G. K. Kumfert and T. G. W. Epperly. Software in the
DOE: The hidden overhead of “the build”. Technical Re-
port UCRL-ID-147343, Lawrence Livermore National Lab-
oratory, 2002.

[13] NERSC. Modules approach to software management.
http://www.nersc.gov/nusers/resources/
software/os/modules.php.

[14] Parallel Tools Platform, 2006. http://www.eclipse.
org/ptp.

[15] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. GNU
Autoconf, Automake and Libtool. New Riders publishing,
2000. Available at http://sources.redhat.com/
autobook/.

<?xml version="1.0" encoding="UTF-8"?>
<Profile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://dcl.mathcs.emory.edu/hwb/profile.xsd">
<Group name="sys">

<Group name="build">
<Link name="currentSuite" ref="${/config/sys/build/suite}"/>
<Group name="suites">

<Group name="gnu">
<Group name="CFLAGS" value="${OPT} ${INCLUDE} ${LIB} ${WARN}">

<Group name="OPT" value="${/config/sys/build/CFLAGS/OPT}">
<Item name="Optimize" value="-O2"/>
<Item name="Debug" value="-O0 -g"/>
<Item name="ARCH" value="-m64"/>

</Group>
</Group>

</Group>
<Group name="SunWS11.0">

<Group name="CFLAGS" value="${OPT} ${INCLUDE} ${LIB} ${WARN}">
<Group name="OPT" value="${/config/sys/build/CFLAGS/OPT}">

<Item name="Optimize" value="-fast -fsimple=2 -fns -libmil -dalign"/>
<Item name="Debug" value="-g -C"/>
<Item name="ARCH" value="">

</Group>
</Group>
<Group name="CC" value="${PATH}">

<Item name="PATH" value="/development/WS11.0/SUNWspro/bin/cc"/>
</Group>

</Group>
</Group>
<Group name="headers">

<Item name="IEEEFP" value="true"/>
</Group>

</Group>
</Group>
<Group name="config">

<Group name="sys">
<Group name="build">

<Item name="suite" value="./suites/gnu"/>
<Group name="CFLAGS">

<Item name="OPT" value="${Optimize} ${ARCH}"/>
</Group>

</Group>
</Group>

</Group>
</Profile>

Figure 5. The system profile for SunOS (for clarity reasons non-relevant parts are skipped)

<Profile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://dcl.mathcs.emory.edu/hwb/profile.xsd">
<Group name="apps">

<Group name="milc">
<Item name="CC" value="${/sys/build/currentSuite/CC}"/>
<Item name="OCFLAGS" value="${/sys/build/currentSuite/CFLAGS}"/>
<Item name="CODETYPE" value="${/config/application/DFAST}"/>
<Group name="CCFLAGS" value="${headers/IEEEFP}">

<Group name="headers">
<Group name="IEEEFP" value="${${/sys/build/headers/IEEEFP}}">

<Item name="true" value="-DHAVE_IEEEFP"/>
</Group>

</Group>
</Gropu>

</Group>
</Group>
<Group name="config">

<Group name="apps">
<Group name="milc">

<Item name="DFAST" value="-DFAST"/>
</Group>

</Group>
</Group>

</Profile>

Figure 6. The application profile for Milc v. 6.2

Biographies

Magdalena Sławińska is a postdoctoral fellow at the
Mathematics and Computer Science Department at Emory
University, Atlanta, U.S.A. She received her diploma in
Computer Science from Gdańsk University of Technology,
Poland, in 1999, and a Ph.D. in Computer Science from
the same university, in 2005. Her research interests include
high-performance computing, collaborative computing, and
middlewares for resource sharing.

Jarosław Sławiński received his diploma in Computer
Science from Gdańsk University of Technology, Poland, in
1999. He then went on to a few industry positions from a
programmer to an IT department manager. Currently, he is
a research associate at the Mathematics and Computer Sci-
ence Department at Emory University, Atlanta, U.S.A. His
research interests include new hardware solutions, and soft-
ware engineering.

Dawid Kurzyniec received MS degree in Computer Sci-
ence from AGH University in Kraków, Poland, in 2000. He
is currently a Ph. D. candidate in the department of Math
and Computer Science at Emory University, Atlanta. His re-
search interests include heterogeneous distributed systems,
concurrent processing, and security. He is the author of over
20 conference and journal publications related to distributed
metacomputing.

Vaidy Sunderam is Dobbs Professor of Computer Sci-
ence, and Chair of the Department of Mathematics and
Computer Science at Emory University. His research in-
terests are in parallel and distributed computing systems,
software tools and architectures for metacomputing, high-
performance message passing environments and infrastruc-
tures for collaborative computing. His prior and current re-
search efforts focus on system architectures for heteroge-
neous computing middleware, collaboration technologies,
and fault tolerant distributed systems. His work is funded
by the National Science Foundation and the U.S. Depart-
ment of Energy, and he has published over 140 articles in
scholarly journals and refereed conferences. Professor Sun-
deram teaches courses in parallel processing, computer or-
ganization, distributed systems and software both at the be-
ginning and advanced levels, and advises graduate theses
in the area of computer systems. He is a recipient of the
Emory Williams teaching award.

