
Strategies for Replica Placement in Tree Networks

Anne Benoit, Veronika Rehn, and Yves Robert

Laboratoire LIP, UMR CNRS - ENS Lyon - INRIA - UCB Lyon 5668

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

E-mail: {Anne.Benoit|Veronika.Rehn|Yves.Robert}@ens-lyon.fr

Abstract

In this paper, we discuss and compare several poli-
cies to place replicas in tree networks, subject to server
capacity constraints. The client requests are known be-
forehand, while the number and location of the servers
are to be determined. The standard approach in the
literature is to enforce that all requests of a client be
served by the closest server in the tree. We introduce
and study two new policies. In the first policy, all re-
quests from a given client are still processed by the same
server, but this server can be located anywhere in the
path from the client to the root. In the second policy,
the requests of a given client can be processed by mul-
tiple servers.

One major contribution of this paper is to assess
the impact of these new policies on the total replication
cost. Another important goal is to assess the impact
of server heterogeneity, both from a theoretical and a
practical perspective. In this paper, we establish sev-
eral new complexity results, and provide several effi-
cient polynomial heuristics for NP-complete instances
of the problem. These heuristics are compared to an ab-
solute lower bound provided by the formulation of the
problem in terms of the solution of an integer linear
program.

1. Introduction

In this paper, we consider the general problem of
replica placement in tree networks. Informally, there
are clients issuing requests to be satisfied by servers.
The clients are known (both their position in the tree
and their number of requests), while the number and
location of the servers are to be determined. A client

1-4244-0910-1/07/$20.00 c©2007 IEEE.

is a leaf node of the tree, and its requests can be served
by one or several internal nodes. Initially, there are no
replica; when a node is equipped with a replica, it can
process a number of requests, up to its capacity limit.
Nodes equipped with a replica, also called servers, can
only serve clients located in their subtree (so that the
root, if equipped with a replica, can serve any client);
this restriction is usually adopted to enforce the hierar-
chical nature of the target application platforms, where
a node has knowledge only of its parent and children
in the tree. We point out that the distribution tree
(clients and nodes) is fixed in our approach. This key
assumption is quite natural for a broad spectrum of ap-
plications, such as electronic, ISP, or video on demand
(VOD) service delivery.

The rule of the game is to assign replicas to nodes
so that some optimization function is minimized. Typ-
ically, this optimization function is the total utilization
cost of the servers. If all the nodes are identical, this
reduces to minimizing the number of replicas. If the
nodes are heterogeneous, it is natural to assign a cost
proportional to their capacity (so that one replica on a
node capable of handling 200 requests is equivalent to
two replicas on nodes of capacity 100 each). The core
of the paper is devoted to the study of the previous
optimization problem, called Replica Placement in
the following. The objective of this paper is twofold:
(i) introducing two new access policies and comparing
them with the standard approach; (ii) assessing the
impact of server heterogeneity on the problem.

In most papers from the literature (see Section 8 for
a survey of related work), all requests of a client are
served by the closest replica, i.e the first replica found
in the unique path from the client to the root in the
distribution tree. This Closest policy is simple and nat-
ural, but may be unduly restrictive, leading to a waste
of resources. We introduce and study two different ap-

proaches: in the first one, we keep the restriction that
all requests from a given client are processed by the
same replica, but we allow client requests to “traverse”
servers so as to be processed by other replicas located
higher in the path (closer to the root). We call this
approach the Upwards policy. In the second approach,
we further relax access constraints and grant the possi-
bility for a client to be assigned several replicas. With
this Multiple policy, the processing of a given client’s
requests will be split among several servers located in
the tree path from the client to the root. Obviously,
this policy is the most flexible, and likely to achieve
the best resource usage. As already stated, one major
objective of this paper is to compare these three access
policies, Closest , Upwards and Multiple.

The second major contribution of the paper is to
assess the impact of server heterogeneity, both from a
theoretical and a practical perspective. Recently, sev-
eral variants of the Replica Placement optimiza-
tion problem with the Closest policy have been shown
to have polynomial complexity. In this paper, we es-
tablish several new complexity results. Those for the
homogeneous case are surprising: the Multiple policy
is polynomial (as Closest) while Upwards is NP-hard.
The three policies turn out to be NP-complete for het-
erogeneous nodes, which provides yet another example
of the additional difficulties induced by resource hetero-
geneity. On the more practical side, we provide several
heuristics for all three policies. We are able to assess
the absolute performance of the heuristics, owing to
a lower bound provided by a new formulation of the
Replica Placement problem in terms of an mixed
integer linear program.

2. Framework

This section is devoted to a precise statement of the
Replica Placement optimization problem. We con-
sider a distribution tree T whose nodes are partitioned
into a set of clients C and a set of nodes N . The set of
tree edges is denoted as L. The clients are leaf nodes of
the tree, while N is the set of internal nodes. It would
be easy to allow client-server nodes which play both
the rule of a client and of an internal node (possibly a
server), by dividing such a node into two distinct nodes
in the tree, connected by an edge with zero communi-
cation cost.

A client i ∈ C is making ri requests per time unit
to a database. A node j ∈ N may or may not have
been provided with a replica of the database. Nodes
equipped with a replica (i.e. servers) can process up to
Wj requests per time unit from clients in their subtree.
In other words, there is a unique path from a client i to

the root of the tree, and each node in this path is eligi-
ble to process some or all the requests issued by i when
provided with a replica. We denote by Servers(i) ⊆ N
this set of nodes. The price to pay to place a replica
at node j is scj .

Let r be the root of the tree. If j ∈ N , then
children(j) is the set of children of node j. If k �= r
is any node in the tree (leaf or internal), parent(k) is
its parent in the tree. If l : k → k′ = parent(k) is any
link in the tree, then succ(l) is the link k′ → parent(k′)
(when it exists). Let Ancestors(k) denote the set of an-
cestors of node k, i.e. the nodes in the unique path
that leads from k up to the root r (k excluded). If
k′ ∈ Ancestors(k), then path[k → k′] denotes the set of
links in the path from k to k′; also, subtree(k) is the
subtree rooted in k, including k.

Let ri,j be the number of requests from client i
processed by server j (of course,

∑
j∈Servers(i) ri,j =

ri). In the following, R is the set of replicas: R =
{j ∈ N| ∃i ∈ C , j ∈ Servers(i)} . The problem is con-
strained by the fact that no server capacity can be ex-
ceeded: ∀j ∈ R,

∑
i∈C|j∈Servers(i) ri,j ≤ Wj .

The objective function for the Replica Place-
ment problem is defined as: Min

∑
s∈R scs.

As already pointed out, it is frequently assumed
that the cost of a server is proportional to its capac-
ity, so in some problem instances we let scs = Ws.
We name Replica Cost this fundamental problem.
We can further simplify this problem in the homoge-
neous case: with identical servers, the Replica Cost
problem amounts to minimize the number of replicas
needed to solve the problem. In this case, the storage
cost scj is set to 1 for each node. We call this problem
Replica Counting.

3 Access policies

In this section we review the usual policies enforc-
ing which replica is accessed by a given client. Consider
that each client i is making ri requests per time-unit.
There are two scenarios for the number of servers as-
signed to each client:

Single server – Each client i is assigned a single
server server(i), that is responsible for processing
all its requests.

Multiple servers – A client i may be assigned sev-
eral servers in a set Servers(i). Each server s ∈
Servers(i) will handle a fraction ri,s of the requests.
Of course

∑
s∈Servers(i) ri,s = ri.

To the best of our knowledge, the single server pol-
icy has been enforced in all previous approaches. One

objective of this paper is to assess the impact of this
restriction on the performance of data replication al-
gorithms. The single server policy may prove a useful
simplification, but may come at the price of a non-
optimal resource usage.

In the literature, the single server strategy is further
constrained to the Closest policy. Here, the server of
client i is constrained to be the first server found on
the path that goes from i upwards to the root of the
tree. In particular, consider a client i and its server
server(i). Then any other client node i′ residing in the
subtree rooted in server(i) will be assigned a server in
that subtree. This forbids requests from i′ to “traverse”
server(i) and be served higher (closer to the root in the
tree).

We relax this constraint in the Upwards policy which
is the general single server policy. Notice that a solu-
tion to Closest always is a solution to Upwards , thus
Upwards is always better than Closest in terms of the
objective function. Similarly, the Multiple policy is
always better than Upwards , because it is not con-
strained by the single server restriction.

The following sections illustrate the three policies.
Section 3.1 provides simple examples where there is a
valid solution for a given policy, but none for a more
constrained one. Section 3.2 shows that Upwards can
be arbitrarily better than Closest , while Section 3.3
shows that Multiple can be arbitrarily better than Up-
wards . We conclude with an example showing that the
cost of an optimal solution of the Replica Counting
problem (for any policy) can be arbitrarily higher than
the obvious lower bound⌈∑

i∈C ri

W

⌉
,

where W is the server capacity.

3.1 Impact of the access policy on the ex-
istence of a solution

We consider here a very simple instance of the
Replica Counting problem. In this example there
are two nodes, s1 being the unique child of s2, the tree
root (see Figure 1). Each node can process W = 1
request.

• If s1 has one client child making 1 request, the
problem has a solution with all three policies, plac-
ing a replica on s1 or on s2 indifferently (Fig-
ure 1(a)).

• If s1 has two client children, each making 1 re-
quest, the problem has no more solution with Clos-
est . However, we have a solution with both Up-
wards and Multiple if we place replicas on both

(a)

1

s2

s1 (b)

1 1

s2

s1 (c)

s2

s1

2

W = 1

Figure 1. Access policies.

nodes. Each server will process the request of one
of the clients (Figure 1(b)).

• Finally, if s1 has only one client child making 2 re-
quests, only Multiple has a solution since we need
to process one request on s1 and the other on s2,
thus requesting multiple servers (Figure 1(c)).

This example demonstrates the usefulness of the new
policies. The Upwards policy allows to find solutions
when the classical Closest policy does not. The same
holds true for Multiple versus Upwards . In the follow-
ing, we compare the cost of solutions obtained with
different strategies.

3.2 Upwards versus Closest

In the following example, we construct an instance
of Replica Counting where the cost of the Upwards
policy is arbitrarily lower than the cost of the Closest
policy. We consider the tree network of Figure 2, where
there are 2n+2 internal nodes, each with Wj = W = n,
and 2n + 1 clients, each with ri = r = 1.

s1

1 1

s2n

s2n+2

s2n+1

W = n

1

Figure 2. Upwards versus Closest

With the Upwards policy, we place three replicas in
s2n, s2n+1 and s2n+2. All requests can be satisfied with
these three replicas.

When considering the Closest policy, first we need
to place a replica in s2n+2 to cover its client. Then,
• Either we place a replica on s2n+1. In this case,

this replica is handling n requests, but there re-

main n other requests from the 2n clients in its
subtree that cannot be processed by s2n+2. Thus,
we need to add n replicas between s1..s2n.

• Otherwise, n − 1 requests of the 2n clients in the
subtree of s2n+1 can be processed by s2n+2 in ad-
dition to its own client. We need to add n+1 extra
replicas among s1, s2, . . . , s2n.

In both cases, we are placing n + 2 replicas, instead
of the 3 replicas needed with the Upwards policy. This
proves that Upwards can be arbitrary better than Clos-
est on some Replica Counting instances.

3.3 Multiple versus Upwards

In this section we build an instance of the Replica
Counting problem where Multiple is twice better than
Upwards . We do not know whether there exist in-
stances of Replica Counting where the performance
ratio of Multiple versus Upwards is higher than 2 (and
we conjecture that this is not the case). However, we
also build an instance of the Replica Cost problem
(with heterogeneous nodes) where Multiple is arbitrar-
ily better than Upwards .

n + 1 n n + 1

s1 s2

W = 2nr

v2v1

n + 1

sn

vn

n

w1 w2 wn

n n

Figure 3. Multiple versus Upwards , homoge-
neous platforms.

We start with the homogeneous case. Consider the
instance of Replica Counting represented in Fig-
ure 3, with 3n + 1 nodes of capacity Wj = W = 2n.
The root r has n+1 children, n nodes labeled s1 to sn

and a client with ri = n. Each node sj has two children
nodes, labeled vj and wj for 1 ≤ j ≤ n. Each node vj

has a unique child, a client with ri = n requests; each
node wj has a unique child, a client with ri = n + 1
requests.

The Multiple policy assigns n + 1 replicas, one to
the root r and one to each node sj . The replica in sj

can process all the 2n+1 requests in its subtree except
one, which is processed by the root.

For the Upwards policy, we need to assign one
replica to r, to cover its client. This replica can pro-
cess n other requests, for instance those from the client
child of v1. We need to place at least a replica in s1 or
in w1, and 2(n−1) replicas in vj and wj for 2 ≤ j ≤ n.
This leads to a total of 2n replicas, hence a performance
factor 2n

n+1 whose limit is to 2 when n tends to infinity.

n + 1

s1, W1 = n

s2, W2 = n

s3, W3 = Kn

n − 1

Figure 4. Multiple versus Upwards , heteroge-
neous platforms.

We now proceed to the heterogeneous case. Con-
sider the instance of Replica Cost represented in
Figure 4, with 3 nodes s1, s2 and s3, and 2 clients. The
capacity of s1 and s2 is W1 = W2 = n while that of s3 is
W3 = Kn, where K is arbitrarily large. Recall that in
the Replica Cost problem, we let scj = Wj for each
node. Multiple assigns 2 replicas, in s1 and s2, hence
has cost 2n. The Upwards policy assigns a replica to
s1 to cover its child, and then cannot use s2 to process
the requests of the child in its subtree. It must place
a replica in s3, hence a final cost n + Kn = (K + 1)n
arbitrarily higher than Multiple.

3.4 Lower bound for the Replica Counting
problem

Obviously, the cost of an optimal solution of the
Replica Counting problem (for any policy) can-
not be lower than the obvious lower bound

⌈P
i∈C ri

W

⌉
,

where W is the server capacity. Indeed, this corre-
sponds to a solution where the total request load is
shared as evenly as possible among the replicas.

The following instance of Replica Counting
shows that the optimal cost can be arbitrarily higher
than this lower bound. Consider Figure 5, with n + 1
nodes of capacity Wj = W . The root r has n + 1
children, n nodes labeled s1 to sn, and a client with
ri = W . Each node sj has a unique child, a client with

s1

W/n W/n

r

sn

W

Figure 5. The lower bound cannot be approx-
imated for Replica Counting.

ri = W/n (assume without loss of generality that W is
divisible by n). The lower bound is

⌈P
i∈C ri

W

⌉
= 2W

W =
2. However, each of the three policies Closest , Upwards
and Multiple will assign a replica to the root to cover
its client, and will then need n extra replicas, one per
client of sj , 1 ≤ j ≤ n. The total cost is thus n + 1
replicas, arbitrarily higher than the lower bound.

All the examples in Sections 3.1 to 3.4 give an insight
of the combinatorial nature of the Replica Place-
ment optimization problem, even in its simplest vari-
ants Replica Cost and Replica Counting. The
following section corroborates this insight: most prob-
lems are shown NP-hard, even though some variants
have polynomial complexity.

4 Complexity results

One major goal of this paper is to assess the im-
pact of the access policy on the problem with homo-
geneous vs heterogeneous servers. We consider a tree
T = C ∪ N . Each client i ∈ C has ri requests; each
node j ∈ N has processing capacity Wj and storage
cost scj = Wj . The problem comes in two flavors,
either the Replica Counting problem with homoge-
neous nodes (Wj = W for all j ∈ N), or the Replica
Cost problem with heterogeneous nodes (servers with
different capacities/costs).

In the single server version of the problem, we need
to find a server server(i) for each client i ∈ C. R is the
set of replica, i.e. the servers chosen among the nodes
in N . The only constraint is that server capacities
cannot be exceeded: this translates into∑

i∈C,server(i)=j

ri ≤ Wj for all j ∈ N .

The objective is to find a valid solution of minimal stor-

Homogeneous Heterogeneous
(Replica Counting) (Replica Cost)

Closest polynomial [3, 9] NP-complete
Upwards NP-complete NP-complete
Multiple polynomial NP-complete

Table 1. Complexity results for the different
instances of the problem.

age cost
∑

j∈R Wj . As outlined in Section 3, there are
two variants of the single server version of the problem,
namely the Closest and the Upwards strategies.

In the Multiple policy with multiple servers per
client, for any client i ∈ C and any node j ∈ N , ri,j is
the number of requests from i that are processed by j
(ri,j = 0 if j /∈ R, and

∑
j∈N ri,j = ri for all i ∈ C).

The capacity constraint now writes

∑
i∈C

ri,j ≤ Wj for all j ∈ R,

while the objective function is the same as for the single
server version.

The decision problems associated with the previous
optimization problems are easy to formulate: given a
bound on the number of servers (homogeneous version)
or on the total storage cost (heterogeneous version), is
there a valid solution that meets the bound?

Table 1 captures the complexity results. These
complexity results are all new, except for the Clos-
est/Homogeneous combination.

The NP-completeness of the Up-
wards/Homogeneous case comes as a surprise,
since all previously known instances were shown to be
polynomial, using dynamic programming algorithms.
In particular, the Closest/Homogeneous variant
remains polynomial when adding communication
costs [3] or QoS constraints [9]. We provide an elegant
algorithm to show the polynomial complexity of the
Multiple/Homogeneous problem.

Previous NP-completeness results involved general
graphs rather than trees, and the combinatorial nature
of the problem came from the difficulty to extract a
good replica tree out of an arbitrary communication
graph. Here the tree is fixed, but the problem remains
combinatorial due to resource heterogeneity.

The proofs of these complexity results can be found
in [1], together with the optimal polynomial algorithm
for the Multiple/Homogeneous problem.

5. Linear programming formulation

In this section, we express the Replica Place-
ment optimization problem in terms of an integer lin-
ear program. We derive a formulation for each of the
three server access policies, namely Closest , Upwards
and Multiple. This is an important extension to a pre-
vious formulation due to [8].

While there is no efficient algorithm to solve integer
linear programs (unless P=NP), this formulation is ex-
tremely useful as it leads to an absolute lower bound:
we solve the integer linear program over the rationals,
using standard software packages [2, 4]. Of course the
rational solution will not be feasible, as it assigns frac-
tions of replicas to server nodes, but it will provide a
lower bound on the storage cost of any solution. This
bound will be very helpful to assess the performance of
the polynomial heuristics that are introduced in Sec-
tion 6.

5.1 Single server

We start with single server strategies, namely the
Upwards and Closest access policies. We need to define
a few variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server
(for one or several clients).

• yi,j is a boolean variable equal to 1 if j = server(i).

• If j /∈ Ancestors(i), we directly set yi,j = 0.

Link assignment

• zi,l is a boolean variable equal to 1 if link l ∈
path[i → r] is used when client i accesses its server
server(i).

• If l /∈ path[i → r] we directly set zi,l = 0.

The objective function is the total storage cost,
namely

∑
j∈N scjxj . We list below the constraints

common to the Closest and Upwards policies: First
there are constraints for server and link usage:

• Every client is assigned a server:

∀i ∈ C,
∑

j∈Ancestors(i)

yi,j = 1

• All requests from i ∈ C use the link to its parent:

zi,i→parent(i) = 1

• Let i ∈ C, and consider any link l : j → j′ =
parent(j) ∈ path[i → r]. If j′ = server(i) then link
succ(l) is not used by i (if it exists). Otherwise
zi,succ(l) = zi,l. Thus:

∀i ∈ C, ∀l : j → j′ = parent(j) ∈ path[i → r],

zi,succ(l) = zi,l − yi,j′

Next there are constraints expressing that server ca-
pacities cannot be exceeded: ∀j ∈ N ,

∑
i∈C riyi,j ≤

Wjxj . Note that this ensures that if j is the server of
i, there is indeed a replica located in node j. Alto-
gether, we have fully characterized the linear program
for the Upwards policy. We need additional constraints
for the Closest policy, which is a particular case of the
Upwards policy (hence all constraints and equations
remain valid).

We need to express that if node j is the server of
client i, then no ancestor of j can be the server of a
client in the subtree rooted at j. Indeed, a client in
this subtree would need to be served by j and not by
one of its ancestors, according to the Closest policy. A
direct way to write this constraint is

∀i ∈ C, ∀j ∈ Ancestors(i),

∀i′ ∈ C ∩ subtree(j), ∀j′ ∈ Ancestors(j),

yi,j ≤ 1 − yi′,j′

Indeed, if yi,j = 1, meaning that j = server(i), then
any client i′ in the subtree rooted in j must have its
server in that subtree, not closer to the root than j.
Hence yi′,j′ = 0 for any ancestor j′ of j.

There are O(s4) such constraints to write, where
s = |C| + |N | is the problem size. We can reduce this
number down to O(s3) by writing

∀i ∈ C, ∀j ∈ Ancestors(i) \ {r},

∀i′ ∈ C ∩ subtree(j),

yi,j ≤ 1 − zi′,j→parent(j)

5.2 Multiple servers

We now proceed to the Multiple policy. We define
the following variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server
(for one or several clients).

• yi,j is an integer variable equal to the number of
requests from client i processed by node j.

• If j /∈ Ancestors(i), we directly set yi,j = 0.

Link assignment

• zi,l is an integer variable equal to the number of
requests flowing through link l ∈ path[i → r] when
client i accesses any of its servers in Servers(i)

• If l /∈ path[i → r] we directly set zi,l = 0.

The objective function is unchanged, as the total
storage cost still writes

∑
j∈N scjxj . But the con-

straints must be modified. First those for server and
link usage:

• Every request is assigned a server:

∀i ∈ C,
∑

j∈Ancestors(i)

yi,j = ri

• All requests from i ∈ C use the link to its parent:

zi,i→parent(i) = ri

• Let i ∈ C, and consider any link l : j → j′ =
parent(j) ∈ path[i → r]. Some of the requests
from i which flow through l will be processed by
node j′, and the remaining ones will flow upwards
through link succ(l):

∀i ∈ C, ∀l : j → j′ = parent(j) ∈ path[i → r],

zi,succ(l) = zi,l − yi,j′

The other constraints on server capacities are
slightly modified:

∀j ∈ N ,
∑
i∈C

yi,j ≤ Wjxj

Note that this ensure that if j is the server for one or
more requests from i, there is indeed a replica located
in node j. Altogether, we have fully characterized the
linear program for the Multiple policy.

5.3 A mixed integer LP-based lower
bound

The previous linear programs contain boolean or in-
teger variables, because it does not make sense to assign
half a request or to place one third of a replica on a
node. It has to be solved in integer values if we wish
to obtain an exact solution to an instance of the prob-
lem. This can be done for each access policy, but due
to the large number of variables, the problem cannot
be solved for platforms of size s = |C|+ |N | > 50. Thus
we cannot use this approach for large-scale problems.

However, we can still relax the constraints and solve
the linear program assuming that all variables take ra-
tional values. The optimal solution of the relaxed pro-
gram can be obtained in polynomial time (in theory us-
ing the ellipsoid method [11], in practice using standard
software packages [2, 4]), and the value of its objective
function provides an absolute lower bound on the cost
of any valid (integer) solution. Of course the relaxation
makes the most sense for the Multiple policy, because
several fractions of servers are assigned by the rational
program. For all practical values of the problem size,
the rational linear program returns a solution in a few
minutes. We tested up to several thousands of nodes
and clients, and we always found a solution within ten
seconds.

However, we can obtain a more precise lower bound
for trees with up to s = 400 nodes and clients by using
a rational solution of the Multiple instance of the linear
program with fewer integer variables. We treat the yi,j

and zi,l as rational variables, and only require the xj to
be integer variables. These variables are set to 1 if and
only if there is a replica on the corresponding node.
Thus, forbidding to set 0 < xj < 1 allows us to get a
realistic value of the cost of a solution of the problem.
For instance, a server might be used only at 50% of
its capacity, thus setting x = 0.5 would be enough to
ensure that all requests are processed; but in this case,
the cost of placing the replica at this node is halved,
which is incorrect: while we can place a replica or not
but it is impossible to place half of a replica.

In practice, this lower bound provides a drastic im-
provement over the unreachable lower bound provided
by the fully rational linear program. The good news is
that we can compute the refined lower bound for prob-
lem sizes up to s = 400, using GLPK [4]. We used the
refined bound for all our experiments.

6. Heuristics

In this section several heuristics for the Closest , Up-
wards and Multiple policies are presented. As previ-
ously stated, our main objective is to provide an ex-
perimental assessment of the relative performance of
the three policies. All the eight heuristics described
below have a worst case quadratic complexity O(s2),
where s = |C| + |N | is the problem size. Indeed, all
heuristics proceed by traversing the tree, and the num-
ber of traversals is bounded by the number of internal
nodes (and is much lower in practice).
1. Closest Top Down All (CTDA) – The basic
idea is to perform a breadth-first traversal of the tree.
Every time a node is able to process the requests of all
the clients in its subtree, the node is chosen as a server,

and we do not explore further that subtree. The cor-
responding procedure (Algorithm 1) is called until no
more servers are added in a tree traversal.
2. Closest Top Down Largest First (CTDLF) –
The tree is traversed in breadth-first manner similarly
to CTDA, but we treat the subtree which contains the
most requests first. Also, the tree traversal is stopped
each time a replica has been placed (and then the pro-
cedure is called again).
3. Closest Bottom Up (CBU) – Still dealing with
the Closest policy, this heuristic performs a bottom-up
traversal of the tree. A node is chosen as server if it
can process all the requests of the clients in its subtree.
Algorithm 2 describes the recursive implementation.
4. Upwards Top Down (UTD) – The top down ap-
proach works in two passes. In the first pass (see Algo-
rithm 4), each node whose capacity is exhausted by the
number of requests in its subtree is chosen by travers-
ing the tree in depth-first manner. When a server is
chosen, we delete as much clients as possible in non-
increasing order of their ri-values, until the server ca-
pacity is reached or no other client can be deleted. The
delete-procedure is described in Algorithm 3. If not all
requests can be treated by the chosen servers, a second
pass is started. In this procedure (see Algorithm 5)
servers with remaining requests are added.
5. Upwards Big Client First (UBCF) – The sec-
ond heuristic for the Upwards policy works in a com-
pletely different way than all the other heuristics. The
basic idea here is to treat all clients in non-increasing
order of their ri values. For each client we identify the
server with minimal available capacity that can treat
all its requests (see Algorithm 6).
6. Multiple Top Down (MTD) – The top-down ap-
proach for the Multiple policy is similar to UTD, with
one significant difference: the delete-procedure (see Al-
gorithm 7). For Upwards , requests of a client have to
be treated by a single server, and it may occur that
after the delete-procedure a server has still some ca-
pacity left to treat more requests, but all remaining
clients have a higher amount of requests than this left-
over capacity. For Multiple, requests of a client can
be treated by multiple servers. So if at the end of the
delete-procedure the server still has some capacity, we
delete this amount of requests from the client with the
largest ri.
7. Multiple Bottom Up (MBU) – This heuristic
is similar to MTD, except that we perform a bottom-
up traversal of the tree in the first pass, and that the
clients are deleted in non-decreasing order of their ri-
values. Algorithm 8 describes the first pass (servers
with exhausted capacity). The second pass which adds
extra servers if required is described in Algorithm 9.

8. Multiple Greedy (MG) – This last heuristic
greedily allocates requests to servers in a bottom-up
traversal of the tree, thus always finding a solution if
there is one, but possibly at an expensive cost.

The pseudo-code for the algorithms is provided at
the end of the paper.

7 Experiments

We have done some experiments to assess the impact
of the different access policies, and the performance of
these heuristics.

7.1 Experimental plan

The important parameter in our tree networks is
the load, i.e. the total number of requests compared
to the total processing power: λ =

P
i∈C riP

j∈N Wi
. We have

performed experiments on 30 trees for each of the nine
values of λ selected (λ = 0.1, 0.2, ..., 0.9). The trees
have been randomly generated, with a problem size
15 ≤ s ≤ 400. When λ is small, the tree has a light
request load, while large values of λ implies a heavy
load on the servers. We then expect the problem to
have a solution less frequently.

We have computed the number of solutions for each
lambda and each heuristic. The number of solutions
obtained by the linear program indicates which prob-
lems are solvable. Of course we cannot expect a result
with our heuristics for the intractable problems.

To assess the performance of our heuristics, we have
studied the relative performance of each heuristic com-
pared to the lower bound. For each λ, results are com-
puted on the trees for which the linear program has
a solution. Let Tλ be the subset of trees with a solu-
tion. Then, the relative performance for the heuristic h

is obtained by 1
|Tλ|

∑
t∈Tλ

costLP (t)
costh(t) , where costLP (t) is

the lower bound cost returned by the linear program
on tree t, and costh(t) is the cost involved by the so-
lution proposed by heuristic h. In order to be fair ver-
sus heuristics who have a higher success rate, we set
costh(t) = +∞ if the heuristic did not find any solu-
tion.

Experiments have been conducted both on homoge-
neous networks (Replica Counting problem) and on
heterogeneous ones (Replica Cost problem).

7.2 Results

A solution computed by a Closest or Upwards
heuristic always is a solution for the Multiple policy,

since the latter is less constrained. Therefore, we can
mix results into a new heuristic for the Multiple pol-
icy, called MixedBest (MB), which selects for each tree
the best cost returned by the previous eight heuristics.
Since MG never fails to find a solution if there is one,
MB will neither fail either.

Experimental results are summarized in the figures
provided at the end of the paper. Figure 6 shows the
percentage of success of each heuristic for homogeneous
platforms. The upper curve corresponds to the result
of the linear program, and to the cost of the MG and
MB heuristics, which confirms that they always find a
solution when there is one. The UBU heuristic seems
very efficient, since it finds a solution more often than
MTD and MBU, the other two Multiple policies. On
the contrary, UTD, which works in a similar way to
MTD and MBU, finds less solutions than these two
heuristics, since it is further constrained by the Up-
wards policy. As expected, all the Closest heuristics
find fewer solutions as soon as λ reaches higher values:
the bottom curve of the plot corresponds to CTDA,
CTDLF and CBU, which all find the same solutions.
This is inherent to the limitation of the Closest policy:
when the number of requests is high compared to the
total processing power in the tree, there is little chance
that a server can process all the requests coming from
its subtree, and requests cannot traverse this server to
be served by a server located higher in the tree. These
results confirm that the new policies have a striking
impact on the existence of a solution to the Replica
Counting problem.

Figure 7 represents the relative performance of the
heuristics compared to the LP-based lower bound. As
expected, the hierarchy between the policies is re-
spected, i.e. Multiple is better than Upwards which
in turn is better than Closest . Altogether, the use of
the MixedBest heuristic MB allows to always pick up
the best result, thereby resulting in a very satisfying
relative cost for the Multiple instance of the problem.
The greedy MG should not be used for small values
of λ, but proves to be very efficient for large values,
since it is the only heuristic to find a solution for such
instances.

To conclude, we point out that MB always achieves
a relative performance of at least 85%, thus returning
a replica cost within 17% of that of the LP-based lower
bound. This is a very satisfactory result for the abso-
lute performance of our heuristics.

The heterogeneous results (see Figure 8 and Fig-
ure 9) are very similar to the homogeneous ones, which
clearly shows that our heuristics are not much sensi-
tive to the heterogeneity of the platform. Therefore,
we have an efficient way to find in polynomial time a

good solution to all the NP-hard problems stated in
Section 4.

8. Related work

Early work on replica placement by Wolfson and
Milo [13] has shown the impact of the write cost and
motivated the use of a minimum spanning tree to per-
form updates between the replicas. In this work, they
prove that the replica placement problem in a general
graph is NP-complete, even without taking into ac-
count storage costs. Thus they address the case of spe-
cial topologies, and in particular tree networks. They
give a polynomial solution in a fully homogeneous case
and a simple model with no QoS and no server capac-
ity. Their work uses the closest server access policy
(single server) to access the data.

Using this Closest policy, Cidon et al [3] studied an
instance of the problem with multiple objects. In this
work, the objective function has no update cost, but
integrates a communication cost. Communication cost
in the objective function can be seen as a substitute
for QoS. Thus, they minimize the average communi-
cation cost for all the clients rather than ensuring a
given QoS for each client. They target fully homo-
geneous platforms since there are no server capacity
constraints in their approach. A similar instance of
the problem has been studied by Liu et al [9], adding
a QoS in terms of a range limit, and the objective be-
ing the Replica Counting problem. In this latter
approach, the servers are homogeneous, and their ca-
pacity is bounded.

Cidon et al [3] and Liu et al [9] both use the Clos-
est access policy. In each case, the optimization prob-
lems are shown to have polynomial complexity. How-
ever, the variant with bidirectional links is shown NP-
complete by Kalpakis et al [5]. Indeed in [5], requests
can be served by any node in the tree, not just the
nodes located in the path from the client to the root.
The simple problem of minimizing the number of repli-
cas with identical servers of fixed capacity, without any
communication cost nor QoS contraints, directly re-
duces to the clasical bin packing problem.

Kalpakis et al [5] show that a special instance of
the problem is polynomial, when considering no server
capacities, but with a general objective function taking
into account read, write and storage costs. In their
work, a minimum spanning tree is used to propagate
the writes, as was done in [13]. Different methods can
however be used, such as a minimum cost Steiner tree,
in order to further optimize the write strategy [6].

All papers listed above consider the Closest access
policy. As already stated, most problems are NP-

complete, except for some very simplified instances.
Karlsson et al [8, 7] compare different objective func-
tions and several heuristics to solve these complex
problems. They do not take QoS constraints into ac-
count, but instead integrate a communication cost in
the objective function as was done in [3]. Integrat-
ing the communication cost into the objective function
can be viewed as a Lagrangian relaxation of QoS con-
straints.

Tang and Xu [12] have been one of the first authors
to introduce actual QoS constraints in the problem for-
malization. In their approach, the QoS corresponds to
the latency requirements of each client. Different access
policies are considered. First, a replica-aware policy in
a general graph is proven to be NP-complete. When
the clients do not know where the replicas are (replica-
blind policy), the graph is simplified to a tree (fixed
routing scheme) with the Closest policy, and in this
case again it is possible to find a polynomial algorithm
using dynamic programming.

To the best of our knowledge, there is no related
work comparing different access policies, either on tree
networks or on general graphs. Most previous works
impose the Closest policy. The Multiple policy is en-
forced by Rodolakis et al [10] but in a very different
context. In fact, they consider general graphs instead
of trees, so they face the combinatorial complexity of
finding good routing paths. Also, they assume an un-
limited capacity at each node, since they can add nu-
merous servers of different kinds on a single node. Fi-
nally, they include some QoS constraints in their prob-
lem formulation, based on the round trip time (in the
graph) required to serve the client requests. In such a
context, this (very particular) instance of the Multiple
problem is shown to be NP-hard.

9. Conclusion

In this paper, we have introduced and extensively
analyzed two important new policies for the replica
placement problem. The Upwards and Multiple poli-
cies are natural variants of the standard Closest ap-
proach, and it may seem surprising that they have not
already been considered in the published literature. On
the theoretical side, we have fully assessed the com-
plexity of the Closest , Upwards and Multiple policies,
both for homogeneous and heterogeneous platforms.
Not surprisingly, all three policies turn out to be NP-
complete for heterogeneous nodes, which provides yet
another example of the additional difficulties induced
by resource heterogeneity. On the practical side, we
have designed several heuristics for the Closest , Up-
wards and Multiple policies, and we have compared

their performance. In the experiments, the constraints
were only related to server capacities, and the total cost
was the sum of the server capacities (or their number
in the homogeneous case). Even in this simple setting,
the impact of the new policies is impressive: (i) the
number of trees which admit a solution is much higher
with the Upwards and Multiple policies than with the
Closest policy. (ii) for those problems which have a so-
lution with the Closest policy, the replica cost is much
lower for the other two policies. Finally, we point out
that the absolute performance of the heuristics is quite
good, since their cost is close to the lower bound based
upon the solution of an integer linear program.

There remains much work to extend the results of
this paper. In the short term, we need to conduct more
simulations for the Replica Cost problem, varying
the shape of the trees, the distribution law of the re-
quests and the degree of heterogeneity of the platforms.
We also aim at designing efficient heuristics for more
general instances of the Replica Placement prob-
lem, taking more constraints into account. It will be
instructive to see whether the superiority of the new
Upwards and Multiple policies over Closest remains so
important in the presence of QoS constraints. Also,
including bandwidth constraints may require a better
global load-balancing along the tree, thereby favoring
Multiple over Upwards . In the longer term, designing
efficient heuristics for the problem with various object
types is a demanding algorithmic problem. Also, we
would like to extend this work so as to handle more
complex objective functions, including communication
costs and update costs as well as replica costs; this
seems to be a very difficult challenge to tackle.

References

[1] A. Benoit, V. Rehn, and Y. Robert. Strategies for
Replica Placement in Tree Networks. Research Report
2006-30, LIP, ENS Lyon, France, Oct. 2006. Available
at graal.ens-lyon.fr/∼yrobert/.

[2] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Mon-
agan, and S. M. Watt. Maple Reference Manual, 1988.

[3] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation
of electronic content. Computer Networks, 40:205–218,
2002.

[4] GLPK: GNU Linear Programming Kit. http://www.

gnu.org/software/glpk/.
[5] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal

placement of replicas in trees with read, write, and
storage costs. IEEE Trans. Parallel and Distributed
Systems, 12(6):628–637, 2001.

[6] K. Kalpakis, K. Dasgupta, and O. Wolfson. Steiner-
Optimal Data Replication in Tree Networks with Stor-
age Costs. In IDEAS ’01: Proceedings of the 2001

International Symposium on Database Engineering &
Applications, pages 285–293. IEEE Computer Society
Press, 2001.

[7] M. Karlsson and C. Karamanolis. Choosing Replica
Placement Heuristics for Wide-Area Systems. In
ICDCS ’04: Proceedings of the 24th Interna-
tional Conference on Distributed Computing Systems
(ICDCS’04), pages 350–359, Washington, DC, USA,
2004. IEEE Computer Society.

[8] M. Karlsson, C. Karamanolis, and M. Mahalingam.
A framework for evaluating replica placement algo-
rithms. Research Report HPL-2002-219, HP Labora-
tories, Palo Alto, CA, 2002.

[9] P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement
of replicas in data grid environments with locality as-
surance. In International Conference on Parallel and
Distributed Systems (ICPADS). IEEE Computer So-
ciety Press, 2006.

[10] G. Rodolakis, S. Siachalou, and L. Georgiadis. Repli-
cated server placement with QoS constraints. IEEE
Trans. Parallel Distributed Systems, 17(10):1151–
1162, 2006.

[11] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley & Sons, New York, 1986.

[12] X. Tang and J. Xu. QoS-Aware Replica Placement
for Content Distribution. IEEE Trans. Parallel Dis-
tributed Systems, 16(10):921–932, 2005.

[13] O. Wolfson and A. Milo. The multicast policy and
its relationship to replicated data placement. ACM
Trans. Database Syst., 16(1):181–205, 1991.

Biographies

Anne Benoit is an ENSIMAG engineer (Applied
Mathematics and Computer Science), she got her PhD
in 2003 at the Polytechnical Institute of Grenoble
(INPG). From 2003 to 2005, she was a Research As-
sociate in the Institute for Computing Systems Archi-
tecture and Laboratory for Fundations of Computer
Science of the School of Informatics at the University of
Edinburgh, UK. She currently holds a position of Assis-
tant Professor in the LIP laboratory at Ecole Normale
Superieure in Lyon, France. Her research interests in-
clude algorithms design and scheduling techniques for
parallel and distributed platforms, and also the perfor-
mance evaluation of parallel systems and applications.

Veronika Rehn Veronika Rehn is currently a PhD
student in the LIP laboratory at ENS Lyon. She
is mainly interested in parallel algorithm and replica
placement. She is a student member of the IEEE and
the IEEE Computer Society.

Yves Robert received the PhD degree from Institut
National Polytechnique de Grenoble. He is currently

a full professor in the Computer Science Laboratory
LIP at ENS Lyon. He is the author of four books, 95
papers published in international journals, and 120 pa-
pers published in international conferences. His main
research interests are scheduling techniques and paral-
lel algorithms for clusters and grids. He is a Fellow of
the IEEE, and a Senior Member of the Institut Univer-
sitaire de France.

Algorithms

procedure CTDA (root, replica)
Fifo fifo;
fifo.push(root);
while fifo �= ∅ do

s = fifo.pop();
if s /∈ replica then

if Ws ≥ inreqs & inreqs > 0 then
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do
inreqa = inreqa − inreqs;

else
foreach i ∈ children(s) do

if i ∈ N then fifo.push(i);
end

end
end

end
Algorithm 1: Procedure CTDA

procedure CBU (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≥ inreqs & inreqs > 0 then

/* node can treat all children’s requests */
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do
inreqa = inreqa − inreqs;

else
/* node cannot treat all children’s
requests, go up in the tree */
if Ancestors(s) �= ∅ then call CBU
(parent(s), replica);

end
else

foreach i ∈ children(s) do
/* not yet at the bottom of the tree, go
down */
if i ∈ N & treatedi then call CBU (i,
replica);

end
end

Algorithm 2: Procedure CBU

procedure deleteRequests (s ∈ N ,
numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do
inreqa = inreqa − ri;
children(parent(i)) =
children(parent(i)) \ {i};
if numToDelete == 0 then return;

end
end

Algorithm 3: Procedure deleteRequests

procedure UTDFirstPass (s ∈ N , replica)
if inreqs ≥ Ws & inreqs > 0 then

replica = replica ∪ {s};
treateds = true;
deleteRequests(s, Ws);

end
foreach i ∈ children(s) do

if i ∈ N then UTDFirstPass (i, replica);
end

Algorithm 4: Procedure UTDFirstPass

procedure UTDSecondPass (s ∈ N , replica)
if s /∈ replica & inreqs > 0 then

replica = replica ∪ {s};
deleteRequests(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then
UTDSecondPass (i, replica);

end
end
Algorithm 5: Procedure UTDSecondPass

procedure UBU (s ∈ N , replica)
clientList = sortDecreasing(clients(s);
foreach i ∈ clientList do

V alidAncests = {a ∈ Ancestors(i)|Wa ≥ ri};
if V alidAncests �= ∅ then

a = MinWj{j ∈ V alidAncests};
if a /∈ replica then
replica = replica ∪ {a};
Wa = Wa − ri;

end
else return no solution;

end
Algorithm 6: Procedure UBU

procedure deleteRequestsInMTD (s ∈ N ,
numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do
inreqa = inreqa − ri;
children(parent(i)) =
children(parent(i)) \ {i};

else
ri = ri - numToDelete;
foreach a ∈ Ancestors(i) do
inreqa = inreqa − ri;
return;

end
end
Algorithm 7: Procedure deleteRequestsInMTD

procedure MBUFirstPass (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≤ inreqs & inreqs > 0 then

/* node is exhausted by the requests of its
clients */
replica = replica ∪ {s};
deleteRequestsInMBU(s, Ws);

else
/* node is not exhausted, go up the tree */
if Ancestors(s) �= ∅ then call MBU
(parent(s), replica);

end
else

/* not yet at the bottom of the tree, go down
*/
foreach i ∈ children(s) do

if i ∈ N & treatedi then call MBU (i,
replica);

end
end

Algorithm 8: Procedure MBUFirstPass

procedure MBUSecondPass (s ∈ N , replica)
if s /∈ replica & inreqs > 0 then

replica = replica ∪ {s};
deleteRequestsInMBU(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then
UTDSecondPass (i, replica);

end
end
Algorithm 9: Procedure MBUSecondPass

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst

MultipleGreedy
MultipleTopDown
MultipleBottomUp

MixedBest
LP

Figure 6. Homogeneous case - Percentage of success.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

pe
rf

or
m

an
ce

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst

MultipleGreedy
MultipleTopDown
MultipleBottomUp

MixedBest

Figure 7. Homogeneous case - Relative performance.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f t
re

es

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst

MultipleGreedy
MultipleTopDown
MultipleBottomUp

MixedBest
LP

Figure 8. Heterogeneous case - Percentage of success.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

re
la

tiv
e

pe
rf

or
m

an
ce

lambda

ClosestTopDownAll
ClosestTopDownLargestFirst

ClosestBottomUp
UpwardsTopDown

UpwardsBigClientFirst

MultipleGreedy
MultipleTopDown
MultipleBottomUp

MixedBest

Figure 9. Heterogeneous case - Relative performance.

