
Modeling and executing Master-Worker applications
in component models

Hinde Lilia Bouziane, Christian Pérez, Thierry Priol
IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, France

{Hinde.Bouziane,Christian.Perez,Thierry.Priol}@irisa.fr

Abstract— This paper describes work in progress to extend
component models to support Master-Worker applications and
to let them to be executed on Grid infrastructures. The proposed
approach is generic enough to be applied to existing component
models such as the OMG CORBA and the ObjectWeb FRACTAL
component models. One objective of our research is to relieve
Grid application designers of managing low level programming
and implementation aspects. With the proposed approach, a
designer has only to cope with the description of an abstract
view of the application architecture in which he has to specify
what the master and the workers have to do while leaving the
system environment to manage the low level aspects such as
communication between the master and the workers.

I. INTRODUCTION

The Grid vision introduced at the end of the nineties has
now become a reality with the availability of quite a few Grid
infrastructures. Although most of the research and develop-
ment efforts have been spent in the design of Grid middleware
systems, the question of how to program such large scale
computing infrastructures remains open. Programming such
computing infrastructures is quite complex considering their
parallel and distributed nature. The programmer vision of a
Grid infrastructure is often determined by its programming
model. The level of abstraction that is proposed today is
rather low, giving the vision either of a parallel machine,
with a message-passing layer such as MPI, or a distributed
system with a set of services, such as Web Services, to be
orchestrated. Both of these two approaches offer a very low
level programming abstraction and are not really adequate,
limiting the spectrum of applications that could take benefit
from Grid infrastructures. Of course such approaches may be
sufficient for simple applications but a Grid infrastructure has
to be generic enough to be able to handle both simple and
complex applications. To overcome this situation, it is required
to propose high level abstractions to ease the programming of
Grid infrastructures.

Several research groups are already investigating how to de-
sign or adapt programming models that provide a higher level
of abstraction. Among these models, component-oriented pro-
gramming models are a good candidate to deal with the com-
plexity of programming Grid infrastructures. A Grid applica-
tion can be seen as a collection of components interconnected
in a certain way that must be deployed on available computing
resources managed by the Grid infrastructure. Components can
be reused for new Grid applications, reducing the time to build
new applications. However, component models are usually

unable to cope with the requirements of scientific applications
that have to be executed using a Grid infrastructure. This is
especially true when trying to combine parallel programming
paradigms with component programming. Previous efforts [1]
have been made to extend component models to be able to
encapsulate a SPMD code into a collection of components
and to let several collections to be composed like ordinary
components. Such an extension has been proved valuable
for scientific applications that require the coupling of several
simulation codes (multi-physics applications).

In this paper, we propose to handle the Master-Worker
parallel programming paradigm into component models. This
paradigm is very relevant to parametric applications where
several instances of the same code have to be executed
simultaneously with different parameter values. This kind of
application is suitable for computational Grid infrastructures
since they are embarrassingly parallel. This can be shown
by numerous research activities dealing with the design of
Master-Worker software Grid-enabled environments such as
for Global Computing systems (SETI@Home [2], Javelin [3],
XtremWeb [4], BOINC [5]) or for Network Enabled Server
environments (DIET [6], NetSolve [7], Ninf-G [8], Nim-
rod/G [9]). Most of these Grid-enabled environments only
focus on supporting the execution of Master-Worker applica-
tions by providing the master-worker paradigm. Some of them
provide another paradigm, like task farming for Ning-G, but
they remain very specialized environments.

The remainder of this paper is divided as follows. Section II
gives an overview of existing component models and how
they cope with the Master-Worker programming paradigm as
well as their shortcomings. Section III presents our approach
to better support the Master-Worker programming paradigm
using a higher level of abstraction. Section IV explains how
our approach can be applied to existing component models
such as OMG’s CCM and ObjectWebs’s FRACTAL. This is
further illustrated in section V by taking an example of ap-
plication scenario involving a Master-Worker pattern. Finally,
we present some concluding remarks in section VI.

II. COMPONENT BASED MASTER-WORKER APPLICATIONS

IN EXISTING COMPONENT MODELS

A. Overview of component models

Software Component technology has been emerging for a
few years [10], even though its underlying intuition is not very
recent [11]. A software component according to Szyperski [12]

1-4244-0054-6/06/$20.00 ©2006 IEEE

is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component
can be deployed independently and is subject to composition
by third parties. Let us review the different elements of this
definition:

1) Composition: a component is able to be composed with
other components by a third party. This composition is possible
thanks to well-defined interfaces that allow components to
interact. Some contracts are attached to these interfaces and
must be accepted. They allow specifications of constraints
related to interaction such as security.

2) Ports: to be able to interact with other components, a
component defines external interfaces named ports. A port is
a programming artefact to which an interface can be attached.
It can be categorized in two types: a client or server port.
The interaction between two components is then performed
by connecting a client port of a component to a server port
of another component with compatible type.

3) Separation of concerns: component models aim to sepa-
rate functional and non functional concerns. The goal is to not
burden component implementor with non functional features
like security. Such features are activated during the configu-
ration phase and are generally provided by the framework in
which the component are executed.

4) Assembly: the assembly phase generates a specification
of component instances and their interconnections. Component
assemblies can be described using an Architecture Descrip-
tion Language (ADL), like for example in CCM [13] or in
FRACTAL [14]. Another approach consists in using run-time
composition, like for example in CCA [15].

5) Deployment: a component is a binary unit of deploy-
ment. It contains – or references – an implementation (binary
code) and the constraints associated to it, like operating
system, processor and amount of memory requirements. It
may also contain several implementations and so, alternative
requirements. These properties help a deployment tool to
decide the resources an instance of the component may be
installed on.

B. Overview of CCM and Fractal component models

1) CCM (CORBA Component Model): the CORBA Com-
ponent Model [13] is part of the latest CORBA [16] (Common
Object Request Broker Architecture) specifications (version 3).
The CCM specifications allow the deployment of components
into a distributed environment on different heterogeneous
servers.

A CORBA component, as represented in Figure 1, can
define five kinds of ports. Facets ("provides" ports) and re-
ceptacles ("uses" ports) allow a synchronous communication
model based on the remote method invocation paradigm. An
asynchronous communication model based on the transfer of
data is implemented by the event sources and event sinks ports.
Attributes are values exposed through accessor (read) and
mutator (write) operations. Attributes are primarily intended
to be used for component configuration.

� � �

� � � � �
 �
 �

 � � � � � � � � �

� � �
 �

� �
 �

� � �
 �

� � � � � �

� � � � �

� � � � � � � � � �

Fig. 1. A CCM component.

Fig. 2. The structure of a composite component in Fractal.

CCM offers a complete model to develop a component based
application: (1) a design model to describe components and
their ports using the CORBA 3 version of the OMG Interface
Definition Language (IDL), which extends the OMG IDL of the
version 2 of CORBA; (2) an assembly model to describe an
application architecture thanks to an Architecture Description
Language; (3) a packaging and deployment model to deploy
an application from an assembly description. It is worthwhile
to remark that this description is just the initial state of the
application. The deployment model of CCM is fully dynamic:
the architecture of an application may be changed by modi-
fying its connections and/or by adding/removing components;
(4) an execution model to offer a set of standard services to a
component, such as security, events, and persistence; and (5)
a component’s life cycle management model to create, find or
remove component instances through the use of entities named
homes. Point (4) enables the same component to be hosted by
different framework implementations.

2) Fractal: The FRACTAL component model [17] is devel-
oped by the ObjectWeb [18] consortium. It is a hierarchical
component model which defines "primitive" and "composite"
components. A composite component, as described in Figure 2,
may contain several (sub-)components that form its content.
FRACTAL defines also "controllers" to manage the life cycle
of a component content: managing connections between sub-
components or adding/removing dynamically new compo-
nents, etc. A composite component can introduce interceptors
(a kind of controllers) to enable redirection of extern requests
to its sub-components. Usually, controllers are implemented
as objects.

Unlike CCM, FRACTAL does not specify any IDL language.
The design model is part of the assembly model: the ADL
provided by FRACTAL allows then to specify both components
and their composition in a same phase.

Fig. 3. The Master-Worker application architectures.

C. Composing a Master-Worker application in component
models

This paper focuses on the specification of a Master-Worker
application designed to be executed on a Grid environment.
Such an application follows a Client-Server design pattern
which can be a part of a complex component based application.
A first goal is to be able to develop Master and Worker
components independently from the execution environment in
which they will be deployed. A Master defines a client port
to send its requests to a Worker component that provides this
port. As in existing Master-Worker environments, delivering a
request to a Worker component should be transparent for the
components implementor. The only constraint which can be
imposed to a Master implementor, is the use of APIs allowing
simultaneous request invocations. An implementor is at least
aware of requests dependencies to allow the independent ones
to be executed in parallel.

Let examine relevant points related to the description of a
Master-Worker application with existing component models:

1) The benefit of an ADL description: assembling a Master-
Worker application at run-time, like in CCA, results in explic-
itly encoding many issues inside a program like the deploy-
ment and the configuration of component instances, as well
as the management of the application architecture. Therefore,
the level of separation of concerns is quite low.

Using an ADL description enables these concerns to be
separated. Hence, modifications to the application architecture
or code reuse are eased. Moreover, even thought it is the initial
application state that is described in ADL, it may change
during the execution. That is why, this section goes on with
components models which provides an ADL language.

2) Component compositions: There are two main possi-
bilities to encode a Master-Worker application into a flat
model like CCM. The first alternative consists in composing a
Master component M with only one Worker component W1

(Figure 3.(A)). At execution time, W1 may treat incoming
requests either sequentially or in parallel – a CCM component
may be multithreaded. Hence, a multithread component may
create a thread for each request. This approach appears well
suited for SMP machines. However, there is no mechanism
to control the number of working threads associated to a
component.

The second alternative is to specify several Worker in-
stances, all of them connected to M (Figure 3.(B)). The code

of the Master should be modified as its client port becomes a
"multiple" port: as the multiple instances of Worker to which
the Master is connected are visible, the Master has the burden
to implement its scheduling strategy.

A solution is to delegate to a component (or a set of
components) the task of delivering the request from the Master
to a Worker. Hence, the request strategy is separated from the
master and the Worker components. We may then envision
the use of classical Master-Worker environment to deal with
request delivery policy. With existing ADLs, this work is to
be done by the application designer at a phase the execution
environment, i.e. the the available resources of the Grid, is not
known.

3) Number of worker component instances: there is a
dependency between the number of Worker components and a
deployment environment. In fact, a Master-Worker application
in general does not constrain the number of workers to be
statically fixed as usually performed in an ADL description.

Moreover, workers are components which may be added
and removed at run-time. Such a behavior is suitable to adapt
the number of Workers to the execution requirements. Thus, it
appears suitable to be able to associate this dynamic behavior
to Worker components in an ADL description. Supported
architecture modifications are then visible, for example to
adaptability policies.

4) Request delivery policy: another alternative to external-
ize the requests transport management from the Master code is
to use interceptor. As described in Figure 3.(C), Worker com-
ponents are embedded into a composite component. A request
delivery policy may be implemented inside an interceptor.

However, the use of an interceptor (i.e. an object) may
become a bottleneck in a distributed and heterogeneous en-
vironment as it has to schedule all incoming requests. Hence,
it represents a non scalable scheduling policy.

It seems more suitable to be able to use scalable and efficient
request delivery policies, as the one developed within dedi-
cated Master-Worker environments like SETI@Home, Javelin,
XtremWeb, BOINC, or in NES like NetSolve, DIET, etc.

D. Related works

To our knowledge, there is not any specification model
for Master-Worker applications in existing component models.
However, since the expressed relation between a Master and
Workers follows the one-to-many connection mode, the use
of "objects groups" in the world of distributed objects like
Fractal/ProActive [19] or OGS [20], is the closest manner to
develop a Master-Worker application.

Fractal/ProActive has a group communication system [19]
which allows point-to-point and one-to-many communications
(broadcast, scatter and gather operations). It is used for repli-
cation, fault tolerance and data distribution for task-parallel
applications. For a Master-Worker application however, the
transport of a request from a Master to one Worker inside a
group is not directly supported by available communication
modes. To allow that, a programmer should manage the group
in the Master code to adapt the number of the Master requests

to the group size. Therefore, a transparent access to the
Workers is lost.

In the OGS [20] (Object Group Service of CORBA), the
principal interaction mode is based on transmitting a same
method invocation on a group to each of the members. It is
also used for replication, fault tolerance and data distribution
for parallel applications [21]. The OGS for CORBA is im-
plemented either by using an existent group communication
system and modifying the transport service [22] of the ORB
(Object Request Broker), by introducing interceptors [23], or
by introducing CORBA compliant services from scratch [24].
These solutions are at a low programming level and imple-
mentation speci c.

III. A MODEL FOR SOFTWARE COMPONENT BASED

MASTER-WORKER APPLICATIONS

A. Overview of the proposed Model

This paper aims at extending software component models to
increase the abstraction level for Master-Worker applications.
The proposal is to allow a designer to only specify a set of
Worker instances to which a Master component is connected.
The number of workers is no longer a preoccupation of the
designer. Similarly, requests transport concerns are handled
separately while advanced transport policies are possible.

Figure 4 presents an overview of the different elements of
the proposal. First, the application designer gives an "abstract
architecture description" in which he/she speci es a "collec-
tion" of Worker components. Independently, request transport
"patterns" are de ned by some experts. They represent request
delivery policies that may be used between Master and Worker
components. They should be based on software components,
even though existing Master-Worker environments such as
DIET may be used.

Once the deployment environment is known, an initial num-
ber of worker components can be xed and a suitable requests
transport policy can be chosen. From these choices, the ab-
stract architecture description is converted into a concrete ADL
description during a "transformation" process. In the example
of Figure 4, the selected pattern is a hierarchical Random
scheduling policy implemented by a tree. The concrete ADL is
a standard ADL, typically the ADL of the component model.

The remaining of this section introduces in more details the
concepts and steps of the model using a generic description
and a generic ADL. The projections to two speci c component
models, CCM and Fractal, are introduced in Section IV.

B. A collection definition

The central piece of the model is the notion of collection.
A collection is a set of "exposed" ports. Up to Section III-E,
we assume they are restricted to a server port. These ports
are de ned by components which belong to the collection.
An example of an XML collection de nition and a graphical
representation are shown in Figure 5.

A collection is an abstract concept that does not de ne
the number of elements. It is used to group (independent)
component instances, any of them providing the same role with

Fig. 4. An overview of a Master-Worker application model.

respect to any component outside the collection. For instance,
a collection of Worker components inside a Master-Worker
application de nes instances of Worker that will participate
in answering to Master requests. Incoming invocations are
(independently) dispatched to any component in the collection
according to an associated request delivery policy. It differs
from a group communication where an invocation is assumed
to be dispatched to all elements of the group.

C. An abstract ADL description

We de ne an abstract ADL description as an assembly
speci cation which composes both component instances and
abstract elements such as collections. The ADL used in an
abstract description could be an extension of an existing
ADL. This ADL is said abstract because it is not a complete
architecture description: the number of Worker instances as
well as the request delivery mechanism are missing.

With respect to a Master-Worker application, a designer
similarly handles both components and collections. He/She de-

nes component and collection instances and composes them
together by connecting compatible ports. Figure 6 shows the
abstract ADL of the Master-Worker application corresponding
to the graphical representation shown in Figure 4.

<componentType id="Worker">
<serverInterface id="i1" type="Computation"/>

</componentType>
<collectionDefinition id="Workers">

<exposedInterface id="I1" type="Computation"/>
<element type="Worker"/>
<binding>
<externInterface interfaceRef="I1"/>
<internInterface type="Worker" interface="i1"/>

<binding>
</collectionDefinition>

Fig. 5. A textual and graphical de nition of a worker collection.

<componentType id="Master">
<clientInterface id="IC" type="Computation"/>

</componenttype>
<collectionType id="Workers">

<exposedInterface id="I1" type="Computation"/>
</componentType>
<componentInstance id="M" type="Master" />
<collectionInstance id="W" type="Workers"/>
<connection>

<clientInterface componentInstance="M"
interfaceInstance="IC"/>

<serverInterface collectionInstance="W"
interfaceInstance="I1"/>

</connection>

Fig. 6. An abstract ADL description for a Master-Worker application.

As it can be noted, the composition of an application barely
changes. Moreover, the number of Worker instances and the
request transport mechanism between the Master instance M

and the collection W are not speci ed at this stage.

D. Transformation patterns

An abstract ADL description needs to be transformed into a
concrete ADL to obtain an actual deployable application. For
that, an initial number of workers inside a collection has to be

xed. This number can be speci ed in a static way. In more
advanced case, it can be done by requesting, for instance, "as
much workers as actual available resources". Of course, this
number may vary during runtime. The concrete ADL contains
also a set of components that implements a selected request
delivery policy. As an ef cient policy selection depends on the
actual resources as well as the actual number of workers, it
should be selected at deployment time. The set of selectable
policies may be constrained by specifying acceptable ones.

A request delivery policy is associated to a pattern. A

Fig. 7. Three examples of patterns.

pattern is composed of interconnected components that im-
plements a request transport policy. Figure 7 presents some
examples of patterns: a simple Round-Robin pattern, the
centralized scheduler used by NetSolve, and the hierarchical
architecture used by DIET.

A pattern may depend on parameters related to the envi-
ronment. For example, it may depends on the actual number
of workers. A simple usage is to con gure the Round-Robin
or NetSolve pattern (Figure 7). A more complex usage is
represented by patterns like the hierarchical DIET pattern
(Figure 7) in which the number of workers determines the
number of intermediate components (Figure 4).

Once a request policy is selected, the concrete architecture
of the Master-Worker application exposed in Figure 4 can be
derived. It is performed during a "transformation" process.
This process consists in replacing a collection instance def-
inition of an abstract ADL description by: (1) the Worker
instances for which the initial number is now known, (2) an
instance of the selected pattern, and, (3) connections between
Worker instances and the pattern, and between the pattern and
the Master component. This last step is done with respect to
the pattern composition rules.

The actual pattern is concealed in its associated transforma-
tion. A transformation is seen as a program which transforms
an abstract ADL to a concrete ADL one for a speci c pattern.
It can be written in any languages like C/C++, JAVA, Python,
XSLT, etc. Hence, it is out the scope of the model to describe
patterns. It heavily depends on the deployment tool. Section IV
shows an example based on XSLT.

E. Generalizing collection usage

Up to now, only server ports were assumed to be exposed by
a collection. It was mainly motivated by the targeted Master-
Worker applications. While allowing client ports to be exposed
by a collection, two other scenarios are possible. They are
also supported by the model. Let review the the three possible
composition scenarios, which are illustrated in Figure 8.

Fig. 8. The three possible component/collection compositions and their
associated semantic.

interface Computation {..};
collection Workers {

provides Computation I1;
};

Fig. 9. An extended IDL3 de nition of a collection.

The rst case is a Master-Worker application, made of a
collection providing a server port. This case has been already
tackled by this paper. In the second case, the collection exports
a client port, which is connected to a server port of a standard
component. It is a classical Client-Server pattern which does
not require any special request delivery policy: all components
of the collection may be directly connected to the standard
component C. The third case considers the connection of two
collections, Y providing a client port, and, Z providing a
server port. It can be seen as n independent masters accessing
a shared set of workers. Advanced request delivery policies are
needed to guarantee an ef cient handling of Master requests.

IV. PROJECTING THE PROPOSED MODEL ON EXISTING

COMPONENT MODELS

We have so far presented an extension of component models
for abstracting the level of description of Master-Worker
applications. This section introduces its application to the
Corba Component Model and to FRACTAL.

A. CCM

1) Extended IDL3: we extend the IDL3 language with the
collection keyword to enable a collection to be described.
A collection may contain the description of one or several
CCM ports, like facets, receptacles, event sources and sinks.
Figure 9 presents the extended IDL3 de nition corresponding
to the example of Section III-B.

The extended IDL3 allows only an abstract collection type
to be de ned. We need another language to describe the
content of a collection, i.e. the component type(s) that a

<collection type="Workers">
<componentfiles>

<componentfile id="Worker">
<fileinarchive name="def.csd"/>

</componentfile>
</componentfiles>
<bindings>

<binding>
<providescollectionport>I1
</providescollectionport>
<provideselementports>

<providesport>
<providesporti>i1</providesport>
<componentref idref="Worker/>

</providesport>
</provideselementports>

</binding>
</bindings>
</collection>

Fig. 10. Example of a collection description in CDL.

Fig. 11. The abstract CAD language is an extension of the CCM CAD
language. The new elements are presented.

particular collection implementation contains as well as the
connection of the ports of the collection with the ports of its
internal component(s). We introduce a new language, called
Collection Description Language (CDL), which is an XML
vocabulary inspired from the CCM Component Assembly
Language (CAD). An example of a CDL description for the
Workers collection is presented in Figure 10. The description
contains two parts. First, references to some component types
are de ned. Second, the (logical) connection between the
collection ports and the internal component ports are de ned.

2) An abstract CCM assembly language: the CCM Com-
ponent Assembly Description (CAD) needs to be extended
to allow the connection between collections and components
or collections. With respect to Section III-C, the result is an
abstract CAD. Figure 11 presents the major elements that
are inserted in the CCM CAD. XML elements related to
transformations are also added. They can be optionally used
to specify or restrict the choice of a request delivery pattern.

<definition name="Worker">
<interface name="I1" role="server"

signature="Computation" />
</definition>
<definition name="Worker_impl" extends="Worker">

<content class="WorkerImpl"/>
</definition>

<!- A pattern/transformation ->
<definitionPattern name="RoundRobin">

<transformation type="xsl"
source="RoundRobinFractal.xsl"/>

</definitionPattern>
<!- A collection definition ->

<definition name="Workers_impl" extends="Worker">
<component name="w" definition="Worker_impl"/>
<binding external="this.I1" internal="w.I1"/>
<pattern interface="this.I1"

transformation="RoundRobin"/>
</definition>

Fig. 12. Example of description of collection in FRACTAL. New tags are
the definitionPattern and the content of a definition for a collection.

If required to keep the compatibility with CCM, all these
tags can be added in the extension tag of CCM documents.

3) A pattern and a transformation: to validate our proposi-
tion, we have implemented an XSLT transformation program.
Its inputs are an abstract CAD file, the name of the collection
instance to apply the transformation on, and the number of
Worker instances. The transformation program then generates
the adequate number of Worker instances, inserts a scheduler
component between the master and the Workers, and generates
all the connections. In our example, the scheduler component
implements a Round-Robin policy (Figure 7). If there are
several collections, the transformation program has to be
invoked once per collection. Eventually, the document is a
standard CAD.

The XSLT transformation, the Round-Robin component,
and simple Master and Worker components have been imple-
mented to validate the feasibility of the proposed approach.

B. FRACTAL

It is possible to use a similar approach than the one defined
for CCM to implement the collection concept in FRACTAL, but
by only using primitive components. However, it appears more
interesting to take advantage of the hierarchic characteristic of
the FRACTAL model. Hence, a collection can be implemented
as a specialized composite: it is a sub-type of component.

1) An abstract ADL language: FRACTAL does not offer an
IDL language to specify component types. Component types
are directly defined in the ADL description. Therefore, we
need to extend the definition tag to allow the description
of a collection as represented in Figure 12. In the case of a
collection, the definition tag contains a list of internal
components (tag component), a list of the bindings of the
internal components with some ports of the collection, and
optionally the pattern(s) that may be applied to each port of
the collection. As for CCM, the resulting ADL is abstract.

2) Pattern and transformation: the transformation phase
aims at generating a concrete ADL. In the case of FRACTAL,

Fig. 13. A pattern example in FRACTAL.

do
param1 = optimize_param1(param2);
param2 = optimize_param2(param1);

while eval(param1, param2) < criteria

Fig. 14. Pseudo-algorithm of an application made of the global optimization
of two dependent optimization problems.

we need to generate a classical FRACTAL ADL from the ex-
tended ADL presented hereinbefore. This may be achieved in a
similar way as for CCM by applying an XSLT transformation.

A FRACTAL collection is a special kind of composite that
contains not only the computing component instances but also
the components implementing the request delivery policy. In
order to group together those components, it appears adequate
to put them into a composite. For example, Figure 13 presents
a graphical description of a pattern: the external composite
represents the collection while the internal composite embeds
all component related to the request delivery policy. The Ran-
dom pattern scheduler is implemented with one component.

3) Discussion: the composite feature of FRACTAL enables
a definition of collections as a sub-type of component, a well-
defined point to which attach adaptability features, and an en-
capsulation of components involved in request delivery policy.
In a flat architecture, structural information, like components
involved into a collection or to the request delivery policy has
to be manually maintained while it is part of the application
architecture description in a hierarchic model.

V. USE CASES IN CCM

This section briefly describes two examples of application
scenarios involving a Master-Worker pattern. While the classi-
cal example is a Master connected to a collection of workers,
a more complex pattern is presented.

Let consider an optimization application which requires the
optimization of two interdependent sub-problems. Figure 14
sketches the algorithm of the main loop. A possible implemen-
tation of such an application is a Master component, connected
to two collection, that alternatively solves one problem after
the other as represented in Figure 15.

Another solution is to transform the algorithm in a hierar-
chical one. It leads to the architecture displayed in Figure 16.

interface optimize1 {
param1_t optimize_param1(in param2_t p);

};
interface optimize2 {

param2_t optimize_param2(in param1_t p);
};
collection optimize1 {
provides optimize1 p1;

};
collection optimize2 {
provides optimize2 p2;

};
component Master {
uses optimize1 p1;
uses optimize2 p2;

};

Fig. 15. Definition of the component of the global optimization application
with a Master that alternatively solves the two sub-problems.

component opti1 {
provides optimize1 p1;
uses optimize2 p2;

};
collection optimize1 {
provides optimize1 p1;

};
collection optimize2 {
provides optimize2 p2;

};

Fig. 16. Hierarchical component architecture of the global optimization
application.

VI. CONCLUSIONS AND FUTURE WORKS

Software component models are becoming the dominant
model to develop distributed applications. However, existing
component models do not provide any abstraction for devel-
oping applications using the Master-Worker paradigm while it
is a widely used paradigm in grid applications.

This paper studies the introduction of a redefined concept of
collection and of ADL transformation to provide a component
model with a higher level of abstraction to specify a Master-
Worker application. The proposed model has several advan-
tages captured from those provided by classical Client-Server
environments like Global Computing systems or Network
Enabled Server environments. To submit multiple and indepen-
dent requests, a user has only to develop the functional codes
of a Master and a Worker components. He/She can then com-
pose its application by connecting components and collections.
Request delivery concerns and workers instantiation are at this
stage transparent for the application designer. The choice of
a request delivery policy and the number of workers become
adaptable to the actual deployment environment. The generic
component model has been projected on CCM and FRACTAL.
A prototype implementation has shown the feasibility of the
approach.

While the presented model introduced the collection con-
cept, the associated dynamic aspect is yet to be studied.
In particular, we plan to study its integration with dynamic
adaptation frameworks.

REFERENCES

[1] C. Pérez, T. Priol, and A. Ribes, “A parallel CORBA component
model for numerical code coupling,” The International Journal of High
Performance Computing Applications, vol. 17, no. 4, pp. 417–429, 2003.

[2] D. Anderson, S. Bowyer, J. Cobb, D. Gebye, W. Sullivan, and
D. Werthimer, “A new major SETI project based on Project SERENDIP
data and 100,000 personal computers,” Conference Paper, Astronomical
and Biochemical Origins and the Search for Life in the Universe, IAU
Colloquium 161, Publisher: Bologna, Italy, p. 729, 1997.

[3] M. Neary, A. Phipps, S. Richman, and P. Cappello, “Javelin 2.0: Java-
Based Parallel Computing on the Internet,” in Proceedings of European
Parallel Computing Conference (Euro-Par 2000), 2000.

[4] C. Germain, V. Néri, G. Fedak, and F. Cappello, “XtremWeb: building an
experimental platform for Global Computing,” in Grid’2000, December
2000.

[5] “Berkeley Open Infrastructure for Network Computing,” http://boinc.
berkeley.edu/, 2002.

[6] E. Caron, F. Desprez, F. Lombard, J. Nicod, M. Quinson, and F. Suter, “A
Scalable Approach to Network Enabled Servers,” in Proceedings of the
8th International EuroPar Conference, ser. Lecture Notes in Computer
Science, B. Monien and R. Feldmann, Eds., vol. 2400. Paderborn,
Germany: Springer-Verlag, August 2002, pp. 907–910.

[7] H. Casanova and J. Dongarra, “NetSolve: A Network-Enabled Server for
Solving Computational Science Problems,” The International Journal of
Supercomputer Applications and High Performance Computing, vol. 11,
no. 3, pp. 212–223, 1997.

[8] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka,
“Ninf-G: A Reference Implementation of RPC-based Programming
Middleware for Grid Computing.” J. Grid Compututing, vol. 1, no. 1,
pp. 41–51, 2003.

[9] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An Architecture for
a Resource Management and Scheduling System in a Global Compu-
tational Grid,” High-Performance Computing, ASIA, China, IEEE CS
Press, USA, vol. 01, no. 1, p. 283, 2000.

[10] L. Barroca, J. Hall, and P. Hall, Software Architectures: Advances
and Applications. Springer Verlag, 1999, ch. An Introduction and
History of Software Architectures, Components, and Reuse. [Online].
Available: http://mcs.open.ac.uk/lmb3/introduction.pdf

[11] M. D. McIlroy, “Mass Produced Software Components,” in Software
Engineering, P. Naur and B. Randell, Eds. Brussels: Scientific Affairs
Division, NATO, 1969, pp. 138–155.

[12] C. Szyperski, Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley / ACM Press, 1998.

[13] Open Management Group (OMG), “CORBA components, version 3,”
Document formal/02-06-65, June 2002.

[14] “Fractal ADL Tutorial,” http://fractal.objectweb.org/tutorials/adl/, 2004.
[15] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,

S. Parker, and B. Smolinski, “Toward a common component architecture
for high-performance scientific computing,” in 8th IEEE International
Symposium on High Performance Distributed Computation, Redondo
Beach, California, Aug. 1999, p. 13.

[16] OMG, “The Common Object Request Broker: Architecture and Speci-
fication V3.0, Tech. Rep. OMG Document formal/02-06-33, June 2002.

[17] E. Bruneton and T. Coupaye and J.B. Stefani, “The Fractal Component
Model, version 2.0-3,” ObjectWeb consortium„” Technical report, Feb.
2004.

[18] “ObjectWeb: Open source Middleware,” http://www.objectweb.org/.
[19] L. Baduel, F. Baude, and D. Caromel, “Efficient, flexible, and typed

group communications in java,” Joint ACM Java Grande - ISCOPE 2002
Conference, pp. 28–36, 2002.

[20] P. Felber and R. Guerraoui, “Programming with object groups in
CORBA,” IEEE Concurrency, vol. 8, no. 1, pp. 48–58, 2000.

[21] M. Aleksy and A. Korthaus, “A CORBA-based object group service and
a join service providing a transparent solution for parallel programming,”
in PDSE, 2000, pp. 123–134.

[22] S. Maffeis, “Run-time support for object-oriented distributed program-
ming,” University of Zurich,” PhD Thesis, February 1995.

[23] L. Moser, P. M. Melliar-Smith, and P. Narasimhan, “A fault tolerance
framework for corba.” in Proceeding of the 29th Symposium on Fault
Tolerant Computing, FTCS-29, June 1999, pp. 150–157.

[24] P. Felber, R. Guerraoui, and A. Schiper, “The implementation of a corba
object group service,” Theory and Practice of object Systems, vol. 4,
no. 2, pp. 93–105, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

