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Abstract

The ever increasing societal demand for the timely
availability of newer and feature-rich but highly depend-
able network-centric applications imposes the need for
these applications to be constructed by the composi-
tion, assembly and deployment of off-the-shelf infras-
tructure and domain-specific services building blocks.
Service Oriented Architecture (SOA) is an emerging
paradigm to build applications in this manner by defin-
ing a choreography of loosely coupled building blocks.
Howewver, current research in SOA does not yet address
the performability (i.e., performance and dependability)
challenges of these modern applications. Our research
is developing novel mechanisms to address these chal-
lenges. We initially focus on the composition and con-
figuration of the infrastructure hosting the individual
services. We illustrate the use of domain-specific mod-
eling languages and model weavers to model infrastruc-
ture composition using middleware building blocks, and
to enhance these models with the desired performabil-
ity attributes. We also demonstrate the use of gener-
ative tools that synthesize metadata from these models
for performability validation using analytical, simula-
tion and empirical benchmarking tools.
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1. Introduction

Society is increasingly reliant on a wide array of ap-
plications (e.g., electric power grid, mobile communi-
cations, health care, entertainment) provided by dis-
tributed networked systems. Rapid advances in net-
working and hardware technologies, and increased com-
petition, is requiring service providers to rapidly in-
troduce newer applications to the market. Service
providers, however, now have to deal with two major
forces. On the one hand they must reduce the time
to market while on the other hand they must ensure
that the applications continue to provide high perfor-
mance and dependability — the so called performability
of the applications. The Service Oriented Architecture
(SOA) [22] provides a mechanism by which new ap-
plications can be defined as a choreography of loosely
coupled services.

Recent trends in software design indicate that the
use of prefabricated building blocks for software devel-
opment is on the rise. The prefabricated artifacts are
the off-the-shelf (COTS) software infrastructure and
domain-specific service components that one can ac-



quire from different vendors and assemble them to de-
ploy large-scale applications. Modern applications de-
signed using SOA use these concepts to form compo-
nent assemblies that are deployed on distributed re-
sources. Component middleware technologies, such as
J2EE, .NET and CORBA Component Model (CCM),
coupled with advances in technologies, such as SOAP,
WSDL and XML, are increasingly being used to pro-
vision such applications since they enable the con-
struction of application functionality dynamically by
connecting individual component functionalities spread
across distributed resources.

Although these advances in software development
are necessary for the rapid development of new appli-
cations, service providers are now required to ascertain
whether the choice of the components, and their con-
figurations and compositions will provide the required
levels of performance and dependability. This analysis
must be performed in the early phases of the applica-
tion’s life cycle [23] (i.e., at design time). Design-time
performability analysis is almost invariably based on
a model that represents application behavior. For ex-
ample, in order to enable model-based performability
analysis of event-driven applications, it is necessary to
build a model of the underlying event demultiplexing
framework that is ubiquitous in such applications. In
the past, design-time performability analysis has been
conducted on a per-application basis, but this method-
ology does not scale as service providers are required
to deploy newer applications.

Our focus is on developing and implementing novel
techniques to conduct design-time performability anal-
ysis of applications built using the SOA approach. This
problem requires a two-level design-time performabil-
ity approach. At the first level it is necessary to ascer-
tain that the configuration and composition of individ-
ual infrastructures at different nodes in the distributed
system provide the desired performability guarantees.
At the second level, we require the need for performa-
bility analysis for the assembly of services. Our previ-
ous work [4, 5] applied analytical methods for design-
time performability analysis of event demultiplexing
patterns in network services, such as virtual private
networks. In this previous work we described the man-
ual development and validation of analytical models for
patterns-based middleware building blocks.

In this paper we first describe the manual process in
developing a Stochastic Reward Net (SRN) [14], which
is an analytical performability model for patterns-
based building blocks. We then show how the man-
ual development process becomes infeasible and cannot
scale since the middleware building blocks provide nu-
merous configuration parameters that affect their be-

havior. This problem is further complicated when such
building blocks are composed to form larger systems
(Note: Other kinds of performability analysis, such
as simulations or empirical benchmarking will exhibit
similar challenges). To address these concerns we de-
scribe a framework comprising model-driven generative
tools [15,21], which enables the automatic synthesis of
scalable SRN performability models, simulations and
empirical benchmarks for services that are modeled as
a composition of patterns-based middleware building
blocks.

This paper is organized as follows: Section 2 dis-
cusses the process of building a performability model of
the reactor pattern using the SRN modeling paradigm;
Section 3 describes how the performability analy-
sis process can be scaled and automated using a
model-driven generative framework; Section 4 discusses
our work comparing it to related work; and finally
Section 5 provides concluding remarks outlining the
lessons learned from this study, as well as directions
for future research.

2. Developing a Performability Model of
a Middleware Building Block

In this section we describe the process of construct-
ing a Stochastic Reward Net (SRN) [14] model of a
representative middleware building block. We focus on
the reactor pattern [18], which provides synchronous
demultiplexing and dispatching capabilities by decou-
pling these from event handling. Such decoupling is
useful for building event-driven systems. In developing
a model for a reactor requires identifying the differ-
ent characteristics and performability measures of the
reactor. A SRN model of the reactor pattern is then
presented along with a discussion of how the performa-
bility measures can be obtained by assigning reward
rates at the net level. We conclude the section with a
discussion of the scalability challenges involved in con-
structing the performability models.

2.1. Characteristics of the Reactor Per-
formability Model

In our performability model of the reactor, we con-
sider a single-threaded, select-based implementation of
the reactor pattern with the following characteristics,
as shown in Figure 1:

e The reactor receives two types of input events with
one event handler for each type of event registered
with the reactor.
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Figure 1. Characteristics of the Reactor

e Each event type has a separate queue, which holds
the incoming events of that type. The buffer ca-
pacity for the queue of type #1 events is denoted
N; and of type #2 events is denoted Ns.

e Event arrivals for both types of events follow a
Poisson distribution with rates A\; and Ao, while
the service times of the events are exponentially
distributed with rates py and ps.

e In a given snapshot, if the event handles corre-
sponding to both the event types are enabled, then
they are serviced in no particular order. In other
words, the order in which the events are handled
is non-deterministic.

The following performability metrics are of interest
for each one of the event types in the reactor pattern
model:

e Expected throughput — which provides an esti-
mate of the number of events that can be processed
by the single threaded event demultiplexing frame-
work. These estimates are important for many
applications, such as telecommunications call pro-
cessing.

e Expected queue length — which provides an es-
timate of the queuing for each of the event han-
dler queues. These estimates are important to de-
velop appropriate scheduling policies for applica-
tions with real-time requirements.

e Expected total number of events — which pro-
vides an estimate of the total number of events in

a system. These estimates are also tied to schedul-
ing decisions. In addition, these estimates will de-
termine the right levels of resource provisioning
required to sustain the system demands.

e Probability of event loss — which indicates how
many events will have to be discarded due to lack
of buffer space. These estimates are important
particularly for safety-critical systems, which can-
not afford to lose events. These also provide an
estimate of the desired levels of resource provision-
ing.

2.2. SRN Model of the Reactor Pattern

SRNs represent a powerful modeling technique that
is concise in its specification and whose form is closer to
a designer’s intuition about what a model should look
like. Since a SRN specification is closer to a designer’s
intuition of system behavior, it is also easier to trans-
fer the results obtained from solving the models and
interpret them in terms of the entities that exist in the
system being modeled. An overview of SRNs can be
found in [16]. Stochastic reward nets have been exten-
sively used for performability, reliability and performa-
bility analysis of a variety of systems [9-11,14,17,20].
The work closest to our work is reported by Ramani
et al. [17], where SRNs are used for the performability
analysis of the CORBA event service. The CORBA
event service is yet another pattern that provides pub-
lish /subscribe services.

Description of the net: Figure 2 shows the SRN
model for the Reactor pattern. The net is comprised
of two parts. Part (a) models the arrival, queuing,
and service of the two types of events as explained be-
low. Transitions Al and A2 represent the arrivals of
the events of types one and two, respectively. Places
B1 and B2 represent the queue for the two types of
events. Transitions Snl and Sn2 are immediate tran-
sitions which are enabled when a snapshot is taken.
Places S1 and S2 represent the enabled handles of the
two types of events, whereas transitions Sr1 and tran-
sition S72 represent the execution of the enabled event
handlers of the two types of events. An inhibitor arc
from place Bl to transition A1 with multiplicity N1
prevents the firing of transition A1 when there are N1
tokens in the place B1. The presence of N1 tokens in
the place Bl indicates that the buffer space to hold
the incoming input events of the first type is full, and
no additional incoming events can be accepted. The
inhibitor arc from place B2 to transition A2 achieves
the same purpose for type two events.
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Figure 2. SRN model of the Reactor pattern

Part (b) models the process of taking successive
snapshots and non-deterministic service of event han-
dles in each snapshot as explained below. Transition
Snl is enabled when there are one or more tokens in
place B1, a token in place StSnpSht, and no token
in place S1. Similarly, transition Sn2 is enabled when
there are one or more tokens in place B2, a token in
place StSnpSht and no token in place S2. Transition
T_StSnpl and T_StSnp2 are enabled when there is a
token in either place S1 or place S2 or both. Tran-
sitions T_EnSnpl and T_EnSnp2 are enabled when
there are no tokens in both places S1 and S2. Tran-
sition T_ProcSnp2 is enabled when there is no token
in place S1, and a token in place S2. Similarly, tran-
sition T"_ProcSnp2 is enabled when there is no token
in place S2 and a token in place S1. Transitions Srl
is enabled when there is a token in place SnpInProgl,
and transition S72 is enabled when there is a token in
place SnpInProg?2.

Assignment of reward rates: The performability
measures described in Section 2.1 can be computed by
assigning reward rates at the net level as summarized
in Table 1. The throughputs 77 and 75 are respectively
given by the rate at which transitions Sr1 and S72 fire.
The queue lengths @1 and Q)2 are given by the average
number of tokens in places Bl and B2, respectively.
The total number of events E; is given by the sum of
the number of tokens in places B1 and S1. Similarly,
the total number of events Fs is given by the sum of
the number of tokens in places B2 and S2. The loss
probability L; is given by the probability of N1 tokens
in place B1. Similarly, the loss probability Lo is given

by the probability of N2 tokens in place B2.

Table 1. Reward assignments to obtain per-
formability measures

Performability metric Reward rate
T, return rate(Srl)
T return rate(Sr2)
ol return (#B1)
Q2 return (#B2)
Ly return (#B1 == N171:0)
Lo return (#B2 == N271:0)
E, return(#B1 + #S51)
Ey return(#B2 + #52)

After the model is developed, it must be solved to
determine how the system will perform for the given
workloads. Our previous work [4, 5] describes the re-
sults of solving the SRN models for the reactor pattern
with event handling priorities. Validation of the per-
formability measures obtained from SRN model using
CSIM is also described in our earlier work [5].

2.3. Scalability Challenges

The previous section described the manual process
of constructing a SRN model for the reactor pattern
and assigning reward rates to obtain the different per-
formability measures. Many different variations of the
reactor pattern are possible depending on the config-
uration parameters used. These variations stem from
the different event demultiplexing and event handling



strategies used in a reactor. For example, in network-
centric applications, networking events can be demul-
tiplexed using operating system calls, such as select
or poll. For graphical user interfaces (GUIs), these
events could be due primarily to mouse clicks and can
be handled by GUI frameworks like Qt or Tk. On the
other hand, the event handling mechanisms could in-
volve a single thread of control that demultiplexes and
handles an event, or each event could be handled con-
currently using worker threads in a thread pool or by
thread on demand.

Other variations stem from the number of event
types handled, the buffer space available for queuing
events, input workloads and event service rates. To
enable design-time performability analysis for an ap-
plication employing a variant of the reactor pattern,
the SRN model of the variant needs to constructed
manually. This process is cumbersome, tedious and
time-consuming. These challenges are further compli-
cated when systems are composed of several middle-
ware building blocks. There is a need to automatically
generate performability models for different variants
based on the performability model, which captures the
invariant characteristics of the pattern and specializing
them with the possible variations. Section 3 describes
our solution to address these challenges.

3. Scaling and Automating the Per-
formability Modeling Process

The previous sections described how a SRN model
for performability of the desired application can be
developed. The process described until now focuses
on manually developing these models and the associ-
ated input scripts used by the model solvers, such as
SPNP [8]. In this section, we describe the model-driven
development (MDD) [15,21] approach, which allows
the user to scale the base SRN models and automate
the process of performability analysis.

3.1. Modeling Languages for Performability
Analysis

In this section we describe the ideas based on a
model-driven [15] generative programming [3] frame-
work we are developing to address the aforementioned
challenges. Our modeling framework comprises mod-
eling languages we have developed using the Generic
Modeling Environment (GME) [13]. GME is a tool
that enables domain experts to develop visual modeling
languages and generative tools associated with those
languages. The modeling languages in GME are repre-
sented as metamodels. A metamodel in GME depicts

a class diagram using UML-like constructs showcasing
the elements of the modeling language and how they
are associated with each other. The GME environment
can then be used by application developers to model
examples that conform to the syntax and semantics of
the modeling language captured in the metamodels.

We have developed two modeling languages that
provide the visual syntactic and semantic elements re-
quired to model the systems compositions and their
performability models (Note: Formal descriptions of
these modeling languages is beyond the scope of
this paper). The first language is called POSAML
(Patterns-Oriented Software Architecture Modeling
Language), which models the patterns described in
the POSA [18] pattern language. The POSA pattern
language is a vocabulary describing a set of related
patterns used to develop network services. The other
modeling language is called SRNML (Stochastic Re-
ward Net Modeling Language), which enables a user
to model the behavior of individual patterns as a SRN.
Additional details on these languages and their capa-
bility are described in our recent work [12].

Figure 3 illustrates the benchmarking view of the
metamodel for the POSAML language. POSAML al-
lows a user to describe the middleware as a collection of
patterns. In the benchmarking view of the system the
modeling language enables users to model the workload
characterization for the composed system. For exam-
ple, it is possible to model the input arrival patterns of
requests, the service rates of the event handlers in the
systems, and sizes of thread pools.
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Figure 3. POSAML Metamodel: Benchmark-
ing View

Built in constraint checking in POSAML enables
correct by construction structure of system composi-
tions since any erroneous associations between differ-
ent patterns are flagged as an error at modeling time.
Moreover, the feature modeling view and benchmark-
ing view of the language also flags errors when a model



engineer commits errors. For example, if an engineer
chooses a single threaded reactor demultiplexing strat-
egy in the feature view but provides a thread pool
configuration in the benchmarking view, then the con-
straint checker flags this condition as an error.

Figure 4 illustrates an example middleware compo-
sition comprising three patterns of the POSAML lan-
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Figure 4. POSAML GME Model for the Reac-
tor Pattern

A second language we have developed is the Stochas-
tic Reward Net Modeling Language (SRNML). Parts
of SRNML are shown in Figure 5. SRNML provides
the artifacts necessary to model a system as a SRN.

Figure 6 illustrates a sample the SRN model using
SRNML.

3.2. Generative Tools and Model Scalability

The GME environment allows metamodel develop-
ers to plugin model interpreters that can provide vari-
ous capabilities, such as code generation or configura-
tion information.

In POSAML to date we have included two model in-
terpreters with generative capabilities. The benchmark
interpreter described here traverses all the elements
of the model (i.e., Pattern, Feature and Benchmark-
ing), extracting relevant information and generating an
XML file to drive the simulations and benchmarking.
The relevant information captured in the synthesized
metadata includes:
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Figure 6. SRN GME Model of the reactor pat-
tern

1. the Reactor type (extracted from the Feature As-
pect), such as a single threaded or multi-threaded.

2. the desired metrics, such as whether the measure-
ments should include latency or throughput or
both.

3. the number of data exchanges (which is basically
the number of times one client thread generates
events for the reactor).

4. the number of client threads (or connections).

5. the number of event handlers (extracted from the
Pattern Aspect)

6. the service time required by a handler specified as
uniform distribution or exponential distribution.

7. arrival pattern of requests modeled as Poisson or
periodic arrivals.

Following is a snippet of the XML file generated by
the benchmark interpreter:



<benchmark_inputs>
<connections>5</connections>
<data>ABCDEF</data>
<data_exchanges>200</data_exchanges>
<reactor_inputs>
<reactor_type>wfmo</reactor>
<handlers>2</handlers>

</reactor_inputs>

</benchmark_inputs>

Model scalability is addressed using a model repli-
cator tool we have developed previously called C-SAW
(Constraint-Specification Aspect Weaver) [6]. The
model replication and scalability was discussed in an
earlier work of ours [7]. We have designed C-SAW to
provide support for modularizing crosscutting model-
ing concerns as well as scaling models in the GME.
This weaver operates on the internal representation of
a model (similar to an abstract syntax tree of a com-
piler). GME provides a framework that allows meta-
model developers to register custom actions and hooks
with the environment. These hooks can read and write
the elements of a model during the modeling stage.
GME also provides an introspection API, which pro-
vides knowledge about the types and instances of a
model, without a priori knowledge about the underly-
ing metamodel. Utilizing this feature of GME, we have
implemented C-SAW as a “plug-in,” which is GME ter-
minology for a metamodel independent hook.

4. Related Work

Performance and dependability analysis of some
middleware services and patterns has been addressed
by some researchers. Ramani et al. [17] develop a
SRN model for the performability analysis of a CORBA
event service, which is a pattern that provides publish/-
subscribe service. Aldred et al. [1] develop Colored
Petri Net (CPN) models for different types of coupling
between the application components and with the un-
derlying middleware. They also define the composi-
tion rules for composing the CPN models if multiple
types of coupling is used simultaneously in an applica-
tion. A dominant aspect of these works are related to
application-specific performability modeling. In con-
trast we are concerned with determining how the un-
derlying middleware that is composed for the systems
they host will perform.

With the growing complexity of component-based
systems, composing system-level performance and de-
pendability attributes using the component attributes
and system architecture is gaining attention. Crnkovic
et al. [2] classify the quality attributes according to the

possibility of predicting the attributes of the composi-
tions based on the attributes of the components and the
influence of other factors such as the architecture and
the environment. However, they do not propose any
methods for composing the system-level attributes.

At the model-driven development and program
transformation level, the work by Shen and Petriu [19]
investigated the use of aspect-oriented modeling tech-
niques to address performability concerns that are
weaved into a primary UML model of functional be-
havior. It has been observed that an improved sepa-
ration of the performability description from the core
behavior enables various design alternatives to be con-
sidered more readily (i.e., after separation, a specific
performance concern can be represented as a variabil-
ity measure that can be modified to examine the over-
all systemic effect). The performability concerns are
specified in the UML profile for Schedulability, Perfor-
mance, and Time (SPT) with underlying analysis per-
formed by a Layered Queueing Network (LQN) solver.

A disadvantage of the approach is that UML forces
a specific modeling language. The SPT profile also
forces performability concerns to be specified in a man-
ner than limits the ability to be tailored to a specific
performability analysis methodology. As an alterna-
tive, domain-specific modeling supports the ability to
provide a model engineer with a notation that fits the
domain of interest, which improves the level of abstrac-
tion of the performability modeling process. Our work
falls in the category of developing domain-specific mod-
els for performability analysis.

5. Concluding Remarks

Time to market pressures and economic reasons are
requiring the next generation of distributed networked
services to be developed via composition and assem-
bly of off-the-shelf reusable components. The ser-
vice providers are now required to reason about the
performance and dependability of such composed sys-
tems. This paper discusses a framework for design-time
performability analysis and validation of services that
are composed, configured and deployed using patterns-
based middleware building blocks. The performability
analysis models in our study use Stochastic Reward
Nets. However, as shown due to the substantial vari-
ability that exists within every building block and in
their compositions, it is infeasible to manually develop
performability models for large systems. We presented
a model-driven generative framework that can be used
to automatically synthesize complex SRN models, sim-
ulations and empirical benchmarks for the composed
systems.



Current shortcomings in our work will be addressed
as we extend POSAML to include the additional pat-
terns used in network systems and address correctness
of the compositions. Additional focus will be on inte-
gration of POSAML and SRNML. The goal is to use
this integrated framework to drive performability anal-
ysis using analytical models, simulations and empir-
ical benchmarking of large systems. Additional con-
cerns, such as dependability and security, will also be
addressed in combination with the performability di-
mension addressed in this paper. Ultimately, we want
to scale our models to handle the performability eval-
uation of the distributed assemblies envisioned in the
SOA approach.
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