Decentralized Runtime Analysis of Multithreaded Applications

Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Rosu
Department of Computer Science, University of Illinois at Urbana Champaign
{ksen ,vardhan,agha, grosu}@cs .uiuc.edu

Abstract

Violations of a number of common safety properties
of multithreaded programs—such as atomicity and ab-
sence of dataraces—cannot be observed by looking at the
linear execution trace. We characterize a class of such
properties, called robust properties, and define a simple
but expressive epistemic logic to specify them. We then
develop an efficient algorithm to automatically monitor
and predict violations of robust safety properties. Our
algorithm is based on capturing the causal structure of
a computation through a mechanism similar to vector
clock updates. The algorithm automatically synthesizes
decentralized monitors to evaluate the information at
each thread and to detect and predict safety violations.
Based on this approach, a tool named DAME has been
developed and evaluated on some simple examples.

1. Introduction

In multithreaded systems, multiple threads execute
concurrently and communicate with each other by
reading or writing to shared variables. Moreover, the
threads synchronize by acquiring and releasing locks.
The concurrent execution of threads results in differ-
ent possible interleavings between the threads and this
nondeterminism often results in errors in deployed sys-
tems that were not observed during the software testing
cycle. The nondeterminism has another consequence:
it is not feasible to recreate what led to the error by
simply re-executing the program on the same inputs.

One approach to this problem is to use heavy-weight
formal techniques, such as theorem proving or model-
checking, which account for all possible executions.
Unfortunately, despite impressive gains in these tech-
niques, it is still not feasible to rigorously verify large-
scale systems. This has led to an interest in light-
weight techniques to improve the testing of large soft-
ware systems and allow the monitoring of their run-
time behavior. However, it has been previously ob-
served that the naive monitoring of the linear execution
of multithreaded programs against safety requirements

1-4244-0054-6/06/$20.00 ©2006 IEEE

traces masks bugs that could have been detected using
smarter runtime analysis techniques.

To address this problem, we proposed a predictive
analysis technique and implemented it in a tool called
JMPAX [24, 25]. JMPAX predicts latent errors that
are not apparent in a successful execution of a mul-
tithreaded program. Unfortunately, JMPAX involves
considerable overhead: events are collected centrally
in order to construct a partial computation lattice. In
the present work, we distribute the task of monitoring
a computation among the threads in order to predict
bugs. One advantage of the current approach is that
as soon as the monitoring technique catches a potential
safety violation, it may invoke recovery code to bring
the system back to a safe state by, for example, reboot-
ing the system, or releasing resources.

We are interested in properties such as atomicity
and dataraces. Note that it is not possible to observe
such properties from a linear trace of a system since
such traces do not provide information about the causal
structure of a computation.

We restrict consideration to a class of properties we
call robust properties: a possible interleaving of a con-
current program satisfies a robust property if and only
if all causally consistent interleavings satisfy the prop-
erty. Examples of robust properties include absence of
datarace on some variable, and atomic execution of a
block of code in a single thread. We define a novel logic
which enables us to represent robust properties and de-
velop an algorithm which allows us to detect violations
of these properties. We demonstrate the technique by
means of some examples executed using the tool and
show results which suggest that the execution may be
relatively efficient.

The work described in this paper makes three sig-
nificant contributions. First, we define a simple but
expressive logic to specify safety properties in multi-
threaded systems and show that the logic is able to
state many properties that are of interest in multi-
threaded systems. Second, we provide an algorithm
to synthesize decentralized monitors for safety proper-
ties expressed in this logic. Finally, we describe the
results of an implementation of a tool, DAME, that is

based on our technique. The tool is publicly available
for download [2].

2. Decentralized Analysis of Multi-

threaded Systems

In this section we present the machinery we use.
First, we formalize the notion of causality in multi-
threaded systems. We then introduce multithreaded
temporal logic (MTTL) as an appropriate underlying
formalism for expressing causal safety requirements of
multithreaded systems. Finally, we present an auto-
matic decentralized monitor generation algorithm for
MTTL requirements.

2.1. Multithreaded Executions and Causal-
ity

A multithreaded program consists of n threads ¢4,
ta, ..., t, that execute concurrently and communicate
with each other through a set of shared variables. The
computation of each thread is abstracted out in terms
of events, while the multithreaded computation is ab-
stracted out in terms of a partial order < on events.
There can be three types of events: an internal event,
a read or a write of a shared variable. Internal events
can be reads or writes of local variables. We use e to
represent the ;™ event generated by thread t; since the
start of its execution. When the thread or position of
an event is not important we can refer to it generically,
such as e, €, etc.; we may write e € ¢; when event e is
generated by thread ¢;. Let us fix an arbitrary but fixed
multithreaded execution and let S be the set of all vari-
ables that were shared by more than one thread in the
execution. There is an immediate notion of variable ac-
cess precedence for each shared variable x € S: we say
e x-precedes €', written e <, €', iff e and ¢’ are variable
access events (reads or writes) to the same variable x
by different threads, and e “happens before” e’, that
is, e is an access to the variable z that occurred in
the multithreaded execution some time before ¢’. This
can be realized via a counter for each shared variable,
which is incremented at each variable access.

Let E; denote the set of events of thread t; and let
E denote |J; E;. Also, let < C E x E be defined as
follows:

1. e < ¢ whenever e and e’ are events of the same
thread and e happens before €’;

2. e < €’ whenever there is an x € S with e <, ¢’ and
at least one of e, ¢’ is a write.

The partial order < is the transitive closure of the rela-
tion <. This partial order captures the happens-before
relation among the events in different threads. The

structure described by C = (E, <) is called a multi-
threaded computation. Let us define < as the reflex-
ive and transitive closure of <. A permutation of all
events in E that does not violate the multithreaded
computation, in the sense that the order of events in
the permutation is consistent with <, is called a consis-
tent multithreaded run, or simply, a multithreaded run.
Any such consistent run can be a valid execution of the
multithreaded program.

The definition of the happens-before relation above
may look technically straightforward; however, its sig-
nificance with respect to accessing and passing infor-
mation in a multithreaded system should not be under-
estimated. Because of its crucial role in our approach
to decentralized analysis and in particular in the rest
of the paper, we next briefly discuss it informally, from
a generic information-propagation perspective. Multi-
threaded systems are routinely regarded as distributed
systems in which communication is realized via shared
memory. Let us regard threads as agents performing
their individual tasks, accumulating and passing infor-
mation about the state of the system when (and only
when) they access the shared variables — the only com-
munication “media” available. What “information” is
and how it can be formalized depends upon the partic-
ular application, so we deliberately let it vague for the
time being, mentioning only that it can refer to the en-
tire execution history of the system; Section 2.3 shows a
concrete formalization of information as “knowledge”,
in the context of monitoring safety requirements ex-
pressed as decentralized temporal properties. Shared
variables can also be regarded as information-bearing
agents, carrying not only corresponding values, but
also information about the system, accumulated from
interaction with other thread agents. Before we discuss
how information is propagated into the system, note
that the intuitive meaning of an event e of thread ¢
“happened-before” event e’ of thread ¢/, that is, e < €/,
is that ¢’ had more information when e’ took place than
t had when e took place.

We divide the information a shared variable has into
public and private information in order to capture the
causal structure of a computation. Each time a variable
is read by a thread, the variable may acquire some in-
formation about the global state from the thread, but
this information does not affect the causal flow of a
computation. The causal structure of a computation
is affected only by writes: for example, if two consecu-
tive reads of the same variable are shuffled, the shuffle
cannot change any observable properties of the compu-
tation. On the other hand, a write cannot be shuffled
with any other access to a variable. This means that
the state of the computation during all past reads can-

(read,, info,)

\

public, := private,

info, == info, & public,

(value,, public,)

(write,, value,, info,)

private, = private, & info,

public,,

info, == info, & public, (public,)
blic,

private, = private, @ info,

(read,, info,)

|

infoy := info, & public,
(value,, public,)

private, = private, & info,

Figure 1. Multithreaded executions propagate information. Shared variable accesses (transactions) carry and
update (@) information. Each variable 2 has two types of information: public (public,) and private (private,)
information. Each thread ¢ has only one type of information (info,). Reads/writes access public information,

writes also update it.

not be shuffled with anything after a write. For each
variable, we store the information that the variable ac-
quires from reads as private information. To capture
the causal structure, we require that each time a vari-
able is written to, the variable discharge all information
that it has acquired about the global state from past
reads. On the other hand, whenever a thread reads a
variable, the thread receives only the information that
the variable has acquired up to the previous write to
the variable. Whenever a write is performed, the infor-
mation discharged now becomes the variable’s public
information which will now be passed on for all reads,
until there is another write.

Figure 1 shows how the information is propagated
and updated in a multithreaded execution, where the
symbol @ is used for information updates; for exam-
ple, public, := private, := private, @ info, should be
read as follows: the private information of x is first up-
dated with the information of thread ¢ that was passed
together with its write transaction; then the public in-
formation of z is set to its private information. Note
that there is no exchange of information between the
two reads initiated by the two threads; the threads only
access the public information of x and update their own
information. Once the write event of ¢ takes place, t
will be passed all the private information of x, which
includes all the information that ¢’ had when it read z.

For e € E we define |e & {¢/ | ¢ = e} as the set
of events that happened before e according to the <
relation. For e € E;, we can think of |e as an abstract

state of the multithreaded system that the thread ¢; is
aware of, namely the state obtained after all the events
in |e (and only the events in |e) have occurred. From
an information-propagation perspective, t; simply lacks
information on whether any of the other threads in the
system have ever advanced after their last event that ¢;
was aware of. Therefore, the state after all the events
in |e has happened is t;’s safest guess about the cur-
rent state of the system, which is why we call it ¢;’s
predicted global state after event e, or simply the pre-
dicted state if t; and e are understood. We will also
use |e to represent the predicted state. It is impor-
tant to observe that this predicted state may have not
been actually exhibited by the actual multithreaded ex-
ecution. However, it may certainly be exhibited by an-
other possible execution under different running speeds
of threads and, moreover, that potential execution can
be quickly inferred from the actual execution with no
semantic knowledge about the program.

It is important to note that the predicted state of
t; after the event e; is the same in all consistent runs.
Therefore, the notion of predicted state of a thread
is well defined for multithreaded computations (E, <).
We extend the definition of <, < and < to predicted
states such that |e < |e/ iff e< €/, |e < |e/ iff e < ¢,
and |e < |e' iff e < ¢/. We denote the set of predicted

states of a thread t; by PS; %ef {le | e € E;} and

let P§ < U, PSi;. We use the symbols s;, s/, s/ and

so on to represent the predicted states with respect to

thread ¢;. We use the notation @;(s;) to refer to the
latest predicted state of t; that t; was aware of when it
was in state s;. Formally, if @Q;(s;) = s, then s; € PS},
sj < s, and for all s; € PS; if 5; < s; then 5; < sj.
For example, let us consider the set of statements
executed by three threads t1, t5, and t3 in Figure 2.
Assuming that initially {x = 0,y = 0,u = 0,v = 0},
the predicted states for some interesting events e3, €3
and el are respectively: {z = 1,y = 1,u = 3,v = 1},
{z=1Ly=1u=3v=4} and {& = 1,y = L,u =
3,v = 5}. Note that the actual global state of the
program in this particular execution at the time event
el occurred is {z = 1,y = 1,u = 9,v = 5} which is
different from the predicted state for event eJ.

2.2. Multithreaded Temporal Logic

Safety properties are routinely [16] expressed as tem-
poral formulae of the form “always ¢”, where ¢ is a
past-time formula. Once violated, a safety formula can
never be satisfied in the future. In the context of moni-
toring or on-line analysis of safety properties, one needs
to simply “monitor ¢”. Therefore, the future temporal
operator “always” is replaced by “monitor”, which jus-
tifies the terminology “monitoring past-time temporal
properties” that is often used as an equivalent to mon-
itoring safety [13]. Following [26], one of the major
claims of our decentralized runtime analysis approach
proposed in this paper is that the common past-time
temporal logics are insufficient for stating many inter-
esting safety properties of multithreaded systems. This
claim is backed not only by all the examples in this
paper, which would be hard or impossible to specify
using, for example, linear temporal logic, but also by
the important observation that the common temporal
logics are not multithreaded-computation invariant, i.e.,
there may be a multithreaded execution which satisfies
a formula ¢ while another execution which is consis-
tent with it does not satisfy ¢. There is a third, more
philosophical reason for which common temporal log-
ics are, in our view, not always appropriate to express
properties to be monitored on multi-threaded systems:
they assume that the atomic propositions (i.e., those
involving no temporal operators) can be evaluated at
any moment on the global state of the system, thus
imposing a centralized view of the system in which the
monitor acts as an omnipresent observer. While this
can be technically accomplished on today’s platforms,
such as within the JVM, it is generally believed that
omnipresent observers of concurrent systems have more
of a theoretical relevance than practical, because they
would add a prohibitive runtime overhead to the mon-
itored systems.

Inspired by [26], we next introduce a temporal logic
which we found quite expressive to state properties of

multithreaded systems. The distinctive feature of this
logic is that it is decentralized in nature: its semantics
is given over multithreaded computations, with no ref-
erence whatsoever to the actual absolute global state
of the system but only to states that individual threads
know about (or predict) as a result of information prop-
agation through shared variables (as explained in Sec-
tion 2.1). We call this logic multithreaded temporal logic
and abbreviate it MTTL. Since in this paper our fo-
cus is on monitoring safety properties, we only discuss
the past-time fragment of this logic. MTTL extends
past-time Linear Temporal Logic [16] with the pow-
erful epistemic operator [21], written @, whose role is
to evaluate an expression or a formula referring to a
thread at a different thread; more precisely, if @;(3)
occurs as part of a formula or expression at thread t;
currently in state s;, then its result will be the eval-
uation of 8 in the latest known (at t;) state of thread
t;, that is, in @;(s;). We call such an expression or a
formula remote. A remote expression or formula, refers
to the predicted state of the remote thread, can contain
nested epistemic operators. By allowing remote expres-
sions in addition to remote formulae, we allow one to
specify a larger class of desirable properties of multi-
threaded programs without sacrificing the efficiency of
monitoring.

Consider, for example, the simple property at a
thread ¢;: if « is true in the current state (say s;) of
t; then 8 must be true at the latest state of thread t;
which happens before s;, that is, at @;(s;). This will
be written formally in MTTL as @Q;(ov — @Q;3). How-
ever, referring to remote formulae only is not sufficient
in order to express a broad range of useful properties
such as “at thread t;, the value of in the current (pre-
dicted) state is greater than the value of y in the latest
known (predicted) state of thread ¢;”. Therefore, one
would like to also be able to refer to remote expressions.
For example, the property above can be formally spec-
ified as the MTTL formula @Q;(x > @,y). Here Q;y is
the value of y in the latest (predicted) state of thread
t; that thread ¢; is aware of.

The intuition underlying MTTL is that a multi-
threaded system is associated with a global specifica-
tion, consisting of a property given as an MTTL for-
mula per thread which, due to the epistemic operators,
can refer to properties in the latest known states of
other threads. A multithreaded computation satisfies
such a specification iff each local property is satisfied
by the predicted states of the corresponding thread.
Next we present MTTL formally.

Syntax. An MTTL formula within the scope of an
@; operator is called a i-formula. We let F;, F!, etc.,
denote i-formulae. Additionally, we introduce the no-

ty

to

t3

u=v+1

Figure 2. Example multithreaded execution. A single line of code can result in many events, for
example, u = y + u results in : 3 (read(y)), e (read(u)) and 3 (write(u))

tion of expression local to a thread t;, or i-expressions,
and let &;,¢&!, etc., denote these. Informally, an i-
expression is an expression over the predicted state of
thread ¢; and the latest known predicted states of other
threads. Local predicates on i-expressions form the
atomic propositions on which the temporal i-formulae
are built. We add the epistemic operators Q; that take
j-expressions or j-formulae and convert them into ex-
pressions or formulae local to thread ¢;. Informally, @,
yields an expression or a formula over the latest known
state of thread ¢; at thread ¢;. The following gives the
formal syntax of MTTL where ¢ and j are any thread
indexes (not necessarily distinct):

F .= @iFi
Fj == true | false | P(&;) | =F; | F; op F; propositional
| OF; | O F; |OF; | Fi § F; temporal
| @, F; epistemic
Cin= ol | F(&) functional
| @;¢&; epistemic
G u= (€., &)

A top-level MTTL formula F is always of the form
@; F; implying that it is always specified local to a
thread. The infix operator op can be any binary
propositional operator such as A,V,—,=. The term
5_; stands for a tuple of expressions at thread t;. The
term P(&;) is a (computable) predicate over the tuple
5_; and f (f_;) is a (computable) function over the tuple.
For example, P can be <, <, >, >, =. Similarly, some
examples of f are +,—,/,*. Variables v; belong to a
set V; containing all the local state variables of thread
t;. Constants such as 0, 1, 3.4 are represented by c. The
expression @;&; is an i-expression representing the re-
mote expression §;. Similarly, @;F; is an i-formula

referring to the local knowledge about the remote va-
lidity of j-formula F}. In other words, @; converts a
j-expression or a j-formula to an i-expression or an
i-formula, respectively.

Semantics. The semantics of MTTL is a natural
epistemic extension of past-time linear temporal logic.
The atomic propositions of linear temporal logic are
replaced by predicates over tuples of expressions. Ta-
ble 1 formally gives the semantics of each operator
of MTTL. (C,s;)[@;¢;] is the value of the expression
&, in the state s; = @;(s;) which is the latest known
state of ¢; at state s; of thread ¢;. We assume that
expressions are properly typed. Typically these types
would be: integer, real, strings etc. We also as-
sume that s;,s},s/,... € PS; and s;,%,57,... € PSj.
Notice that, like in the past-time linear temporal logic
in [13], the meaning of the “previously” operator on
the initial state of each process reflects the intuition
that the execution trace is unbounded in the past and
stationary.

2.3. Decentralized Monitoring Algorithm

We next describe an automated technique to syn-
thesize efficient decentralized monitors for safety prop-
erties of multithreaded programs expressed in MTTL.
We assume that one or more threads are associated
with MTTL formulae which must be satisfied by the
multithreaded computation. The synthesized monitor
is decentralized, in the sense that it consists of separate,
local monitors running on each thread. The key guid-
ing principles in the design of this technique are: (a)
the local monitors should be fast, so that monitoring
can be done online; (b) the local monitors should have

iff C,s; = F; where s; is the predicted state of ¢,

when the program is in state s

C,s; = true for all s; C,s; [£ false for all s;
Csi o Pli..,&) il P((C, s)IE] - (C,:)[€]]) = true

C,Si ': ‘\F,; iff C,Si bﬁ F,;

C,s; = F; op Fi’ iff C,s; = FyopC,s; = in/

C,si = OF; iff if Hs; . s; < s; then C,s; = Fjelse C,s; = F;

C,si = OF; iff 3s; . s, < s; and C, s, = F;

C,s; = OF; iff C,s; = F; for all s} < s;

C,si = F; § F/ if 3s) . s < s; and C, s, = F/ and Vs . s} < s/ < s; implies C, s = F;
C,si = Q;F; iff C,s; = F; where s; = @Q;(s;)

(C, si)[vil = s;(v;), that is, the value of v; in s;

(€, 5i)[eil =c

Coslf €. €D = F(Cos)lEd, - (€ sD)IED)

(C,5)[@;85] = (C,5;)[¢;] where s; = @;(s;)

Table 1. Semantics of MTTL

little memory overhead, in particular, should not store
the entire history of events on a process; (¢) the local
monitors should not change the semantics of the origi-
nal multithreaded program. In what follows, by remote
expression or formula we mean one which occurs in any
of the monitored MTTL formulae.

Decentralized monitoring is efficiently performed by
maintaining instances of a data-structure, called knowl-
edge vector, with every thread and with every shared
variable. A knowledge vector is an array with an entry
for any thread t¢; for which there is an occurrence of
@Q; in any MTTL formula at any thread and an entry
for every shared variable that appears in any MTTL
formula. Knowledge vectors compactly encode an in-
stance of the generic notion of “information” passed
in a multithreaded computation (see Section 2.1), and
are motivated and inspired by vector clocks [10, 17]
and especially multithreaded vector clocks [25]. The
total size of a knowledge vector is not dependent on the
number of threads, but on the number of remote ex-
pressions/formulae and the number of relevant shared
program variables. A knowledge vector KV may con-
tain an entry for thread ¢;, denoted by KV[j| or an
entry for a shared variable x, denoted by K V]z]. If the
entry corresponds to thread ¢; then KV[j] contains the
following fields:

e KV[j].seq: sequence number of the latest event at
tj;

e KVj].val: set of values of j-expressions/formulae.

If the entry corresponds to a variable x then KV[z]

contains:

e KV[z].seq: number of writes to the variable x;
e KV[z].val: the value of z.
Each thread t; keeps a local knowledge vector de-

noted by KV,. Each shared variable z maintains two
knowledge vectors denoted by KV (access) and KV¥

(write). Based on the informal intuition about infor-
mation propagation we provided in Section 2.1, KV;
stores the information of thread 4, while K'V% and KV
store the private and the public information of z, re-
spectively. The information encoded in the knowledge
vectors is updated entry-wise. If KV[I] and KV'[l] are
entries in two knowledge vectors for some [which is
either a thread identifier or a shared variable, then we
let max(KV]I], KV'[l]) be the entry having the most
recent information, that is, the one having the largest
sequence number: if K'V[l].seq > KV'[l].seq then it is
KV, otherwise it is K'V'[l]. Whenever thread ¢; with
knowledge vector KV; processes the event e¥, the fol-
lowing algorithm is executed:

(1) If €¥ is internal (read/write of local variable), then
o KVli]l.seq — KV;[i].seq+ 1

e Update KV;[i] in the predicted state of ¢; after
the event ef , say s;. For this, we evaluate all ex-
pressions &; and all formulae F; that occur in any
MTTL formula as remote (i.e., as @;&; and @Q; F;)
using a simple recursive implementation of the se-
mantics in Table 1 that needs to only store one
bit per local temporal operator (similar to the one
presented in detail in [13, 26]), and then store them
in KV;[i].val. In case any of these &; or F; refer to
remote expressions or formulae, say of a thread 7,
then they only need to lookup into KV;[j].val for
their most recent known values.

(2) If e} is a read of a shared variable z, then
o KVi].seq — KV;[i].seq + 1
e For all [(thread or variable) different from i do
KVi[l] < max(KV;[l], KVZ[l])
KVell] — max(KVe[], KV;[l])
e Update K'V;[i] as in the second bullet in (1) above
o KV2i| — KV;[i];

(3) If eF is a write of shared variable z (say, with value
v), then

o KVi].seq — KV;[i].seq + 1
e For all [(thread or variable) different from ¢ do
Kvell) — KvV¥(] — KV;]l] —
max(KVe[l], KV;[l])
o If K'V;[z] exists then
KVilx].seq — KV¥[z].seq — KV;x].seq —
KV2[z].val — KV¥[x].val — KV;[z].val — v
e Update KV,[i] as in the second bullet in (1) above
o KV2[i] — KV¥[i] — KV;[i].

We call this the KNOWLEDGEVECTOR algorithm.
Informally, KV;[j].val contains the latest values that
t; has for j-expressions or j-formulae. Therefore, for
the value of a remote expression or formula of the form
@;¢&; or Q; I, process p; can just use the entry corre-
sponding to &; or F; in the set K'V;[j].val. The correct-
ness of this algorithm is given by the following results:

Lemma 1 For any x for which KV;[x| is defined,
KV;[x].val contains the value of x in the current pre-
dicted state of t;.

Proof in appendix.

Lemma 2 For any thread t; and any j, the entry for
& or Fy in KV;[j].val contains the value of @Q;&; or
Q; F;, respectively.

Proof follows from [22]

Theorem 3 For any MTTL formula Q;F;,
C,sk= QF; (or C,s = QF;) if and only if the
value of Q;F; in KV;[i].val in the state s is true (or

false).

Proof: Follows from Lemma 1 and Lemma 2. 0
The initial values for all the variables in the multi-
threaded program is assumed to be known by all the
threads of the program. Thus, it is assumed that each
thread ¢; has complete knowledge of the initial values
of remote expressions for all processes. These values
are then used to initialize the entries KV;[j].val in the
KNOWLEDGEVECTOR of t; for all j.

3. Examples

To illustrate the expressiveness of the logic, we con-
sider a few standard examples from multithreaded com-
putation literature.

In our first example, we show that we can write for-
mulas which if violated imply a datarace in a multi-
threaded computation. A datarace occurs when two

threads access a shared variable simultaneously with-
out any synchronization and at least one of the ac-
cesses is write. Datarace in a multithreaded computa-
tion can lead to unexpected behavior which are hard to
catch using testing due to their dependency on thread-
scheduling. For example, suppose two threads are try-
ing to increment a shared variable z simultaneously
by executing the statement x4+ without any synchro-
nization. If the initial value of x is 0 then at the end
of the execution the value of x can be 1 or 2 which is
€rroneous.

Programs containing datarace have been found very
difficult to debug as they can exhibit different behaviors
under the same set of inputs. It has been recognized
that tools capable of detecting dataraces automatically
in programs at runtime can be very valuable. In past
there has been substantial amount of work to develop
tools and techniques to detect dataraces at runtime,
such as race detection based tool on “happens-before”
relation over locks [8] and Eraser tool [23] based on
locksets. We next show that we can precisely detect
dataraces in a way somewhat similar to [8] using our
decentralized monitoring approach. We have a clear
advantage over the former approach due to our decen-
tralized approach where we divide the detection work-
load over all the threads. Moreover, we can take a
necessary recovery action whenever we find a datarace.

We conservatively say that two accesses of a shared
variable z, of which at least one is a write, by two
threads are in datarace if we can permute the two ac-
cesses without violating the multithreaded computa-
tion and make them consecutive. If the two accesses
are not consecutive in a given multithreaded execution
and we do not know the “happens-before” relation be-
tween the different events in the multithreaded execu-
tion, then we cannot detect a datarace through sim-
ple testing. However, using our monitoring approach
we can easily detect such violations if we monitor the
following property for every shared variable z and for
every pair of threads ¢; and ¢; in the program

Q;((read(z) A ®write(z) — —@,(write(x)))
A(write(z) — —Q;(read(x) A ® write(z)))
N(write(z) — =@, (write(x))))

where the boolean variable read(x) (or write(z)),
local to a thread, is set to true whenever the thread
reads (or writes) and set to false otherwise. The first
conjunct in the formula states the absence of read-write
datarace. A read-write datarace happens if a thread
reads = and in the past it has written that x and it
knows that some other thread has written x in its latest
predicted state. Similarly, the second and the third

conjunct states the absence of write-read and write-
write dataraces. Using our implementation (discussed
in Section 4), we were able to precisely detect dataraces
in several programs.

The second example considers checking atomicity in
a multithreaded Java program. In [11] it has been
shown that even if a program is free of dataraces it
can have errors arising due to unexpected interaction
between threads. Such kind of errors can be due to
violation of atomicity requirements. In a given mul-
tithreaded computation we say that a block of code
is atomic if every interleaving of the execution of the
block by a thread with the execution of other threads
has the same overall effect as if the block is executed
serially by the former thread without interleaving with
other threads. This means, we can conservatively say
that there is a violation of atomicity in the execution
of a block of code, if there is an event from an another
thread, interleaved with the execution of the block of
code, and the event cannot be permuted with the other
events associated with the execution of the block with-
out violating the multithreaded computation. For ex-
ample, consider the following code executed by two
threads ¢; and ts:

int calcBalance(){

balancel = void transfer(int amount){

checking.balance; checking.balance = checking.balance
balance2 = - amount;

saving.balance; saving.balance = saving.balance +
return balancel + amount;

balance?2;

}

Thread ¢ executes the method calcBalance and thread
ty executes the method transfer. We want the execu-
tion of both the methods to be atomic. If we have the
following execution

t1: balancel = checking.balance;

to: checking.balance = checking.balance - amount;
t1: balance2 = saving.balance;

ta: saving.balance = saving.balance + amount;
then there is no violation of atomicity. However,
if we have the following execution

to: checking.balance = checking.balance - amount;

t1: balancel = checking.balance;

t1: balance2 = saving.balance;

t2: saving.balance = saving.balance + amount;

then there is a violation of atomicity.
One can express simple atomicity requirement ele-
gantly in MTTL as follows:

@;(atomic — — \/ @;@;(atomic))
J#i

where atomic is a boolean variable, local to thread
t;, which set to true whenever the thread ¢; enters an

atomic block of code and set to false whenever the
thread exits out of the atomic block. The formula
states that if thread ¢; is in an atomic block then it
should not be the case that any other thread knows
that thread ¢; is in the atomic block. If no other thread
knows that thread t; is in atomic block then the events
of that thread interleaved with the atomic block are
causally independent of the events in the atomic block.
Therefore, there is no violation of atomicity. In the
above example, it is easy to see that for the first execu-
tion the formula is not violated. However, it is violated
in the second execution.

If a thread can execute various atomic blocks several
times, then the above formula for atomicity is not suf-
ficient. We need to distinguish various invocations of
atomic blocks from each other. We do it by maintain-
ing a counter with every invocation of atomic blocks.
The atomicity requirement becomes

Q@;((atomic > 0) — = \/(atomic = @;@;atomic))
g

where atomic is a local thread variable of type int,
initialized to 0. Whenever, thread t; enters an atomic
block it sets the variable atomic to one plus its last
maximum value and sets it to 0 when it comes out of
the atomic block. Note that the above formula uses s
remote-expression.

Thus using our monitoring approach we can check
atomicity property of Java multithreaded programs
whose detection at runtime is otherwise considered to
be difficult using simple testing.

4. Implementation

We have implemented the above monitoring algo-
rithm in a tool, called DAME [2]. The tool is im-
plemented in Java and can be used to monitor mul-
tithreaded Java programs. The tool has two com-
ponents: an instrumentation tool, and a monitor-
ing library to maintain KNOWLEDGEVECTOR data-
structures and perform decentralized monitoring. We
next describe the two components.

The instrumentation tool takes a set of Java class
files as input. It then instruments the class files as
follows. It associates KNOWLEDGEVECTOR with every
thread and every shared variable in the program. For
every write (or read) of any field of a class, identified by
putfield (or getfield) and pustatic (or getstatic)
instructions in the bytecode, the instrumentation tool
inserts code to invoke the KNOWLEDGEVECTOR algo-
rithm for the write event (or read event). In Java two
blocks locked by the same lock variable cannot be inter-
leaved, that is, if a block is executed before an another
block locked by the same variable then the events in the
former block “happens-before” all the events in the lat-
ter block. To introduce this “happens-before” relation,

lock variables are considered as shared variables and
the lock and unlock events are considered as writes to
the shared variable.

The instrumentation tool uses BCEL [7] library to
systematically instrument every Java class file provided
as input. The user of the system provides the name of
the class files to be instrumented.

The instrumentation tool also reads the specification
file and generates the appropriate class file representing
the KNOWLEDGEVECTOR data-structure for that spec-
ification. Users can insert arbitrary internal events,
such as setting atomic to true whenever a thread enters
an implicit atomic block, by calling a library function
internal (var_name,value) in the source code of the
monitored program.

We monitored several multithreaded Java programs
for datarace and atomicity violation. We found bugs
related to both datarace and atomicity violation. In
particular, in an implementation of a simple banking
application (as discussed in section 3), we found atom-
icity violation in several executions. We noticed 3.4
times slow down when the application was executed to
perform around 2000 transactions. This overhead is
comparable with the existing tools for atomicity viola-
tion detection [11]. In general, in all our experiments
we noticed a slow down by a factor of 1.8-5 times. We
detected mutual exclusion violation and datarace in a
buggy implementation of the mutual exclusion proto-
col. Our initial experiments suggest the applicability
and feasibility of our tool. For more details about the
experiments the readers are referred to [2].

5. Related Work

Our work builds on two techniques we developed
earlier. These were implemented in the tools JMPAX
[25, 24] and DIANA [26]. Specifically, the notion of
causality we use was defined in JMPAX and the idea
of decentralized monitoring of actor [3] programs was
first used in DIANA.

Many researchers have proposed knowledge tempo-
ral logics to reason about distributed systems. Most of
these logics are inspired by the classic work of Aumann
[5] and Halpern et al. [9] on knowledge in distributed
systems. Meenakshi et al. define a knowledge tem-
poral logic interpreted over a message sequence charts
in a distributed system [18] and develop methods for
model checking formulae in this logic. Our communi-
cation primitive is inspired by this work, but we allow
arbitrary expressions and atomic propositions over ex-
pressions.

Another closely related work is that of Penczek
[19, 20] which defines a temporal logic of causal knowl-
edge. Knowledge operators are provided to reason
about the local history of a process, as well as about

the knowledge it acquires from other processes. How-
ever, in order to keep the complexity of model check-
ing tractable, Penczek does not allow the nesting of
causal knowledge operators. Interestingly, the nesting
of causal knowledge operators does not add any com-
plexity to our algorithm.

Leucker investigates linear temporal logic inter-
preted over restricted labeled partial orders called
Mazurkiewicz traces [15]. An overview of distributed
linear time temporal logics based on Mazurkiewicz
traces is given by Thiagaranjan et al. in [27]. Alur et
al. [4] introduce a temporal logic of causality (TLC)
which is interpreted over causal structures correspond-
ing to partial order executions of a distributed system.
They use both past and future time operators and give
a model checking algorithm.

In recent years, there has been considerable interest
in runtime verification [1]. Havelund et al. [13] gives
algorithms for synthesizing efficient monitors for safety
properties. Sen et al. [25] develop techniques for run-
time safety analysis for multithreaded programs and
introduce the tool JMPAX. Some other runtime veri-
fication systems include JPaX from NASA Ames [12]
and UPENN’s Mac [14].

There has been a substantial work in building tools
and techniques that can catch concurrency related bugs
such as datarace [23, 8, 6], atomicity violation [11],
mutual exclusion violation, and deadlock.

6. Discussion

Our results suggests the utility and feasibility of
automatically tracking causal relations in monitoring
multithreaded computations. The monitoring helps to
detect a number of types of bugs that are a frequent in
large multithreaded programs. However, the approach
has at least two limitations:

1) Because our monitoring is asynchronous, it is lim-
ited to what we have termed robust properties. Not all
properties of interest fall into this category: in particu-
lar, it is not possible to monitor properties where there
is no direct connection between two threads, for exam-
ple, atomicity properties spanning multiple threads, or
relations between values of variables affected by differ-
ent threads. For such properties, it is necessary to pay
the price of synchronous centralized predictive moni-
tors (as in our earlier [24, 25]).

2) The monitoring is entirely syntactic. For exam-
ple, sometimes concurrent accesses may be permissi-
ble because the operations performed do not affect the
atomicity property. Because we do not take advantage
of the semantics of the operations performed, our de-
tection is overly conservative. Our algorithm needs to
be combined with program analysis techniques to de-
termine if a particular observation does indeed result
in a semantic safety violation.

References

(1]

(6]

(7]

(14]

(15]

[16]

1st, 2nd and 3rd CAV Workshops on Runtime Veri-
fication (RV’01 - RV’03), volume 55(2), 70(4), 89(2)
of FElectronic Notes in Theoretical Computer Science.
Elsevier Science: 2001, 2002, 2003.

DAME: Decentralized Analyzer of Multithreaded Ex-
ecution. http://fsl.cs.uiuc.edu/dame/, 2005.

G. Agha, I. A. Mason, S. F. Smith, and C. L. Tal-
cott. A foundation for actor computation. Journal of
Functional Programming, 7:1-72, 1997.

R. Alur, D. Peled, and W. Penczek. Model checking
of causality properties. In Proceedings of the 10th An-
nual IEEE Symposium on Logic in Computer Science
(LICS’95), pages 90-100, 1995.

R. Aumann. Agreeing to disagree. Annals of Statistics,
4(6):1236-1239, 1976.

C. Boyapati and M. Rinard. A parameterized type sys-
tem for race-free Java programs. In 16th Annual Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’01), 2001.

M. Dahm. Byte code engineering with the BCEL API.
Technical Report B-17-98, Freie Universit at Berlin,
Institut fir Informatik, April 2001.

A. Dinning and E. Schonberg. Detecting access anoma-
lies in programs with critical sections. In In Proceed-
ings of the ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, May 1991.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Rea-
soning about Knowledge. MIT Press, 1995.

C. J. Fidge. Partial orders for parallel debug-
ging. In Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debug-
ging (WPDD’88), pages 183-194. ACM, 1988.

C. Flanagan and S. N. Freund. Atomizer: a dy-
namic atomicity checker for multithreaded programs.
In Proceedings of the 31st Symposium on Principles of
Programming Languages (POPL’04), pages 256-267,
2004.

K. Havelund and G. Rosu. Java PathExplorer — A run-
time verification tool. In The 6th International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion in Space: A New Space Odyssey, 2001.

K. Havelund and G. Rosu. Synthesizing monitors for
safety properties. In Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’02), vol-
ume 2280 of LNCS, pages 342—-356. Springer-Verlag,
2002.

M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-
MaC: a run-time assurance tool for Java. In Proceed-
ings of Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. El-
sevier Science, 2001.

M. Leucker. Logics for Mazurkiewicz traces. Technical
Report AIB-2002-10, RWTH, April 2002.

7. Manna and A. Pnueli. The Temporal Logic of Re-
active and Concurrent Systems. Springer-Verlag, New
York, 1992.

(17]

18]

(19]

[20]

(21]

(22]

23]

24]

(25]

[26]

27]

F. Mattern. Virtual time and global states of dis-
tributed systems. In M. C. et. al., editor, Proceedings
of the International Workshop on Parallel and Dis-
tributed Algorithms, pages 215-226. Elsevier Science,
1989.

B. Meenakshi and R. Ramanujam. Reasoning about
message passing in finite state environments. In In-
ternational Colloquium on Automata, Languages and
Programming (ICALP’00), volume 1853 of Lecture
Notes in Computer Science, pages 487-498. Springer-
Verlag, 2000.

W. Penczek. A temporal approach to causal knowl-
edge. Logic Journal of the IGPL, 8(1):87-99, 2000.

W. Penczek and S. Ambroszkiewicz. Model checking
of causal knowledge formulas. In Workshop on Dis-
tributed Systems (WDS’99), volume 28 of Electronic
Notes in Theoretical Computer Science. Elsevier Sci-
ence, 1999.

R. Ramanujam. Local knowledge assertions in a chang-
ing world. In Theoretical Aspects of Rationality and
Knowledge (TARK’96), pages 1-14. Morgan Kauf-
mann, 1996.

G. Rosu and K. Sen. An instrumentation technique for
online analysis of multithreaded programs. In Work-
shop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD’04) (Satellite workshop of
IPDPS’04), Santa Fe, New Mexico, USA, April 2004.
IEEE digital library. Invited Lecture.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391-411, 1997.

K. Sen, G. Rosgu, and G. Agha. Runtime Safety Anal-
ysis of Multithreaded Programs. In 11th International
Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE’03), pages 337-346. ACM, September
2003.

K. Sen, G. Rosu, and G. Agha. Online efficient pre-
dictive safety analysis of multithreaded programs. In
Proceedings of 10th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS’04), volume 2988 of LNCS, pages
123-138, March 2004.

K. Sen, A. Vardhan, G. Agha, , and G. Rosu. Effi-
cient decentralized monitoring of safety in distributed
systems. In Proceedings of 26th International Confer-
ence on Software Engineering (ICSE’04), pages 418
427. IEEE, May 2004.

P. S. Thiagarajan and I. Walukiewicz. An expressively
complete linear time temporal logic for Mazurkiewicz
traces. In Twelth Annual IEEE Symposium on Logic
in Computer Science (LICS’97), pages 183-194, 1997.

A. Proof of Lemma 1: max(KVy[z], KVj[z]). Therefore, when KNOWL-
EDGEVECTOR algorithm updates KV;(e¥)[z] with

For any event e, let KV;(e) be the knowledge vector the maximum of K'V;(ef ~")[z] and KV;[x] just be-
associated with the thread ¢; after the event e. Sim- fore the event e¥, K'V;(e¥)[x] contains information
ilarly, let KV%(e) and KV¥(e) be the access knowl- about w, (k).

edge vector and write knowledge vector, respectively,
associated with the variable x after the event e. Let
e/ = w,(e) be the latest write event of x such that
¢’ < e. We show that KV;(e¥)[z] contains information

about z after the event w,(e¥), that is

4. e is read of y(# x): Then {ef '} U
{wy,(e¥)} is the set of all events that “happen-
before” (<) ek. If wy(ek) = ¢ (say)
belongs to thread t;, then KVJ'(e')[x] =
KV;(e')[z] by the KNOWLEDGEVECTOR algo-

o KV;(eF)[z].seq contains the number of writes to rithm. Therefore, after the event ef, when
the variable x till the event w,(ef) (including KV;(eF)[z] is updated by max(KVy[z], K V;[z]) or
wy(ef)), max(KV/ (e’)[z], KVi(eF~1[2]), KV;(eF) contains

the information about z which is latest after the

o KV;(ef)[x].val contains the value of z after the events ¢ and €51,

event w,(eF).

O
We prove this by induction by considering the fol-

lowing cases.

1. ef is write of x: Let KVj(eé»)[x].seq =

KV3(eh)[z].seq = KV (e})[z].seq = n, where €}
is the latest write event of = such that eé < ek If
we assume that our hypothesis holds for eé—, then n
is the number of writes to « till €} (including e!).
After the event e, since KNOWLEDGEVECTOR al-
gorithm sets KV;(eF)[z].seq = KV2(eF)[x].seq =
KV¥(ek)[x].seq = n+1, KV;(eF)[z].seq equals the
number of writes to z till e (including e¥). More-
over, KV;(e¥)[z].val is updated by the value of =
written by e¥. Therefore, our hypothesis holds for

k

er.

2. ef is read of x: Let KVj(eé)[x].seq =
KVg(eé)[x].seq = KV;”(eé)[:E].seq = n, where eé» =
wy(eF). If we assume that our hypothesis holds
for eé, then n is the number of writes to z till eé-
(including eé-). After the event ¥, since KNOWL-
EDGEVECTOR algorithm sets KV;(e¥)[z].seq =
KVe(eF)[x].seq = n, KV;(e¥)[r].seq equals the
number of writes to z till ef. Therefore, our hy-
pothesis holds for ef.

3. el is write of y(# z): Let E = {e |
e read of y and e < eF}, then B/ = E U {ef '}
is the set of all events that “happen-before” (<)
ek. Therefore, w,(eF) is the latest event in the
set {w;(e) | e € E'}. By the KNOWLEDGEVEC-
TOR algorithm and induction hypothesis KV [z]
just before ef contains information about z after

the latest event in the set {w,(e) | e € E}. This

is because after every event e € E, if the event

belongs to thread t; then KVy[z] is updated with

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

