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Abstract 

 Real-time resource scheduling is an important factor for 
improving the performance of cluster computing. In many 
distributed and parallel processing systems, particularly 
real-time systems, it is desirable and more efficient for 
jobs to finish as close to a target time as possible. This 
work models the execution time for such a stochastic 
environment and proposes a dynamic algorithm for 
optimizing the job completion times by dynamically 
allocating resources to jobs that are behind schedule and 
taking resources from jobs that are ahead of schedule. We 
validate our analytical model with simulations that
represent the real computing environment. The results of 
our simulations show that our alternative is the best 
estimate to predict the time remaining by using earlier 
data. Emphasis is placed on where variance enters the 
system and how well it can be controlled. Also our 
dynamic algorithm involves modifying the architecture to 
help reduce the peak number of servers used to execute a 
job and thus optimize the computation cost. 

I. INTRODUCTION

  Being able to make accurate estimates of how long a job 
will take to finish in a distributed cluster computing 
environment is of primary interest in the performance 
community. In such an environment, multiple servers (also 
called processing elements or PEs) work on executing the 
tasks that make up a job. In many situations it is desirable 
to have a job complete at or near a specific time, called a 
Target Time. Target times are related to deadlines in that 
the average completion time should be at the target time 
but the average completion time should be a number of 
standard deviations before the deadline, the number of 
standard deviations determines the probability of missing 
the deadline. Deviation from the each side of the mean 
target time is undesirable - finishing too late is obviously 
undesirable because it misses the deadline, but finishing 
too early is also undesirable because the job wastes 
resources that could have helped another job finish within 
its deadline. Finishing far ahead of or behind a target time 
may also be undesirable if two jobs are linked and the first 

finisher considers the later one "failed" after too long a delay, 
even if the delay was large because the first finished so early. 
Jobs may have deadlines because they are part of a real-time 
application and results after the deadline are useless. Jobs may 
also have deadlines because they are part of a dependable 
system that will initiate failure recovery procedure or job 
reassignment if the deadline passes without results. In the later 
case, reducing the variance around the target time allows 
tighter timeout bounds and therefore faster response to 
failures.  
  When the task times of a job are known beforehand, an 
optimal schedule can be found, though finding it may be 
computationally complex. When the tasks times of a job are 
only known probabilistically, then there is no hope for an 
optimal solution, but one looks, instead, for schemes that will 
do well on average. There are many reasons why task times 
vary - the node processing a task may fail and restart, the node 
may slow down because it is sharing cycles with another 
process, the task may employ a randomized algorithm, or the 
task time may simply depend on the data. Regardless of why, 
task times vary in many situations and systems must be 
designed to perform well despite the variation. Building a 
dependable cost efficient computing environment will require 
achieving two constraints: optimizing the number of servers 
used to finish the job and making the job execution time as 
close as possible to the deadline by decreasing the variance. 
To achieve our goals, we developed an algorithm for Dynamic 
Recourse Allocation that we refer to as DAA. 
  The remaining of this paper is organized as follows: In 
section 2, we present a literature survey about previous efforts 
related to the topic and we explain our motivation. We build 
the analytical model and formulate the problem in section 3, 
then we present methodology and algorithm in section 4. In 
section 5, we talk about the simulation that represents the real 
world for our model. Then, in section 6, we discuss the 
simulation results and evaluation criteria of the algorithm. 
Finally, in section 7, we propose some topics for further 
investigation, and we conclude in section 8. 

II. BACKGROUND AND MOTIVATION

 
  The multiprocessor load balancing problem was studied by 
several researchers but nobody gave a best estimate solution to 
the problem yet. For example, in [1], the authors discuss the 
possibility of load rebalancing by assuming that they know the 
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size of existing jobs. But, because the computing 
environment is non-deterministic, this assumption is not 
very accurate because we can always have some jobs that 
are bigger than expected. Other researchers have used a 
genetic algorithm [2] & [3] for dynamic load-balancing 
[4]. But the problem with genetic algorithms is that they 
take a long time to converge so we do not recommend 
them for real time applications where we have jobs that 
consist of a small number of tasks. Also, the results of 
Monnier et al. [3] show that the GA algorithm shows 
slightly better results than the other clustering algorithms. 
The EDF algorithm was adopted as an optimal algorithm 
for meeting deadlines. However, this algorithm has its 
drawbacks in detecting deadline violations, as shown in 
[5]. Kwok and Ahmed [6] studied the static parallel 
scheduling by discussing the taxonomy of static parallel 
scheduling. Their focus on the static scheduling made their 
efforts partial because we will have a much better 
efficiency when we use the dynamic scheduling algorithm. 
This claim is supported by the work of Ramamritham et al. 
[10] who proposed different heuristics for solving the 
problem of dynamic scheduling and showed that the 
dynamic distributed scheduling improves the performance 
of real-time systems. Radulescu and Gemund [7] presented 
two low-cost approaches to compile-time list scheduling 
where the tasks' priorities are computed statically or 
dynamically for homogeneous systems. These two 
algorithms, FCP (Fast Critical Path) and FLB (Fast Load 
Balancing), have been shown to yield a performance 
equivalent to other algorithms with significantly higher 
costs, such as MCP and ETF (Earliest Task First). Amin 
shows in [8] modified versions that yield a good overall 
performance, which is generally comparable to algorithms 
specifically designed for heterogeneous systems, such as 
HEFT (Heterogeneous Earliest Finish Time) or ERT (these 
are versions of MCP and ETF, respectively, using the 
task's completion time as the task priority). Topcuoglu et 
al. [9] presented two scheduling algorithms; the 
Heterogeneous Earliest-Finish-Time (HEFT) algorithm 
and the Critical-Path-on-a-Processor (CPOP) algorithm, 
for a bounded number of heterogeneous processors with an 
objective to simultaneously meet high performance and 
fast scheduling time criteria. The HEFT algorithm selects 
the task with the highest upward rank value at each step 
and assigns the selected task to the processor, which 
minimizes its earliest finish time with an insertion-based 
approach. The CPOP algorithm uses the summation of 
upward and downward rank values for prioritizing tasks. 
  Most of the previous algorithms were not based on 
analytical models to represent the stochastic computing 
environment. Moreover, the CPU distribution times were 
shown to be Power-Tailed in [21] and [22] which implies a 
high variance in the execution time of each task. For a 
heavy tailed distribution, the average of the first k tasks is 
very likely to be less than the long-term mean even for 
sequential tasks. For this reason, we developed a Dynamic 
Resource Allocation Algorithm that uses schemes that 
relies on the past history rather than just the information 
from the current run. 

III. PROBLEM DESCRIPTION AND FORMULATION

  We consider a job made up of N independent tasks whose 
individual processing times are unknown but are taken from 

some distribution, F (x) = Pr(X ≤ x), with mean time x , and 

Coefficient of variation, C2
v =

2
σ / 2x . Then, from any book 

on probability, if the tasks must be executed one at a time, the 
mean time for the job to be finished will be:   

T = N x , 

with a variance of 
2

Nσ  = N 2
σ . 

Since the individual task time is not known until the task is 
done, we can only say that about two-thirds of the time the job 
will finish within the range: 
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This may not be a very useful estimate, but it's easy to 
calculate, and in any case it is the best we can do without more 
specific knowledge. Furthermore, it depends only on the mean 
and variance of the task-time distribution. 
  If the tasks can be executed in parallel, say P tasks at a time, 
then the problem complexity increases considerably. Let 
T(N;P) be the random variable denoting the time it takes to 
process N tasks on P processors. Only when P = N is there a 
general expression for the distribution of the job time, namely, 
from the theory of Order Statistics [24], 

Pr[T (N; N) ≤  x] = [F (x)]N                          (1) 

Obviously if all the tasks take exactly the same time (F (.) is 

the Deterministic Distribution), then the job time reduces to x . 
For all other distributions the mean time until all are finished 
will be longer than that, usually much longer. With one other 
exception, a tedious integration must be performed. That 
exception is the exponential distribution. In this case, it is well 
known that 

E[T (N; N )] = x H(N), 

Where H(N) is the harmonic sum, 

H(N) =  ∑
=

N

l l1

1
=> log(N) + γ ; 

Where γ is Euler's constant.  

The variance of time is: 

2
σ (N; N) = x H2(N) = x ∑
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Note that even though all N tasks start at the same time the 
last one to finish will take on the order of log(N) times 
longer than the mean. In other words, there will always be 
a straggler. It is also seen that most of the variance is 
contributed by the last few tasks. 
  If the number of tasks exceeds the number of processors, 
then the problem complexity gets much worse. Now, (1) is 
not even valid for the last P tasks because the last tasks all 
started at different times. In general the mean time to finish 
is very difficult to compute (see [13], and [21]). There are 
the usual two exceptions. If all tasks take exactly the same 
amount of time, then:   

E[T (N; P )] = x ⎥⎥

⎤
⎢⎢

⎡

P

N

While, if they are exponentially distributed it is:

E[T (N; P )] = x [
P

PN −
+H(P)]                  (2) 

with a variance of: 

2
σ  (N,P) = x

2

 [
2P

PN −
+H2(P)]                  (3)  

The progress achieved by the system in completing the job 
can be marked by noting the time when the lth task 
finishes. Let that be T(l|N,P), then for exponentially 
distributed task times and for l < N-P (number of 
remaining tasks is more than the number of servers P), 

E[T(l|N,P) ]= x
P

l
 = E[l-1|N,P] + 

P

x
,

while, for N-P ≤  l ≤  N (number of remaining tasks is less 
than the number of processors P),  

E[T(l|N,P) ] = E[l-1|N,P] + 
lN

x

−+1
 = 

x [
P

PN −
+H(P) –H(N-l)]    

where E[T(N|N,P)] = E[T(N,P)]. We see that the tasks 
finish at a steady rate until there are fewer than P tasks 
remaining, at which time the time between departures 
increases. The increase is only partly due to the fact that 
fewer tasks are available to use the resources. It is because 
longer tasks finish last. 
  These simple formulas are illustrative of what happens in 
all parallel and multitasking systems. For a period of time, 
tasks are completed at a steady rate, but then, as the job 
approaches its end, the time between task completions 
increases. More complicated systems, in addition, 
experience initial instability in which the first few tasks 
finish faster than the long-term average. Thus, the total job 

time can be broken up into three periods: the start-up or 
transient; steady-state, and the draining periods. For some 
useful model examples see [21]. Only if N >> P will the 

simple estimate of T(N,P) ≈ x N/P approach the actual mean 
job time. 
  The accumulated variance is at least as complicated. Even if 
E[T(N,P)] can be calculated accurately, a particular job 
execution could be too far away from the target time for 
completion to be acceptable. 
  We finally get to the question posed in this paper: can the 
job-time variance (or some other object function) be reduced? 
It has often been proposed that the system hardware can be 
dynamically modified to slow down or speed up the execution 
of a job if it is running ahead or behind schedule.
  But just what does “ahead of schedule" mean? Surely, 
observing that the actual time that a particular job took to 

finish its first l tasks was less than x l/P is not at all a good 
estimate that it is ahead of schedule. The longer time for 
draining must be anticipated. 
  We see, then, that two things are necessary before a dynamic 
procedure can be useful. First, the hardware (or appropriate 
software) must be changeable quickly and efficiently; second, 
there must exist a model which accurately marks the time for 
the completion of each epoch (e.g., E[T(l|N,P)] and the lth task 
completion in the simple case of exponential task times). Even 
if we can find these things, how much can we affect the 
performance? It was our goal to find out. Indeed, for our 
simple case, we found that the variance about the target time is 
smaller (by a factor of two or more compared with a static 
system), and does not get bigger with the number of tasks. But 
what if the model is not an exact predictor of the actual 
system? We explored this by assuming that the model was 
correct in form, but the task mean task time is not known. We 
then estimate the mean time using the time actually taken by 
the tasks that have finished, but based on the model's 
expectations. We found that there was no real difference with 
the case where the mean time is known beforehand. We leave 
for future studies the situation where the form of the model is 
not quite right (e.g., the task time distributions are inaccurate).  

IV. METHODOLOGY AND ALGORITHM

  We examine here the simplest of systems, yet what we find 
is applicable to more complicated systems, and even to other 
object functions (other than variance). Consider a (large) 
cluster of processors which are dynamically available on 
demand. On this cluster, we run a job made up of N
independent tasks whose demands for various resources are 
only known probabilistically. That is, the distribution of task 
demands (when averaged over many tasks) is known, but the 
demand by each task is not known until that task is finished. 
Our goal is to select a configuration of hardware resources 
[18] (e.g., CPU's, local discs, communication channels, 
centralized discs for shared data) so as to meet a target as 
closely as possible (not too early, and not too late) and reserve 
the minimum number of processors. Because the tasks can run 
in parallel (except, when sharing a resource), when a task 
finishes, the system configuration can be modified if the job is 



ahead or behind schedule. Determining which particular 
task is ahead or behind schedule is itself a complex 
problem because the task time is probabilistic. What makes 
the problem more complicated is that the variance of the 
average time is not the same during all phases of the 
execution time of the job. Since the tasks are executed in 
parallel, the average of the first k tasks is very likely to be 
less than the long-term mean, their difference decreasing 
as 1/k [13]. The reason for this is that the first few tasks to 
finish are likely to be much less than the mean, and new 
tasks may actually finish before some of those that started 
before them. That is, one can only consider those tasks that 
have already finished. Our approach is a best case scenario 
for meeting the job deadline as close as possible while 
maintaining a minimal average number of used processors. 
  When one task finishes, it leaves the system and is 
replaced by another task in the queue, until all N tasks 
finish. 
  The first step in our Dynamic Allocation Algorithm 
(DAA) is to determine just how many resources will be 
needed (e.g., the number of processors that are needed if 
each processor is used exclusively by one task) for the 

whole job to finish just on time. This is done by giving x
an initial (constant) value, x0, in Equation 2. At the time a 
task finishes, called an epoch, we compare the actual time 
from the simulation with that calculated by Equation 2, 
and if the job is not on schedule we change P so that the 
tasks remaining can still finish on time. If we find that the 
job is ahead of schedule, we decrease P by one; if we find 
that it is late, we increase P. 
  Our goal is to see just how much control can be 
maintained in such an uncertain environment. In particular, 
what is the variation of finishing time from job to job? 
  As a means for getting some insight as to just what kind 
of and how much data we should look at to achieve our 
goals, we have done an extensive study of the simplest 
system within our framework. Here we have P processors 
and no peripherals, there is an infinite pool of processors 
that can be allocated and de-allocated instantaneously 
without cost, the number of allocated processors does not 
alter the time it takes any task to run [23], and all the 
service times are exponentially distributed. Clearly this 
system cannot exist [11], we use it only to determine the 
best case bounds. In the Future Work section, we discuss 
more complicated systems, but the rest of this paper uses 
the simple best case just described. For this system, the 
mean time for N tasks to complete can be written down 
directly, without any detailed calculations. 

V. DESCRIPTION OF SIMULATION

  Now that we have a good analytical model representing 
our problem and an algorithm to resolve it, we are ready to 
write our simulations to verify that what we mentioned is 
accurate and is a representation of the real computing 
environment.  

  The DAA algorithm will be evaluated by comparing it with a 
Static Allocation Algorithm that uses a constant number of 
parallel processors for executing the tasks. The static 
algorithm is referred to as SAA.
  The simulation we wrote is an event driven simulation where 
each event corresponds to an epoch; it consists of a program 
with several components. One component, timeLeft, takes as 
input the number of processors in use and the number of tasks 
remaining and returns an estimate of the time to finish. This 
component is used by the procNeeded component which takes 
the time remaining before target time, and current number of 
processors and returns the new number of processors. 
  The logic of procNeeded is roughly as follows (logic for 
limiting number of processors to a specified upper bound, and 
passing the distribution and system configuration information 
is not shown here for readability):  

int ProcNeeded(oldProcCount, tasksLeft, 
timeLeft) 

newProc=oldProcCount-1 

WHILE (targetTime <  
timeLeft(newProc,tasksLeft) 
&& (newProc < tasksLeft +1)) 

newProc++ 
ENDWHILE 

RETURN newProc

Void oneRun(numProcs,numTasks) 

//Pick target time for Task & avg Proc 

targetTime=timeLeft(numProcs,numTasks) 
newProc=oldProc=numProcs 
timeNow=0 

//Load the first processors with tasks 

FOR (Task=0;Task < numProcs;Task++) 

 targetTime=timeLeft(numProcs ,numTasks ) 
 push_heap(taskList(Task)) 

NEXT Task 

//process until all tasks are finished 

DO WHILE (heap_size() > 0) 

  timeNow+=heap_pop 
  newProc=procNeeded(oldProc, numTasks 

- Task, targetTime-timeNow) 
  FOR (i=oldProc; i <= newProc; i++) 
    push_heap(timeNow+taskList(Task )) 
    Task++ 
  NEXT 
  oldProc=newProc 

LOOP 

 
  The body of timeLeft is the heart of our analytic model. For 
the simple case we focus on here, it reduces to Equation (2). 
Another component is the random number generator, taskList. 
It produces individual task times based on the task time 
distribution, or can be overridden to produce a specific 
sequence (and/or log all values produced) for program 
validation. The logic of this function is also not central to 
understanding the simulation, but it is important to note that it 



uses a 48 bit random number generator to prevent 
problems with the granularity of lower resolution random 
number generators. The simulator can be thought of as a 
heap structure that stores events such that the upcoming 
event most proximal in time is the top of the heap. A 
variable timeNow keeps track of where we are in the run. 
As with procNeeded, oneRun is simplified here to enhance 
readability. The logic for collecting measurements and 
passing additional information used for systems more 
complex than the one studied here has been removed.

VI. SIMULATION RESULTS

  We have carried out an exhaustive set of simulation 
calculations over several parameters. Since the results are 
consistent with each other we present only a few here and 
describe their connection with the others. 
  We use early observations and order statistics to estimate 
the moments of the underlying distribution - we remarked 
earlier that order statistics make estimating the mean 
difficult when parallel processors are involved. To test our 
algorithm in this case, we run our simulations on both 
cases where the mean time is known and unknown. In the 
case where we assume that the mean time is unknown, we 
let the simulation determine the time by taking the average 
of the previous elapsed epochs. For the case where we 

assumed the time known, we took x =1 in Equation 2, 
while for the second case,  

x = ∑
i

i

n

x
, where n is the number of elapsed epochs.

  In both cases, we found that the plots of the response time 
and variance behaves in the same way and almost overlap. 
We also remarked that increasing the number of processors 
at each epoch by more than one has only a slight 
improvement on the remaining time regardless of the 
number of tasks, so we stick to increasing the number of 
processors by one. Clearly the limitation on reducing the 
number of processors by only one makes sense because 
you don't want to discard the work of a processor with a 
task in progress.  
  The accompanying figures are for simulations of jobs 
with N = 64 tasks and a system that always starts with P = 
4. So the target time is TT = T(64|4;64) = 205/12 = 
17.0833 time units, where the initial average time per task 
is 1.0 time units. We then ran the simulation 200,000 
times, keeping a running average of the mean time left to 
target time after each task finishes as well as the variance. 
  Obviously P can never exceed the number of tasks 
remaining, and therefore our algorithm (and any other 
algorithm that can only change the number of processors 
running in parallel) becomes ineffective at that point. This 
is what we previously called the draining region. There are 
several things to be noted about this zone.  
  The mean draining time is given by H(P), and the 

variance is H2(P). Since H2(P) < 2
π /6 = 1:6449, we see 

that for the SAA algorithm, 30% of the variance of 

completion times is generated in this region. It would be less 
(more) if N were greater (smaller). For DAA, the influence of 
the draining zone is even more significant. We show this in 
the next three figures. 
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Figure 1. Time Remaining vs. Tasks Completed with 
variance, for both statically and dynamically allocated 
number of servers. The curves come averaging 200,000 
simulation runs. 
 
  In Figure 1 we plot the mean time to the target time for both 
SAA and DAA, as well as their running variances. Let n be 
the number of tasks that have already completed, then for 
SAA, the mean time remaining, Tr(n|P;N), and variance, 

2
σ (n|P;N), are known to be: 
for 0 < n < N - P, 

Tr(n|P;N) = T(P;N)-n/P  = 
P

PnN +−
 + H(P), 

for N - P < n < N; 
Tr(n/P;N) = H(P) - H(N - n), 

while 
σ

2(n|P;N) =n/P2   for n < N < P. 

  The SAA curves are exactly the plots of these equations. The 
time-remaining curve for DAA stays slightly ahead of 
schedule (slightly above the corresponding curve for SAA) 
until the draining region (n = 60), after which, the 2 curves 
coincide. The variance curves are quite different. Not only is 
DAA much smaller, but it actually decreases after n = 40, 
reaching its minimum at the beginning of the draining region 
σ

2
DAA(60) = 0.4586, while σ2

SAA(60) = 3.7433), after which it 
rises the same amount as SAA, to σ 2

DAA = 1.7983 versus σ
2

SAA(60) = 5.1795, almost a factor of 3 difference. 
  To see if what we observed in Figure 2 carries through for 
other values of N, we ran many other 200,000 simulations for 
different values of N. In Figure 2, we plot the distribution of 
the completion time for the last task for both SAA and DAA, 
with N = 64 and N = 128. This is the time from the start of the 
job until that task runs, so it is the total time for the job. 
Although it's not clear, none of the four curves are symmetric 



about their peaks, they are not quite Gaussian shaped. But 
rather, they all have an exponential tail on the negative 
side. This is due to the large impact of the draining region, 
in fact, of the last task. 
  The two SAA curves look very similar, differing by a 
factor of less than two because of the different variances as 
given by Equation (3). The striking result here is that the 
two DAA curves are virtually identical, even though they 
have distinctly different target times (17.0833 versus 
33.0833). In fact, their variances differ by only 4% (1.7983 
versus 1.8821). This is quite extraordinary, and implies 
that the variance of the completion time of a job made up 
of N tasks, executed under DAA, is independent of N as 
long as the target time is given by Equation (2) with fixed 
P. The simulations also show that the variance of the 
execution time for our algorithm decreases as the job 
approaches the completion time and this is independent of 
the number of tasks per job. 
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Figure 2. Distribution of completion time for the 
last task for both statically and dynamically allocated 
number of servers, with number of tasks = 64 and 
128. For dynamically allocated servers, the plots 
align almost perfectly. 
 
  To show that the asymmetry of the curves in Figure 2 is 
due to the draining region, in Figure 3 we plot the 
distribution of the completion time for the fourth from the 
last task, i.e., just before the draining period begins, and 
therefore the last one we can speed up by adding 
processors. All four curves are indeed symmetric, with 
variances that are smaller than those for the total time by 
almost the same amount of H2(4). In other words, all four 
cases behave the same in the draining region. These results 
demonstrate that the analytical model represents the 
simulation. 

VII. FUTURE WORK

  This paper is part of a larger work examining parallel 
systems with both analytical and simulation techniques.  
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Figure 3. Distribution of completion time for the 
fourth from last task for both statically and dynamically 
allocated number of processors, with number of tasks = 
64 and 128. 
 
There are many topics we are either already investigating or 
hope to investigate soon. Some of the topics are given below: 
Incorporating an allocation/de-allocation cost function into the 
allocation decision module - as we mentioned in the 
introduction, using zero cost allows us to find a best case 
bound, but for real systems there will be some cost and we 
would like to know how it changes the behavior of the system. 
The cost could be in the form of a time delay or some other 
metric, possibly with a similar metric for deviation from target 
time so a minimal cost could be found. 
  Incorporating resource contention - this research started as 
part of a larger work involving processor allocation in parallel 
systems with resource contention and will continue to grow in 
that direction. This is an area with rich potential that has been 
known about for years but not fully investigated [17]. 
  We want to experiment with a different average number of 
servers -our experiments have shown our technique controls 
the variance regardless of the average number of processors, 
but we don't yet know if the differences in variance are 
significant. We intend to run a large number of trials with 
different average number of processors and different task 
count/average processors ratios and see how consistent our 
results are across these conditions. Imposing a limit would 
allow a system using the DAA to schedule multiple jobs 
simultaneously using existing processor allocation algorithms 
as in [19] with only slight modification. 
  How much thrashing is there in processor allocation? Where 
in the job's life cycle does variation in the number of 
processors come? We would like to know how likely it is that 
a job that gets extra processors early in the run then has to 
release extras later or that a job that releases early has to 
acquire extras later. This behavior would be influenced by the 
allocation cost function described above, and might be a large 
concern in a real system. We could measure this by taking (at 
each task completion) the ratio of the number of changes to 
the peak number of processors and either the variance of the 
number of processors or the cumulative number of changes in 



number of processors. A high number in any of these 
metrics might be cause to include a damping function of 
some type. 

VIII. CONCLUSION

  We have examined the effect of varying the number of 
servers executing a job that has a specific target time and is 
made up of N iid (independent identically distributed) 
tasks whose individual demands are not known. Our 
algorithm involves calculating the expected time 
remaining after each epoch (task completion), and 
increasing or decreasing the number of processors if 
speedup or slowdown is suggested. We have found that, 
for both exponentially and non-exponentially distributed 
task times where the target time can usually be met with 
relatively few processors (N/P >> 1), the variance of the 
completion time about the target is much smaller than for a 
system where the number of processors is kept constant. 
Furthermore, we found the surprising result that this 
variance does not depend on the length of the job (N), even 
though the variance grows linearly for systems with a 
constant number of processors. The variance starts very 
small during the transient state, then it increases, then it 
decreases if we apply our dynamic algorithm, and finally it 
increases dramatically during the draining period when we 
have fewer tasks than we have processors. These results 
hold for non-exponential distributions, for multi-processor 
systems with server contention, and for systems where the 
expected remaining time is itself an approximation. The 
techniques presented here can improve real-time and time-
critical systems by reducing the chance of missing 
deadlines, dependable systems by both allowing tighter 
timeout bounds for detecting failures and compensating for 
load sharing based slowdowns, and shared processor pool 
systems by using no more resources than are actually 
needed. 
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