
Dynamic Resource Allocation of Computer Clusters
with Probabilistic Workloads

Marwan Sleiman, Lester Lipsky, Robert Sheahan
Department of Computer Science and Engineering

University of Connecticut
Storrs, CT 06269-2155

Email: {marwan, lester, roberts}@engr.uconn.edu

Abstract

 Real-time resource scheduling is an important factor for
improving the performance of cluster computing. In many
distributed and parallel processing systems, particularly
real-time systems, it is desirable and more efficient for
jobs to finish as close to a target time as possible. This
work models the execution time for such a stochastic
environment and proposes a dynamic algorithm for
optimizing the job completion times by dynamically
allocating resources to jobs that are behind schedule and
taking resources from jobs that are ahead of schedule. We
validate our analytical model with simulations that
represent the real computing environment. The results of
our simulations show that our alternative is the best
estimate to predict the time remaining by using earlier
data. Emphasis is placed on where variance enters the
system and how well it can be controlled. Also our
dynamic algorithm involves modifying the architecture to
help reduce the peak number of servers used to execute a
job and thus optimize the computation cost.

I. INTRODUCTION

 Being able to make accurate estimates of how long a job
will take to finish in a distributed cluster computing
environment is of primary interest in the performance
community. In such an environment, multiple servers (also
called processing elements or PEs) work on executing the
tasks that make up a job. In many situations it is desirable
to have a job complete at or near a specific time, called a
Target Time. Target times are related to deadlines in that
the average completion time should be at the target time
but the average completion time should be a number of
standard deviations before the deadline, the number of
standard deviations determines the probability of missing
the deadline. Deviation from the each side of the mean
target time is undesirable - finishing too late is obviously
undesirable because it misses the deadline, but finishing
too early is also undesirable because the job wastes
resources that could have helped another job finish within
its deadline. Finishing far ahead of or behind a target time
may also be undesirable if two jobs are linked and the first

finisher considers the later one "failed" after too long a delay,
even if the delay was large because the first finished so early.
Jobs may have deadlines because they are part of a real-time
application and results after the deadline are useless. Jobs may
also have deadlines because they are part of a dependable
system that will initiate failure recovery procedure or job
reassignment if the deadline passes without results. In the later
case, reducing the variance around the target time allows
tighter timeout bounds and therefore faster response to
failures.
 When the task times of a job are known beforehand, an
optimal schedule can be found, though finding it may be
computationally complex. When the tasks times of a job are
only known probabilistically, then there is no hope for an
optimal solution, but one looks, instead, for schemes that will
do well on average. There are many reasons why task times
vary - the node processing a task may fail and restart, the node
may slow down because it is sharing cycles with another
process, the task may employ a randomized algorithm, or the
task time may simply depend on the data. Regardless of why,
task times vary in many situations and systems must be
designed to perform well despite the variation. Building a
dependable cost efficient computing environment will require
achieving two constraints: optimizing the number of servers
used to finish the job and making the job execution time as
close as possible to the deadline by decreasing the variance.
To achieve our goals, we developed an algorithm for Dynamic
Recourse Allocation that we refer to as DAA.
 The remaining of this paper is organized as follows: In
section 2, we present a literature survey about previous efforts
related to the topic and we explain our motivation. We build
the analytical model and formulate the problem in section 3,
then we present methodology and algorithm in section 4. In
section 5, we talk about the simulation that represents the real
world for our model. Then, in section 6, we discuss the
simulation results and evaluation criteria of the algorithm.
Finally, in section 7, we propose some topics for further
investigation, and we conclude in section 8.

II. BACKGROUND AND MOTIVATION

 The multiprocessor load balancing problem was studied by
several researchers but nobody gave a best estimate solution to
the problem yet. For example, in [1], the authors discuss the
possibility of load rebalancing by assuming that they know the

1-4244-0054-6/06/$20.00 ©2006 IEEE

size of existing jobs. But, because the computing
environment is non-deterministic, this assumption is not
very accurate because we can always have some jobs that
are bigger than expected. Other researchers have used a
genetic algorithm [2] & [3] for dynamic load-balancing
[4]. But the problem with genetic algorithms is that they
take a long time to converge so we do not recommend
them for real time applications where we have jobs that
consist of a small number of tasks. Also, the results of
Monnier et al. [3] show that the GA algorithm shows
slightly better results than the other clustering algorithms.
The EDF algorithm was adopted as an optimal algorithm
for meeting deadlines. However, this algorithm has its
drawbacks in detecting deadline violations, as shown in
[5]. Kwok and Ahmed [6] studied the static parallel
scheduling by discussing the taxonomy of static parallel
scheduling. Their focus on the static scheduling made their
efforts partial because we will have a much better
efficiency when we use the dynamic scheduling algorithm.
This claim is supported by the work of Ramamritham et al.
[10] who proposed different heuristics for solving the
problem of dynamic scheduling and showed that the
dynamic distributed scheduling improves the performance
of real-time systems. Radulescu and Gemund [7] presented
two low-cost approaches to compile-time list scheduling
where the tasks' priorities are computed statically or
dynamically for homogeneous systems. These two
algorithms, FCP (Fast Critical Path) and FLB (Fast Load
Balancing), have been shown to yield a performance
equivalent to other algorithms with significantly higher
costs, such as MCP and ETF (Earliest Task First). Amin
shows in [8] modified versions that yield a good overall
performance, which is generally comparable to algorithms
specifically designed for heterogeneous systems, such as
HEFT (Heterogeneous Earliest Finish Time) or ERT (these
are versions of MCP and ETF, respectively, using the
task's completion time as the task priority). Topcuoglu et
al. [9] presented two scheduling algorithms; the
Heterogeneous Earliest-Finish-Time (HEFT) algorithm
and the Critical-Path-on-a-Processor (CPOP) algorithm,
for a bounded number of heterogeneous processors with an
objective to simultaneously meet high performance and
fast scheduling time criteria. The HEFT algorithm selects
the task with the highest upward rank value at each step
and assigns the selected task to the processor, which
minimizes its earliest finish time with an insertion-based
approach. The CPOP algorithm uses the summation of
upward and downward rank values for prioritizing tasks.
 Most of the previous algorithms were not based on
analytical models to represent the stochastic computing
environment. Moreover, the CPU distribution times were
shown to be Power-Tailed in [21] and [22] which implies a
high variance in the execution time of each task. For a
heavy tailed distribution, the average of the first k tasks is
very likely to be less than the long-term mean even for
sequential tasks. For this reason, we developed a Dynamic
Resource Allocation Algorithm that uses schemes that
relies on the past history rather than just the information
from the current run.

III. PROBLEM DESCRIPTION AND FORMULATION

 We consider a job made up of N independent tasks whose
individual processing times are unknown but are taken from

some distribution, F (x) = Pr(X ≤ x), with mean time x , and

Coefficient of variation, C2
v =

2
σ / 2x . Then, from any book

on probability, if the tasks must be executed one at a time, the
mean time for the job to be finished will be:

T = N x ,

with a variance of
2

Nσ = N 2
σ .

Since the individual task time is not known until the task is
done, we can only say that about two-thirds of the time the job
will finish within the range:

⎥
⎦

⎤
⎢
⎣

⎡
+−∈

N
x

N
x

N

T σσ
,

This may not be a very useful estimate, but it's easy to
calculate, and in any case it is the best we can do without more
specific knowledge. Furthermore, it depends only on the mean
and variance of the task-time distribution.
 If the tasks can be executed in parallel, say P tasks at a time,
then the problem complexity increases considerably. Let
T(N;P) be the random variable denoting the time it takes to
process N tasks on P processors. Only when P = N is there a
general expression for the distribution of the job time, namely,
from the theory of Order Statistics [24],

Pr[T (N; N) ≤ x] = [F (x)]N (1)

Obviously if all the tasks take exactly the same time (F (.) is

the Deterministic Distribution), then the job time reduces to x .
For all other distributions the mean time until all are finished
will be longer than that, usually much longer. With one other
exception, a tedious integration must be performed. That
exception is the exponential distribution. In this case, it is well
known that

E[T (N; N)] = x H(N),

Where H(N) is the harmonic sum,

H(N) = ∑
=

N

l l1

1
=> log(N) + γ ;

Where γ is Euler's constant.

The variance of time is:

2
σ (N; N) = x H2(N) = x ∑

=

N

l l1
2

1
< x 2

6

2
π

Note that even though all N tasks start at the same time the
last one to finish will take on the order of log(N) times
longer than the mean. In other words, there will always be
a straggler. It is also seen that most of the variance is
contributed by the last few tasks.
 If the number of tasks exceeds the number of processors,
then the problem complexity gets much worse. Now, (1) is
not even valid for the last P tasks because the last tasks all
started at different times. In general the mean time to finish
is very difficult to compute (see [13], and [21]). There are
the usual two exceptions. If all tasks take exactly the same
amount of time, then:

E[T (N; P)] = x ⎥⎥

⎤
⎢⎢

⎡

P

N

While, if they are exponentially distributed it is:

E[T (N; P)] = x [
P

PN −
+H(P)] (2)

with a variance of:

2
σ (N,P) = x

2

 [
2P

PN −
+H2(P)] (3)

The progress achieved by the system in completing the job
can be marked by noting the time when the lth task
finishes. Let that be T(l|N,P), then for exponentially
distributed task times and for l < N-P (number of
remaining tasks is more than the number of servers P),

E[T(l|N,P)]= x
P

l
 = E[l-1|N,P] +

P

x
,

while, for N-P ≤ l ≤ N (number of remaining tasks is less
than the number of processors P),

E[T(l|N,P)] = E[l-1|N,P] +
lN

x

−+1
 =

x [
P

PN −
+H(P) –H(N-l)]

where E[T(N|N,P)] = E[T(N,P)]. We see that the tasks
finish at a steady rate until there are fewer than P tasks
remaining, at which time the time between departures
increases. The increase is only partly due to the fact that
fewer tasks are available to use the resources. It is because
longer tasks finish last.
 These simple formulas are illustrative of what happens in
all parallel and multitasking systems. For a period of time,
tasks are completed at a steady rate, but then, as the job
approaches its end, the time between task completions
increases. More complicated systems, in addition,
experience initial instability in which the first few tasks
finish faster than the long-term average. Thus, the total job

time can be broken up into three periods: the start-up or
transient; steady-state, and the draining periods. For some
useful model examples see [21]. Only if N >> P will the

simple estimate of T(N,P) ≈ x N/P approach the actual mean
job time.
 The accumulated variance is at least as complicated. Even if
E[T(N,P)] can be calculated accurately, a particular job
execution could be too far away from the target time for
completion to be acceptable.
 We finally get to the question posed in this paper: can the
job-time variance (or some other object function) be reduced?
It has often been proposed that the system hardware can be
dynamically modified to slow down or speed up the execution
of a job if it is running ahead or behind schedule.
 But just what does “ahead of schedule" mean? Surely,
observing that the actual time that a particular job took to

finish its first l tasks was less than x l/P is not at all a good
estimate that it is ahead of schedule. The longer time for
draining must be anticipated.
 We see, then, that two things are necessary before a dynamic
procedure can be useful. First, the hardware (or appropriate
software) must be changeable quickly and efficiently; second,
there must exist a model which accurately marks the time for
the completion of each epoch (e.g., E[T(l|N,P)] and the lth task
completion in the simple case of exponential task times). Even
if we can find these things, how much can we affect the
performance? It was our goal to find out. Indeed, for our
simple case, we found that the variance about the target time is
smaller (by a factor of two or more compared with a static
system), and does not get bigger with the number of tasks. But
what if the model is not an exact predictor of the actual
system? We explored this by assuming that the model was
correct in form, but the task mean task time is not known. We
then estimate the mean time using the time actually taken by
the tasks that have finished, but based on the model's
expectations. We found that there was no real difference with
the case where the mean time is known beforehand. We leave
for future studies the situation where the form of the model is
not quite right (e.g., the task time distributions are inaccurate).

IV. METHODOLOGY AND ALGORITHM

 We examine here the simplest of systems, yet what we find
is applicable to more complicated systems, and even to other
object functions (other than variance). Consider a (large)
cluster of processors which are dynamically available on
demand. On this cluster, we run a job made up of N
independent tasks whose demands for various resources are
only known probabilistically. That is, the distribution of task
demands (when averaged over many tasks) is known, but the
demand by each task is not known until that task is finished.
Our goal is to select a configuration of hardware resources
[18] (e.g., CPU's, local discs, communication channels,
centralized discs for shared data) so as to meet a target as
closely as possible (not too early, and not too late) and reserve
the minimum number of processors. Because the tasks can run
in parallel (except, when sharing a resource), when a task
finishes, the system configuration can be modified if the job is

ahead or behind schedule. Determining which particular
task is ahead or behind schedule is itself a complex
problem because the task time is probabilistic. What makes
the problem more complicated is that the variance of the
average time is not the same during all phases of the
execution time of the job. Since the tasks are executed in
parallel, the average of the first k tasks is very likely to be
less than the long-term mean, their difference decreasing
as 1/k [13]. The reason for this is that the first few tasks to
finish are likely to be much less than the mean, and new
tasks may actually finish before some of those that started
before them. That is, one can only consider those tasks that
have already finished. Our approach is a best case scenario
for meeting the job deadline as close as possible while
maintaining a minimal average number of used processors.
 When one task finishes, it leaves the system and is
replaced by another task in the queue, until all N tasks
finish.
 The first step in our Dynamic Allocation Algorithm
(DAA) is to determine just how many resources will be
needed (e.g., the number of processors that are needed if
each processor is used exclusively by one task) for the

whole job to finish just on time. This is done by giving x
an initial (constant) value, x0, in Equation 2. At the time a
task finishes, called an epoch, we compare the actual time
from the simulation with that calculated by Equation 2,
and if the job is not on schedule we change P so that the
tasks remaining can still finish on time. If we find that the
job is ahead of schedule, we decrease P by one; if we find
that it is late, we increase P.
 Our goal is to see just how much control can be
maintained in such an uncertain environment. In particular,
what is the variation of finishing time from job to job?
 As a means for getting some insight as to just what kind
of and how much data we should look at to achieve our
goals, we have done an extensive study of the simplest
system within our framework. Here we have P processors
and no peripherals, there is an infinite pool of processors
that can be allocated and de-allocated instantaneously
without cost, the number of allocated processors does not
alter the time it takes any task to run [23], and all the
service times are exponentially distributed. Clearly this
system cannot exist [11], we use it only to determine the
best case bounds. In the Future Work section, we discuss
more complicated systems, but the rest of this paper uses
the simple best case just described. For this system, the
mean time for N tasks to complete can be written down
directly, without any detailed calculations.

V. DESCRIPTION OF SIMULATION

 Now that we have a good analytical model representing
our problem and an algorithm to resolve it, we are ready to
write our simulations to verify that what we mentioned is
accurate and is a representation of the real computing
environment.

 The DAA algorithm will be evaluated by comparing it with a
Static Allocation Algorithm that uses a constant number of
parallel processors for executing the tasks. The static
algorithm is referred to as SAA.
 The simulation we wrote is an event driven simulation where
each event corresponds to an epoch; it consists of a program
with several components. One component, timeLeft, takes as
input the number of processors in use and the number of tasks
remaining and returns an estimate of the time to finish. This
component is used by the procNeeded component which takes
the time remaining before target time, and current number of
processors and returns the new number of processors.
 The logic of procNeeded is roughly as follows (logic for
limiting number of processors to a specified upper bound, and
passing the distribution and system configuration information
is not shown here for readability):

int ProcNeeded(oldProcCount, tasksLeft,
timeLeft)

newProc=oldProcCount-1

WHILE (targetTime <
timeLeft(newProc,tasksLeft)
&& (newProc < tasksLeft +1))

newProc++
ENDWHILE

RETURN newProc

Void oneRun(numProcs,numTasks)

//Pick target time for Task & avg Proc

targetTime=timeLeft(numProcs,numTasks)
newProc=oldProc=numProcs
timeNow=0

//Load the first processors with tasks

FOR (Task=0;Task < numProcs;Task++)

 targetTime=timeLeft(numProcs ,numTasks)
 push_heap(taskList(Task))

NEXT Task

//process until all tasks are finished

DO WHILE (heap_size() > 0)

 timeNow+=heap_pop
 newProc=procNeeded(oldProc, numTasks

- Task, targetTime-timeNow)
 FOR (i=oldProc; i <= newProc; i++)
 push_heap(timeNow+taskList(Task))
 Task++
 NEXT
 oldProc=newProc

LOOP

 The body of timeLeft is the heart of our analytic model. For
the simple case we focus on here, it reduces to Equation (2).
Another component is the random number generator, taskList.
It produces individual task times based on the task time
distribution, or can be overridden to produce a specific
sequence (and/or log all values produced) for program
validation. The logic of this function is also not central to
understanding the simulation, but it is important to note that it

uses a 48 bit random number generator to prevent
problems with the granularity of lower resolution random
number generators. The simulator can be thought of as a
heap structure that stores events such that the upcoming
event most proximal in time is the top of the heap. A
variable timeNow keeps track of where we are in the run.
As with procNeeded, oneRun is simplified here to enhance
readability. The logic for collecting measurements and
passing additional information used for systems more
complex than the one studied here has been removed.

VI. SIMULATION RESULTS

 We have carried out an exhaustive set of simulation
calculations over several parameters. Since the results are
consistent with each other we present only a few here and
describe their connection with the others.
 We use early observations and order statistics to estimate
the moments of the underlying distribution - we remarked
earlier that order statistics make estimating the mean
difficult when parallel processors are involved. To test our
algorithm in this case, we run our simulations on both
cases where the mean time is known and unknown. In the
case where we assume that the mean time is unknown, we
let the simulation determine the time by taking the average
of the previous elapsed epochs. For the case where we

assumed the time known, we took x =1 in Equation 2,
while for the second case,

x = ∑
i

i

n

x
, where n is the number of elapsed epochs.

 In both cases, we found that the plots of the response time
and variance behaves in the same way and almost overlap.
We also remarked that increasing the number of processors
at each epoch by more than one has only a slight
improvement on the remaining time regardless of the
number of tasks, so we stick to increasing the number of
processors by one. Clearly the limitation on reducing the
number of processors by only one makes sense because
you don't want to discard the work of a processor with a
task in progress.
 The accompanying figures are for simulations of jobs
with N = 64 tasks and a system that always starts with P =
4. So the target time is TT = T(64|4;64) = 205/12 =
17.0833 time units, where the initial average time per task
is 1.0 time units. We then ran the simulation 200,000
times, keeping a running average of the mean time left to
target time after each task finishes as well as the variance.
 Obviously P can never exceed the number of tasks
remaining, and therefore our algorithm (and any other
algorithm that can only change the number of processors
running in parallel) becomes ineffective at that point. This
is what we previously called the draining region. There are
several things to be noted about this zone.
 The mean draining time is given by H(P), and the

variance is H2(P). Since H2(P) < 2
π /6 = 1:6449, we see

that for the SAA algorithm, 30% of the variance of

completion times is generated in this region. It would be less
(more) if N were greater (smaller). For DAA, the influence of
the draining zone is even more significant. We show this in
the next three figures.

10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Number of Finished Tasks

M
ea

n
tim

e
re

m
ai

ni
ng

Remaining finishing time for a start with 4 Processors and a Job of 64 tasks

Remaining time− Variable Servers
Variance of Remaining time −Variable Servers
Remaining time− 4 Servers
Variance of Remaining time −4 Servers

Figure 1. Time Remaining vs. Tasks Completed with
variance, for both statically and dynamically allocated
number of servers. The curves come averaging 200,000
simulation runs.

 In Figure 1 we plot the mean time to the target time for both
SAA and DAA, as well as their running variances. Let n be
the number of tasks that have already completed, then for
SAA, the mean time remaining, Tr(n|P;N), and variance,

2
σ (n|P;N), are known to be:
for 0 < n < N - P,

Tr(n|P;N) = T(P;N)-n/P =
P

PnN +−
 + H(P),

for N - P < n < N;
Tr(n/P;N) = H(P) - H(N - n),

while
σ

2(n|P;N) =n/P2 for n < N < P.

 The SAA curves are exactly the plots of these equations. The
time-remaining curve for DAA stays slightly ahead of
schedule (slightly above the corresponding curve for SAA)
until the draining region (n = 60), after which, the 2 curves
coincide. The variance curves are quite different. Not only is
DAA much smaller, but it actually decreases after n = 40,
reaching its minimum at the beginning of the draining region
σ

2
DAA(60) = 0.4586, while σ2

SAA(60) = 3.7433), after which it
rises the same amount as SAA, to σ 2

DAA = 1.7983 versus σ
2

SAA(60) = 5.1795, almost a factor of 3 difference.
 To see if what we observed in Figure 2 carries through for
other values of N, we ran many other 200,000 simulations for
different values of N. In Figure 2, we plot the distribution of
the completion time for the last task for both SAA and DAA,
with N = 64 and N = 128. This is the time from the start of the
job until that task runs, so it is the total time for the job.
Although it's not clear, none of the four curves are symmetric

about their peaks, they are not quite Gaussian shaped. But
rather, they all have an exponential tail on the negative
side. This is due to the large impact of the draining region,
in fact, of the last task.
 The two SAA curves look very similar, differing by a
factor of less than two because of the different variances as
given by Equation (3). The striking result here is that the
two DAA curves are virtually identical, even though they
have distinctly different target times (17.0833 versus
33.0833). In fact, their variances differ by only 4% (1.7983
versus 1.8821). This is quite extraordinary, and implies
that the variance of the completion time of a job made up
of N tasks, executed under DAA, is independent of N as
long as the target time is given by Equation (2) with fixed
P. The simulations also show that the variance of the
execution time for our algorithm decreases as the job
approaches the completion time and this is independent of
the number of tasks per job.

−20 −15 −10 −5 0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000
Distributions of finishing time

128 jobs − Variable Servers
64 jobs − Variable Servers
128 jobs − 4 Servers
64 jobs − 4 Servers

Figure 2. Distribution of completion time for the
last task for both statically and dynamically allocated
number of servers, with number of tasks = 64 and
128. For dynamically allocated servers, the plots
align almost perfectly.

 To show that the asymmetry of the curves in Figure 2 is
due to the draining region, in Figure 3 we plot the
distribution of the completion time for the fourth from the
last task, i.e., just before the draining period begins, and
therefore the last one we can speed up by adding
processors. All four curves are indeed symmetric, with
variances that are smaller than those for the total time by
almost the same amount of H2(4). In other words, all four
cases behave the same in the draining region. These results
demonstrate that the analytical model represents the
simulation.

VII. FUTURE WORK

 This paper is part of a larger work examining parallel
systems with both analytical and simulation techniques.

−20 −15 −10 −5 0 5 10 15 20
0

5000

10000

15000
Distributions of the elapsed time of last points in the parrallel phase

128 jobs − Variable Servers
64 jobs − Variable Servers
128 jobs − 4 Servers
64 jobs − 4 Servers

Figure 3. Distribution of completion time for the
fourth from last task for both statically and dynamically
allocated number of processors, with number of tasks =
64 and 128.

There are many topics we are either already investigating or
hope to investigate soon. Some of the topics are given below:
Incorporating an allocation/de-allocation cost function into the
allocation decision module - as we mentioned in the
introduction, using zero cost allows us to find a best case
bound, but for real systems there will be some cost and we
would like to know how it changes the behavior of the system.
The cost could be in the form of a time delay or some other
metric, possibly with a similar metric for deviation from target
time so a minimal cost could be found.
 Incorporating resource contention - this research started as
part of a larger work involving processor allocation in parallel
systems with resource contention and will continue to grow in
that direction. This is an area with rich potential that has been
known about for years but not fully investigated [17].
 We want to experiment with a different average number of
servers -our experiments have shown our technique controls
the variance regardless of the average number of processors,
but we don't yet know if the differences in variance are
significant. We intend to run a large number of trials with
different average number of processors and different task
count/average processors ratios and see how consistent our
results are across these conditions. Imposing a limit would
allow a system using the DAA to schedule multiple jobs
simultaneously using existing processor allocation algorithms
as in [19] with only slight modification.
 How much thrashing is there in processor allocation? Where
in the job's life cycle does variation in the number of
processors come? We would like to know how likely it is that
a job that gets extra processors early in the run then has to
release extras later or that a job that releases early has to
acquire extras later. This behavior would be influenced by the
allocation cost function described above, and might be a large
concern in a real system. We could measure this by taking (at
each task completion) the ratio of the number of changes to
the peak number of processors and either the variance of the
number of processors or the cumulative number of changes in

number of processors. A high number in any of these
metrics might be cause to include a damping function of
some type.

VIII. CONCLUSION

 We have examined the effect of varying the number of
servers executing a job that has a specific target time and is
made up of N iid (independent identically distributed)
tasks whose individual demands are not known. Our
algorithm involves calculating the expected time
remaining after each epoch (task completion), and
increasing or decreasing the number of processors if
speedup or slowdown is suggested. We have found that,
for both exponentially and non-exponentially distributed
task times where the target time can usually be met with
relatively few processors (N/P >> 1), the variance of the
completion time about the target is much smaller than for a
system where the number of processors is kept constant.
Furthermore, we found the surprising result that this
variance does not depend on the length of the job (N), even
though the variance grows linearly for systems with a
constant number of processors. The variance starts very
small during the transient state, then it increases, then it
decreases if we apply our dynamic algorithm, and finally it
increases dramatically during the draining period when we
have fewer tasks than we have processors. These results
hold for non-exponential distributions, for multi-processor
systems with server contention, and for systems where the
expected remaining time is itself an approximation. The
techniques presented here can improve real-time and time-
critical systems by reducing the chance of missing
deadlines, dependable systems by both allowing tighter
timeout bounds for detecting failures and compensating for
load sharing based slowdowns, and shared processor pool
systems by using no more resources than are actually
needed.

REFERENCES

[1] G Aggarwal, R. Motwani, The “Load Rebalancing Problem”,
Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures. Pages: 258 - 265. Year of
Publication: 2003
[2] The Genetic Algorithms Archive,
http://www.aic.nrl.navy.mil/galist/
[3] Y. Monnier, J.-P. Beauvais, and A.-M. Deplanche, "A genetic
algorithm for scheduling tasks in a real-time distributed system,"
presented at Proceedings 24th EUROMICRO Conference,
Vasteras, Sweden, 1998.
[4] A. Page and T Naughton, “Observations on Using Genetic
Algorithms for Dynamic Load-Balancing”, IEEE Transactions on
Parallel and Distributed Systems Pages: 899 – 911. Year of
Publication: 2001
[5] F. Golatowski, J. Hildebrandt, J. Blumenthal, and D.
Timmermann, “Framework for Validation, Test and Analysis of
Real-Time Scheduling Algorithms and Scheduler

Implementations”, 13th IEEE International Workshop on Rapid
System Prototyping (RSP'02). July 01 - 03, 2002.
[6] Y.-K. Kwok and I. Ahmad, "Benchmarking the task graph
scheduling algorithms," presented at Proceedings of the International
Parallel Processing Symposium, IPPS, Orlando, FL, USA, 1998.
[7] A. Radulescu and A. J. C. van Gemund, "Fast and effective task
scheduling in heterogeneous systems," presented at Proceedings 9th
Heterogeneous Computing Workshop (HCW 2000), Cancun,
Mexico, 2000.
[8] Alaa Amin, Ph.D. Dissertation. University of Connecticut, Storrs
CT. 12/31/04
[9] H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Performance-effective
and low-complexity task scheduling for heterogeneous computing,"
IEEE Transactions on Parallel and Distributed Systems, vol. 13, pp.
260-74, 2002.
[10] K. Ramamritham, J. A. Stankovic, and W. Zhao, "Distributed
scheduling of tasks with deadlines and resource requirements," IEEE
Transactions on Computers, vol. 38, pp. 1110-23, 1989.
[11] Bharadwaj, X Li, CC Ko, “On the influence of start-up costs in
scheduling divisible loads on bus networks”, IEEE Transactions on
Parallel and Distributed Systems, 2000
[12] Mark Crovella, Lester Lipsky, Pierre Fiorini, “Consequence of
Ignoring Self-Similar Data Traffic In Communications Modeling”,
Tenth International Conference on Parallel and Distributed
Computing (PDCS-97), New Orleans, LA, (October 1997)
[13] L. Lipsky, T. Zhang, and S. Kang, “On the Performance of
Parallel Computers: Order Statistics and Amdahls Law”, 22nd
International Conference for the Resource Management and
Performance Evaluation of Computing Systems (CMG96), December
1996
[14] G Manimaran, CSR Murthy, “An efficient dynamic scheduling
algorithm for multiprocessor real-time systems”, IEEE Transactions
on Parallel and Distributed Systems, 1998
[15] C McCann, J Zahorjan, “Processor allocation policies for
message-passing parallel computers”, Proceedings of the ACM
SIGMETRICS Conference, 1994
[16] Ahmed M. Mohamed, Lester Lipsky, Reda Ammar, “Modelling
Parallel and Distributed Systems With Finite Workloads”, Journal of
Performance Evaluation, October 2004.
[17] VGJ Peris, MS Squillante, VK Naik, “Analysis of the impact of
memory in distributed parallel processing systems”, ACM
SIGMETRICS Performance Evaluation Review Volume 22, Issue 1
(May 1994)
[18] E Rosti, G Serazzi, E Smirni, MS Squillante, “The impact of IO
on program behavior and parallel scheduling”, Proceedings of the
1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer, 56 - 65, 1998
[19] DD Sharma, DK Pradhan, “Job scheduling in mesh
multicomputers”, IEEE Transactions on Parallel and Distributed
Systems, Volume 9 , Issue 1, 57 - 70 (January 1998)
[20] Gehan Weeransinghe, Lester Lipsky, Imad Antonios, “A
Generalized Analytic Performance Model Of Distributed Systems
That Perform N Tasks Using P Fault-Prone Processors”, FTPDS-02,
Fort Lauderdale, Fla, April 2002.
[21] Lester Lipsky, “Queueing Theory - A Linear Algebraic
Approach, Maxwell Macmillan International publishing group, 1992.
[22] M. Greiner, M. Jobmann, and L. Lipsky, “The importance of
power-tail distributions for modeling queueing systems.” Operations
Research, 47(2), 1999.
[23] JC Jacob, SY Lee, “Task spreading and shrinking on
multiprocessor system and networks of workstations”, IEEE
Transactions on Parallel and Distributed Systems, 1999
[24] Herbert A. David and H. N. Nagaraja, “Order Statistics”, Wiley-
Interscience; 3 edition (July 25, 2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

