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ABSTRACT

Current software-based microarchitecture simulators are many

orders of magnitude slower than the hardware they simulate. Hence,

most microarchitecture design studies draw their conclusions from

drastically truncated benchmark simulations that are often inaccu-

rate and misleading. The Sampling Microarchitecture Simulation

(SMARTS) framework is an approach to enable fast and accurate

performance measurements of full-length benchmarks. SMARTS accel-

erates simulation by selectively measuring in detail only an appropri-

ate benchmark subset. SMARTS prescribes a statistically sound

procedure for configuring a systematic sampling simulation run to

achieve a desired quantifiable confidence in estimates.

Analysis of the SPEC CPU2000 benchmark suite shows that CPI can

be estimated to within ± 3% with 99.7% confidence by measuring

fewer than 50 million instructions per benchmark. In practice, inac-

curacy in microarchitectural state initialization introduces an addi-

tional uncertainty which we empirically bound to ~2% for the tested

benchmarks. We present two implementations of SMARTS that both

achieve an average error of only 0.64% on CPI. SMARTSim constructs

accurate model state through functional warming—continuously

warming large microarchitectural structures (e.g., caches and the

branch predictor) while functionally simulating the billions of

instructions between measurements—reducing average simulation

turnaround from 5.5 days to 7.0 hours. TurboSMARTSim replaces

functional warming with live-points—checkpoints that store a bare

minimum of functionally-warmed state for accurate simulation of a

limited execution window—further reducing average turnaround to

91 seconds.

1. INTRODUCTION

Computer architecture research routinely employs detailed cycle-

accurate simulation to explore and validate microarchitectural inno-

vations. Despite phenomenal improvement in processor performance

over the last decades, the disproportionate growth in the hardware

complexity that needs to be modeled has steadily eroded simulation

speed. Because of this trend, benchmark applications that are tuned to

run for minutes on real hardware can require over a month to execute

on today’s high performance microarchitecture simulators [1,8,20].

To mitigate prohibitively slow simulation speeds, researchers often

use abbreviated instruction execution streams of benchmarks as

representative workloads in design studies. More than half of the

papers in top-tier computer architecture conferences in 2002

presented performance claims extrapolated from abbreviated runs

[27]. Unfortunately, several studies [3,7,13,15] have concluded that

results based only on a single abbreviated execution stream are inac-

curate or misleading because they fail to capture global variations in

program behavior and performance.

To obtain accurate performance results representative of complete

benchmarks, many proposals have advocated statistical [3,14,15] or

profile-driven [7,13] simulation sampling. Simulation sampling

measures only chosen sections (called sampling units) from a bench-

mark’s full execution stream. The sections in between sampling units

are “fast-forwarded” using functional simulation that only maintains

programmer-visible architectural state, or skipped entirely by loading

architectural state from checkpoints.

Current proposals for simulation sampling suffer from several key

shortcomings. On the efficiency front, most proposals sample several

orders of magnitude more instructions than are statistically necessary

for their stated error [7,9,13,14,15]. This inefficiency is often rooted

in their excessively large sampling units, either to amortize the over-

head of reconstructing microarchitectural state or to capture coarse-

grain performance variations by brute force. On the accuracy front,

most proposals either do not offer tight error bounds on their perfor-

mance estimations [7,13,14,15], or require unrealistic assumptions

about the microarchitecture (e.g., perfect branch prediction or cache

hierarchies) [3].

Instead, we advocate the Sampling Microarchitecture Simulation

(SMARTS) framework [27] which applies statistical sampling theory to

address the shortcomings of prior simulation sampling approaches.

Unlike these approaches, SMARTS prescribes an exact and construc-

tive procedure for selecting a minimal subset from a benchmark’s

instruction execution stream to achieve a desired confidence interval.

SMARTS uses a measure of variability (coefficient of variation) to

determine the optimal sample that captures a program’s inherent vari-

ation. An optimal sample generally consists of a large number (e.g.,

10,000) of small sampling units (e.g., 1000 instructions each).

The key challenge in assessing such small sampling units lies in

reconstructing accurate microarchitectural state for unbiased

measurement after a checkpoint restore or an extended period of

functional fast-forwarding. We have designed and implemented two

alternative approaches to enable unbiased sample measurement. Our

first implementation, SMARTSim, avoids measurement error from

cold state by continuously warming large microarchitectural struc-

tures (e.g., caches and the branch predictor) while fast-forwarding

between measurements, a warming strategy referred to as functional

warming. Our accelerated implementation, TurboSMARTSim,

replaces functional warming with live-points—checkpoints that store

a bare minimum of functionally-warmed state for accurate simulation

of a limited execution window. Live-points enable faster simulation
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by eliminating all simulation time spent in functional warming—

typically over 99% of SMARTSim execution time—but require certain

design parameters of large microarchitectural structures to be chosen

when the live-points are created.

We evaluate the SMARTS framework with both functional warming

and live-points through simulators derived from SimpleScalar 3.0

sim-outorder [1]. Through simulation of two microarchitectures

executing the SPEC CPU2000 (SPEC2K) benchmarks, we show:

• Optimal sampling: Both implementations achieve an actual aver-

age error of only 0.64% on CPI by simulating fewer than 50 mil-

lion instructions in detail for each of the 41 SPEC2K benchmarks.

This represents an exceedingly small fraction of the complete

benchmark streams, which are 174 billion instructions on average

(Alpha ISA).

• Simulation speedup: On a 2 GHz Pentium 4, SMARTSim reduces

average simulation time to 7.0 hours from 5.5 days with sim-

outorder. SMARTSim achieves simulation speeds of over

9 MIPS. Live-point simulation sampling with TurboSMARTSim is

over 250 times faster than SMARTSim (on average 91 seconds per

benchmark). Although functional warming produces an aggregate

of 36 TB of state while sampling SPEC2K, a gzip-compressed

SPEC2K live-point library supporting 1 MB caches requires just

12 GB of storage.

This paper is organized as follows. Section 2 presents the methodol-

ogy used to collect all our empirical results. We present background

on the SMARTS simulation sampling framework in Section 3. In

Section 4, we motivate and describe our two practical warming tech-

niques for SMARTS: functional warming and live-points. In Section 5

we present performance analysis and results, and we describe related

work in Section 6. We conclude in Section 7.

2. METHODOLOGY

We derive our implementations of the SMARTS framework from the

SimpleScalar 3.0 sim-outorder simulator [1] for the Alpha ISA.

We modify sim-outorder’s memory subsystem to include a store

buffer and miss status holding registers (MSHRs), and model inter-

connect bottlenecks in the memory hierarchy. We encode live-points

using ASN.1 DER format [11] and gzip compression, which incur

minimal storage and processing time overhead. We use all 26

SPEC2K benchmarks [10] and evaluate all reference inputs except

vpr-place and three perlbmk inputs, as these inputs fail to simulate

correctly in sim-outorder. Overall, we include 41 benchmark/

input set combinations in this study.

Without loss of generality, we use CPI (cycles-per-instruction) as our

target metric for estimation. Simulation sampling, however, has been

shown to be applicable to other performance metrics of choice [27].

We measure CPI bias by averaging actual error (relative to full sim-

outorder simulations) over five different samples, according to

the methodology described in [27].

We evaluate two microarchitectural configurations. Our baseline 8-

way out-of-order superscalar model represents a processor in the

current technology generation. The 16-way out-of-order superscalar

configuration is included to reflect an aggressive future design point.

This configuration has a wider datapath, larger out-of-order window,

and larger caches, to exercise the effects of enlarged microarchitec-

tural state. The details of the 8-way and 16-way configurations are

summarized in Table 1.

3. THE SMARTS FRAMEWORK

SMARTS [27] applies statistical sampling theory [16] to find a mini-

mal, but representative, sample of a target workload to accurately

estimate performance metrics. Sampling theory further provides

means to quantify the confidence in the estimated results. In our

experience, the CPI (cycles per instruction) of SPEC2K benchmarks

on a 8-way superscalar processor can be estimated accurately to ±3%

error with 99.7% confidence from measurements of only a tiny frac-

tion (in the range of one hundredth of one percent) of the workload.

The most fundamental theorem of sampling theory is that the sample

size that must be measured to achieve a chosen confidence in estima-

tion depends only on the target metric’s coefficient of variation (stan-

dard deviation divided by mean; denoted as CV). Specifically, the

relationship between sample size, target confidence, and CV is

. In simulation sampling, sample size, n, refers to

the number of measurements taken over the course of the workload,

where each individual measurement is taken over a unit of U contigu-

ous instructions. The quantities z and  in the equation describe the

target confidence and confidence interval. For instance, to achieve

99.7% confidence of ±3% error, z = 3 and  = 0.03. In statistics

terms, confidence is the probability of the estimate falling within a

given interval around the true value.

Through careful application of this basic sampling theory, SMARTS

simulation sampling accomplishes the following:

• Minimal representative subset for detailed measurement.

A key insight in SMARTS’S application of sampling theory is in

understanding the relationship between CV and the sampling unit

size U. As U increases, short-term fluctuations of the perfor-

mance metric within a single measurement unit are averaged

away. Thus, the resulting CV across units reflects only the long-

term variation of the target metric. This leads to a lower CV, and

therefore lower n. In other words, increasing U trades off larger

measurements for fewer measurements. Our empirical study

(presented later) further shows that when U is very small, CV and

n are more sensitive to changing U. SMARTS can exploit this rela-

Table 1. Microarchitectural configurations.

Parameter 8-way (baseline) 16-way

RUU/LSQ size 128/64 256/128

Memory system 32KB 2-way L1I/D

2 ports, 8 MSHRs

1MB 4-way L2

16-entry store buffer

64KB 2-way L1I/D

4 ports, 16 MSHRs

4MB 8-way L2

32-entry store buffer

L1/L2 line size 32/128 bytes 32/128 bytes 

L1/L2/mem latency 1/12/100 cycles 2/16/100 cycles 

ITLB/DTLB 4-way 128 entries/

4-way 256 entries

200 cycle miss

4-way 128 entries/

4-way 256 entries

200 cycle miss

Functional units 4 I-ALU

2 I-MUL/DIV

2 FP-ALU

1 FP-MUL/DIV

16 I-ALU

8 I-MUL/DIV

8 FP-ALU

4 FP-MUL/DIV

Branch predictor Combined 2K tables

7 cycle mispred.

1 prediction/cycle

Combined 8K tables

10 cycle mispred.

2 predictions/cycle

n z CV
2

=



tionship to choose an optimal U to minimize the number of

instructions ( ) in the sample selected for detailed

measurement. No prior simulation sampling proposal has

achieved minimal measurement.

• Error bound and confidence in estimates.

SMARTS accompanies each estimated metric with a confidence

interval describing the amount of uncertainty in the result. These

confidence intervals are computed by collecting the CV of target

metrics, while performing a simulation sampling experiment. By

providing confidence intervals with results, SMARTS ensures that

the measured subset is representative with respect to the chosen

target metrics. These confidence intervals can also be used when

comparing results across experiments to ensure the measured

differences are statistically significant. Few studies presented in

recent computer architecture conferences report confidence inter-

vals or demonstrate the statistical significance of their results.

• Exact procedure for extracting framework parameters.

SMARTS provides an exact procedure for determining the correct

sample size n to achieve any desired confidence interval for a

new experiment on a new simulated hardware model or bench-

mark workload. This procedure requires only sampled simula-

tions, instead of complete simulations with a cycle-accurate

model or collection of profiling data. Typically, the desired confi-

dence interval can be attained with no more than two iterations of

simulation sampling. Specifically, in an initial simulation run,

researchers choose a likely n, based on our empirical analysis of

the behavior of CV, to achieve a target confidence. In the excep-

tional scenario where the chosen sample size is later proved

insufficient for the hardware model or workload, SMARTS will

report a correspondingly low confidence in the simulation

results. The resulting CV from the first simulation is substituted

back into the equation above to re-calculate a better choice of n to

repeat the simulation.

• Further sample size reduction for comparative studies. 

In comparative studies, researchers are often more interested in

the relative performance of two designs than absolute perfor-

mance. We can take advantage of this observation through a

sampling procedure called matched-pair comparison [6].

Matched-pair comparison exploits the phenomenon that the

change in performance from design x to design y tends to vary

less than the absolute performance of either design. As a result,

the change in performance can be assessed to a given confidence

with a sample up to an order of magnitude smaller than is

required for an absolute performance estimate. When applying

the SMARTS framework with live-points to a comparative study,

the sample size reduction from matched-pair comparison propor-

tionally reduces total simulation turnaround time.

SMARTS technique overview. SMARTS assumes an execution-driven

simulator that supports detailed simulation and functional simulation

(a.k.a. fast-forwarding). In the detailed mode all relevant microarchi-

tecture details are accounted for. Only programmer-visible architec-

tural state (e.g., architectural registers and memory) is updated in the

functional mode. Alternatively, the functional mode can be replaced

with architectural state loaded from checkpoints prepared with a prior

functional simulation. SMARTS alternates between detailed simula-

tion and functional simulation to sample CPI systematically at a fixed

interval. SMARTS uses systematic sampling rather than random

sampling because systematic sampling is more straight-forward to

implement in execution-driven simulators. For systematic sampling

at an interval k, beginning at offset j, SMARTS repeatedly alternates

between a functional simulation period of  instructions and

a detailed simulation/measurement period of U instructions. 

Empirical results. Figure 1 shows the results of our analysis of the

relationship between U and the CV when estimating CPI for SPEC2K

benchmarks on our 8-way microarchitecture. As the graph shows, the

CV curves for all SPEC2K benchmarks share a similar shape.

Initially, there is a steep downward slope. Then, at a pivotal value of

about 1000 instructions per unit, a majority of the short-term CPI

fluctuation is captured within the unit and the CV curves flatten.

Consequently, unit sizes around 1000 instructions result in minimal

measurement. At U=1000, the CV values cluster around 1.0. The

equation relating sample size to CV would suggest n=10,000 as a

good initial guess to achieve 99.7% ±3% confidence interval for all

SPEC2K benchmarks. In other words, SMARTS can estimate of CPI

for SPEC benchmarks to within 3% with 99.7% confidence by

measuring in detail only about 10 million instructions per bench-

mark. 

4. SMARTS IN PRACTICE

Although statistics provides us with probabilistic guarantees that esti-

mated results are representative, these guarantees do not assure us

that estimated results are error-free. Errors introduced into the indi-

vidual measurements that make up a sample (e.g., by the measure-

ment methodology) are referred to as bias, and are not accounted for

by statistical confidence calculations. In simulation sampling, the

most common cause of bias is the cold-start effect of unwarmed

microarchitectural structures. For example, assuming empty caches

may result in incorrectly low performance estimates.

The primary challenge in simulation sampling is to devise a strategy

to construct accurate initial state rapidly. For each measurement, the

simulator must construct both architectural state (e.g., register and

memory values) and microarchitectural state (e.g., pipeline compo-

nents and the cache hierarchy) to avoid cold-start bias. In the follow-

ing sections, we motivate and develop two simulation sampling

warming strategies, functional warming and live-points.

4.1 SMARTS with Functional Warming

The cold-start effect can be ameliorated by introducing a warming

period where W instructions are simulated in detail to refresh the

microarchitectural state just prior to the measurement of a sampling

unit [14]. We refer to this solution as detailed warming. Figure 2
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graphically illustrates how SMARTS alternates between functional

simulation of  instructions, detailed simulation of

W warming instructions (without measurement), and detailed simula-

tion and measurement of U instructions. Increasing W can gradually

reduce the bias below an acceptable threshold.

Unfortunately, detailed warming has two major shortcomings: (1)

detailed warming can be expensive because it increases the amount

of detailed simulation, and (2) in general the appropriate value of W

is difficult to derive analytically because some microarchitectural

state has extremely long history.

Between detailed simulation periods, select microarchitectural state

could instead be maintained by functional simulation with only a

small overhead. We refer to this warming approach as functional

warming. The cache hierarchies and branch predictors are prime

candidates for functional warming. By continuously warming

microarchitectural state with very long history, we can analytically

bound W for the remaining state to a manageably small value.

Effectiveness of detailed warming. Microarchitectural state can

always be warmed to an arbitrary degree of accuracy given sufficient

detailed warming. Unfortunately, the required amount of detailed

warming to obtain a given degree of accuracy cannot be determined

analytically. The required amount is a function of both the bench-

mark behavior and the microarchitectural mechanisms involved. As a

rule of thumb, we expect the amount of detailed warming to scale

with the size of the microarchitectural state; however, there are

counter-examples.

To better understand the requirements of detailed warming (unaided

by functional warming), we experimentally determine the minimum

acceptable value of W for the benchmarks with the 8-way configura-

tion such that the bias due to residual microarchitectural state error is

just below ±1.5%. (We choose U = 1000 and n sufficient for a 99.7%

confidence interval of ±3%.) In systematic sampling, the true bias is

the average error over all k possible systematic samples. Exact deter-

mination of bias is prohibitively expensive, since k is typically on the

order of 10,000 in this study. Therefore, we approximate the proce-

dure by averaging the errors of 5 evenly distributed systematic

sampling runs (i.e., j = {0, k/5, 2k/5, 3k/5, 4k/5}). Table 2 categorizes

the studied benchmarks according to their required values of W.

Without functional warming, the required W varies widely across

benchmarks and inputs. Many benchmarks are insensitive to the

accuracy of microarchitectural state, requiring less than 50,000

instructions of detailed warming per measurement period. For some

benchmarks, however, even W = 500,000 results in unacceptable

bias, as high as 25% for mgrid.

With the exception of the benchmarks requiring more than 500,000

instructions of detailed warming, detailed warming does not signifi-

cantly impact the simulation rate of SMARTSim. Even 500,000

instructions warmed per sampling unit is a small fraction of the full

benchmark. Nevertheless, Table 2 does highlight a key shortcoming

of the detailed-warming-only approach: the unpredictability of W.

Our empirical determination of W is impractical because it requires a

priori knowledge of the true unbiased CPI derived from prohibitively

time-consuming detailed simulation of complete benchmarks.

Bounding detailed warming. Functional warming helps redress the

unpredictability of W in detailed warming. Functional warming of

problematic microarchitectural state allows us to bound W safely for

the remaining state by analyzing the details of the microarchitecture

model. For example, to estimate CPI, W needs to be chosen such that

an instruction’s latency cannot be influenced by unwarmed microar-

chitectural state. This requires W to exceed the maximum instruction

stream distance that latency-influencing state can propagate.

An instruction can only affect the latency of another instruction if

there is some history of the former still present at the time the latter is

fetched. Outside of long-term architectural (register, memory, etc.)

and microarchitectural state (cache, TLB, branch predictor, etc.)

maintained by functional warming, the effects of an instruction are

bounded by the instruction’s lifetime in the microprocessor. With the

exception of store instructions, when an instruction commits, its asso-

ciated short-term state is freed. A committed store instruction that

misses in the cache might stall a later store instruction by causing the

store buffer to overflow. Hence, a worst-case bound on W is the

product of store-buffer depth, memory latency in cycles, and the

maximum IPC. For our 8-way configuration, this upper bound is

12,800 ( ) instructions. In practice, this worst-case

U k 1– W–

Figure 2. Systematic sampling as performed in SMARTS. Two modes of simulation are used: functional simulation, and detailed simulation. 

The need to determine warmup requirements for large structures, such as caches, is eliminated by performing continuous functional warming.

Table 2. Detailed warming requirements

without functional warming. (8-way)

W to achieve 

< 1.5% bias
Benchmarks

applu, apsi, art-1, art-2, eon-1, eon-2, 

equake, fma3d, gzip-1, gzip-2, gzip-3, 

gzip-4, lucas, mesa, sixtrack, twolf

crafty, eon-3, gap, gcc-1, gcc-3, gcc-4, mcf, 

swim, vortex-3, vpr

ammp, bzip2-1, bzip2-2, galgel, gcc-2, gcc-

5, gzip-5, vortex-1, vortex-2

bzip2-3, facerec, mgrid, parser, 

perlbmk, wupwise

W 50 10
3

W 250 10
3

W 500 10
3

W 500 10
3

16 100 8



behavior does not occur; all the 8-way results presented in this article

were achieved with only 2000 instructions of detailed warming, and

16-way results with 4000.

Effectiveness of functional warming. Even with both functional

and detailed warming, some inaccuracies in microarchitectural state

remain and contribute to errors in the estimates as bias. Table 3

reports the residual bias in the CPI estimated by SMARTSim when

functional warming is employed in conjunction with detailed

warming of the aforementioned values of W. Benchmarks are

presented in sorted-order by the worst bias. All benchmarks have bias

under ±2.0% and only 6 benchmarks in each configuration exceed

±1.0%. The bias is predominantly due to wrong-path and out-of-

order effects in caches and the branch predictor. This set of results

corroborates our conclusion that functional-warming with bounded

W is effective in reducing microarchitectural state warming bias.

4.2 SMARTS with Live-points

Unfortunately, as proposed, functional warming is a performance

bottleneck in simulation sampling [27]. Given typical cycle-accurate

simulation models (e.g., SimpleScalar sim-outorder [1]), the

performance measurement of a wide-issue out-of-order superscalar

processor using functional warming requires little detailed simula-

tion: typically about a minute on a modern host machine. However,

total runtime is orders of magnitude longer because the functional

warming between detailed windows dominates runtime, occupying

more than 99% of simulation runtime. Functional warming domi-

nates simulation time because the entire benchmark’s execution must

be functionally simulated, even though only a tiny fraction of the

execution is simulated using detailed microarchitecture timing

models.

Functional warming repeats architectural state updates across differ-

ent simulations of the same benchmark. Frequently, microarchitec-

tural state updates are also identical across runs. Checkpoints can

memoize the redundant calculation across runs, amortizing the one-

time cost of computing warmed state.

Although modern computer architecture simulators frequently

provide checkpoint creation and loading capabilities [1,8], current

checkpoint implementations: (1) do not provide complete microar-

chitectural model state, and (2) cannot scale to the required check-

point library size (~10,000 checkpoints per benchmark) because of

multi-terabyte storage requirements.

We address the first limitation of conventional checkpoints by storing

selected microarchitectural state in live-points, an approach we call

checkpointed warming. The key challenge of checkpointed warming

lies in storing microarchitectural state such that live-points can still

simulate the range of microarchitectural configurations of interest.

However, just as with functional warming, we can employ a brief

period of detailed warming to reconstruct state for the vast majority

of microarchitectural structures. By warming most structures dynam-

ically, we avoid storing any state for these structures, and do not

constrain model parameters that affect this state.

We reduce the size of conventional checkpoints by three orders of

magnitude through storing in live-points only the subset of state

necessary for limited execution windows, an approach we call live-

state. Live-state exploits the brevity of SMARTS sampling units (thou-

sands of instructions) to omit the vast majority of state. 

Checkpointed warming. The key concern in evaluating check-

pointed warming is the reusability of a set of checkpoints across a

series of experiments. Because checkpointed warming uses a full-

warming simulation to generate microarchitectural state for large

structures, its accuracy is identical to full warming. When the gener-

ated live-points can be used for at least two experiments, check-

pointed warming provides a net speed gain over full warming.

To maximize the reusability of live-points, we wish to place as few

constraints as possible on microarchitectural configuration. Check-

pointed warming dynamically reconstructs the vast majority of

microarchitectural structures (e.g., queues, ROB, etc.) through

detailed warming. As such, the configurations of these dynamically-

warmed structures are not constrained. For the remaining few struc-

tures, for which detailed warming requirements are large or cannot be

determined (e.g., caches and branch predictors), we store a represen-

tation of the structure in each live-point. The reusability of a live-

point library is limited by the flexibility of these representations.

There are two basic approaches to increasing live-point reusability.

First, we can collect state snapshots for multiple component configu-

rations in a single creation pass. The second, preferable approach is

to modify the saved representation such that a range of organizations

can be reconstructed when a live-point is loaded. However, we

cannot easily apply this adaptable approach to some structures, such

as modern branch predictors, and so we must store multiple warmed

configurations. Cache-like structures, including the TLB, can typi-

cally be stored using adaptable data structures.

Implementing checkpointed warming. Current publicly-available

computer architecture simulators already provide a checkpoint

creation and loading capability that allows the simulator to move to a

particular program trace location in constant time [1,8]. These check-

point implementations store only architecturally-visible system state

(i.e., memory, architectural register and peripheral device state). A

straightforward approach to implement checkpointed warming is to

extend these existing checkpoints with functionally-warmed microar-

chitectural state.

Unfortunately, this straightforward approach is not practical because

conventional checkpoints require prohibitive storage, proportional to

the total memory footprint of an application (up to 200MB for

SPEC2K [10]). We measured an average SPEC2K memory footprint

of 105 MB. Thus, for SMARTS samples (~10,000 measurements),

conventional checkpoints for all of SPEC2K require 33 TB of storage

(7.2 TB with gzip compression). With these checkpoint sizes, simu-

lations are I/O bound, and checkpointed warming can provide little, if

any, speedup over functional warming.

Table 3. CPI bias achieved with functional warming and minimal detailed warming.

8-way

W = 2000

vpr galgel gcc-2 bzip2-2 parser gzip-5 facerec gcc-5 vortex-3 gcc-1 avg. rest (abs)

-1.6% 1.4% -1.1% -1.0% 1.0% 0.9% 0.9% -0.8% -0.6% -0.5% 0.2%

16-way

W = 4000

mcf gcc-2 vortex-3 eon-2 gcc-5 sixtrack wupwise bzip2-1 applu mesa avg. rest (abs)

1.9% -1.6% 1.2% -1.1% -1.1% -0.9% 0.9% 0.8% 0.7% -0.6% 0.2%



Reducing storage with live-state. We can drastically reduce check-

point storage cost for live-points by storing only the state that will be

accessed during the brief simulation window, an approach we call

live-state. Because the detailed windows are just a few thousand

instructions, only a tiny subset of state is accessed. Simulation state

that is never referenced during measurement or detailed warming can

be omitted from the checkpoint without affecting the simulation.

The live-state approach stores the minimal set of accessed state for

each live-point’s specified simulation window. Live-points can accu-

rately simulate only the instructions within this pre-selected window.

The restriction to a pre-selected window does not impact simulation

sampling because the window locations and measurement/detailed

warming periods are specified in advance by the sample design.

We can identify precisely which instructions will commit during the

selected window when we construct a live-point. Thus, it is straight-

forward to identify all the memory and microarchitectural state these

instructions will access—generally less than 32 KB per live-point

(uncompressed, including ASN.1 encoding overhead).

However, we cannot identify the state that is accessed on non-

committed speculative paths (wrong-path instructions). It is not

possible to identify a priori the set of wrong-path instructions that

will execute in all future simulations at live-point creation time. To

do so requires either fixing all simulation parameters (queue sizes

and latencies), or exploring all possible speculative paths to the depth

they might be followed (as bounded by, for example, ROB size). The

former eliminates checkpoint reusability, while the latter requires

analysis that grows exponentially with speculation depth.

Effects of wrong-path instructions. Although the effects of wrong-

path instructions on the commit instruction stream are generally

small [2], they cannot be ignored given our tight bias goals. Errors in

wrong-path modeling cause the schedule of wrong-path execution to

differ from a simulation where all state is available, which in turn

perturbs the execution schedule of the commit instruction stream.

We measure the bias introduced if we restrict live-state to contain

only state accessed by correct path instructions. With restricted live-

state, we omit all architectural state (memory values) and microarchi-

tectural state (cache tags and branch predictor entries) that are not

accessed in the simulation window during live-point creation, leaving

this state uninitialized (effectively random). A live-point with

restricted live-state contains the smallest possible subset of state that

can still simulate correct-path instructions (but will not accurately

simulate wrong-path). Although the average bias increase for CPI is

only 0.1%, the worst case is 3.3%. Figure 3 shows the bias results for

the benchmarks with the most error.

Wrong-path instructions interact with the commit stream through

resource contention and in the cache tag arrays. In the vast majority

of cases, we can use branch predictor outcomes to identify the

wrong-path instruction sequence, and cache tag arrays to identify

wrong-path load latency. This information is sufficient to identify

contention and cache tag array updates arising from speculative

execution, without the need for the values accessed by wrong-path

loads.

In our live-state approach, we include the microarchitectural state

necessary to reflect wrong-path effects (branch predictor, cache tag

arrays, TLBs), but omit memory values unless they are accessed on

the correct-path. Figure 4 illustrates the contents and storage break-

down of an average live-point. By omitting the vast majority of

memory values, the live-state approach reduces storage requirements

from over 100 MB to 142 KB per live-point (uncompressed; assum-

ing cache hierarchy and branch predictor of our 8-way baseline).

Under this approach, unavailable memory values enter the microar-

chitecture (via a wrong-path load) on average less frequently than

once per detailed window. We measured no appreciable increase, <

0.1% difference, in CPI bias over full warming.

Comparison to functional warming. Unlike functional warming,

live-point simulation time is directly proportional to sample size.

Sample size depends only on a processor’s performance variability

across a benchmark’s execution, and the desired statistical confi-

dence [17,27]. Hence, live-point simulation turnaround time will not

increase with benchmark length.

The drawback of live-points is that they impose limits on some

aspects of the simulated microarchitectural parameters (e.g., the

maximum size or associativity of a cache), which constrains live-

point reusability. Reusability is important because we must amortize

the one-time cost of live-point creation (roughly the cost of a func-

tional warming simulation) over a series of experiments.

5. RESULTS

In this section, we compare the performance of functional warming,

live-points, and non-sampled simulation. We use each SMARTS

implementation to estimate the absolute CPI of our benchmark suite.

We choose sample sizes to achieve precisely 99.7% confidence of

±3% error for each result. Table 4 presents measured run-time results

for each warming approach, and non-sampled runs of the complete

benchmark with SimpleScalar’s sim-outorder. We show the

best, average, and worst runtimes for the two microarchitectural

configurations introduced in Section 2.

Live-points eliminate the turnaround time bottleneck caused by func-

tional warming, reducing average simulation time for SPEC2K

benchmarks from 7 hours to just 1.5 minutes (8-way baseline

microarchitecture). Live-point simulations often complete faster than

native execution of benchmarks on our host platform, which typically

requires several minutes per benchmark.
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Figure 3. Restricted live-state bias. If only correct-path state is 

stored, wrong-path instructions are not accurately simulated.

8-way

Figure 4. Breakdown of a typical live-point (uncompressed).

For comparison, a conventional checkpoint is 105 MB on average.

Register files, TLBs,
system call updates Branch predictor
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cache tags
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For both SMARTSim and sim-outorder, simulation time varies

linearly with benchmark length. Thus, we can expect simulation

times to grow with longer benchmarks. In contrast, runtime with live-

points depends on sample size, and thus CPI variability. We do not

observe any relationship between CPI variability and benchmark

length; therefore, we do not expect live-points’ runtimes to increase

for longer benchmarks.

Table 5 summarizes the characteristics of the warming approaches

evaluated in this paper. The table shows the live-point library sizes,

run times, and biases measured for each technique. Both functional

warming and live-points achieve the same bias. Table 5 also indicates

what microarchitecture model parameters must be fixed when live-

points are created. A live-point library restricts maximum cache and

TLB sizes and must include state for each branch predictor used in

subsequent simulations. However, other microarchitectural configu-

ration parameters are not fixed.

6. RELATED WORK

Many previous studies of simulation methodology present techniques

orthogonal to our work. A variety of programming techniques can

accelerate simulators by up to an order of magnitude without affect-

ing simulation results [4,24]. However, simulation of complete

benchmarks remains expensive. Construction and evaluation of short

synthetic benchmarks with statistical properties similar to target

workloads, commonly referred to as statistical simulation [18,19],

can reduce simulation time to seconds. However, increasing the

applicability, robustness and accuracy of these techniques remains an

active research topic [5,12].

Ringenberg et al. [23] present intrinsic checkpointing, a checkpoint

implementation that loads architectural state by instrumenting the

simulated binary rather than through explicit simulator support.

Unlike live-points, intrinsic checkpointing does not address microar-

chitectural state.

Our work builds upon previous work on simulation sampling.

Uniform simulation sampling was first proposed in the context of

trace-based cache simulation [14]. Conte et al. proposed using

sampling theory to calculate confidence of performance estimates

explicitly [3].

Other recent sampling proposals employ representative sampling

[7,13,22]. In representative sampling, program phases are identified

and a representative portion of each phase is measured. In contrast,

all population elements have equal probability of inclusion in the

sample under uniform sampling approaches.

The most prevalent representative sampling approach, SimPoint [7],

identifies phases based on microarchitecture-independent analysis of

the relative frequency of static basic blocks. Van Biesbrouck et al.

[25] apply a checkpointed warming approach similar to live-points to

accelerate SimPoint measurement. They report that checkpoint

libraries for SimPoint-derived samples typically require less storage

than high-confidence uniform samples (i.e., 99.7% confidence of

±3% error), whereas uniform samples simulate fewer instructions in

detail per benchmark (~30 million rather than ~300 million instruc-

tions) and result in shorter simulation turnaround. Our experiments

corroborate these results from this concurrent work. However, with

uniform sampling, we can reduce turnaround time and live-point

storage cost at the cost of reduced confidence. Existing representative

sampling techniques do not provide quantitative measures of confi-

dence with each result [26], and provide only a single option for

runtime, storage cost, and accuracy.

Live-points have been successfully integrated into the Liberty Simu-

lation Environment (LSE) by researchers at Princeton University

[21]. LSE is a computer architecture simulation infrastructure, which

models microarchitecture at a structural, rather than behavioral, level

of abstraction. As such, LSE models match hardware closely, but

simulation is an order of magnitude slower than sim-outorder.

Integration of live-points into LSE reduced typical simulation times

by up to 20x over functional warming. 

Table 4. Runtimes of SPEC2K benchmarks. We include the fastest and slowest runtimes to show the variability of each technique.

8-way (1MB L2) 16-way (4MB L2)

Minimum Average Maximum Minimum Average Maximum

sim-outorder 2.2 h
perlbmk

13 h
gcc-2

5.5 d 15 d
mgrid

24 d
parser

3.8 h
perlbmk

22 h
gcc-2

9.6 d 27 d
mgrid

42 d
parser

Functional Warming

(SMARTSim)

4.4 m
perlbmk

29 m
gcc-2

7.0 h 17 h
mgrid

25 h
parser

4.6 m
perlbmk

31 m
gcc-2

7.3 h 18 h
mgrid

26 h
parser

Live-points

(TurboSMARTSim)

1 s
swim

2 s
eon-2

91 s 5.0 m
vpr

12 m
ammp

13 s
swim

14 s
eon-2

7.6 m 25 m
vpr

1.3 h
ammp

Times are specified in days (d), hours (h), minutes (m), or seconds (s).

Table 5. Summary of simulation sampling warming methods.

Complete Simulation

(sim-outorder)

Functional Warming

(SMARTSim)

Live-points

(TurboSMARTSim)

Average (worst) CPI bias None 0.6% (1.6%) 0.6% (1.6%)

Average benchmark runtime 5.5 days 7.0 hours 91 seconds

SPEC2K checkpoint library size N/A N/A 12 GB (1 MB L2)

Fixed microarchitecture parameters None None Max cache, TLB, branch predictors



7. CONCLUSION

To address the need for improved simulation accuracy and perfor-

mance, we advocate the Sampling Microarchitecture Simulation

(SMARTS) framework that applies statistical sampling to microarchi-

tecture simulation. Unlike prior approaches to simulation sampling,

SMARTS prescribes an exact and constructive procedure for sampling

a minimal subset of a benchmark’s instruction execution stream to

estimate the performance of the complete benchmark with quantifi-

able confidence. The SMARTS procedure obviates the need for full-

stream simulation by basing the strategy for optimal simulation

sampling on the outcomes of fast sampling simulation runs.

We have described two alternative warming approaches that can be

combined with SMARTS to provide accurate performance estimation

with quantifiable statistical confidence bounds. Functional warming

lends itself to easy integration into simulators that already provided

functional simulation modes. We believe it is the best simulation

sampling warming approach when the architectural structures under

study have large warming requirements, thus making the application

of live-points difficult.

Live-points reduce microarchitecture simulation time to the limit

imposed by detailed simulation. Unlike functional warming, turn-

around time with live-points is independent of benchmark length,

depending only on the target metric’s variance. Therefore, live-points

enable simulation of benchmarks far longer than those used currently,

with no increase in simulation time. The live-state approach enables

checkpointed warming with reasonable storage requirements by

storing only necessary functionally-warmed state for several thou-

sand instructions of accurate performance simulation. A reusable

live-point library for SPEC2K requires only 12 GB.
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