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Abstract

Supporting scalable and efficient parallel programs
is a major challenge in parallel computing with the
widespread adoption of large-scale computer clusters
and supercomputers. One of the pronounced scalability
challenges is the management of connections between
parallel processes, especially over connection-oriented
interconnects such as VIA and InfiniBand.

In this paper, we take on the challenge of designing
efficient connection management for parallel programs
over InfiniBand clusters. We propose adaptive con-
nection management (ACM) to dynamically control the
establishment of InfiniBand reliable connections (RC)
based on the communication frequency between MPI
processes. We have investigated two different ACM al-
gorithms: an on-demand algorithm that starts with no
InfiniBand RC connections; and a partial static algo-
rithm with only 2 ∗ logN number of InfiniBand RC con-
nections initially. We have designed and implemented
both ACM algorithms in MVAPICH to study their bene-
fits. Two mechanisms have been exploited for the estab-
lishment of new RC connections: one using InfiniBand
unreliable datagram and the other using InfiniBand con-
nection management. For both mechanisms, MPI com-
munication issues, such as progress rules, reliability and
race conditions are handled to ensure efficient and light-
weight connection management. Our experimental re-
sults indicate that ACM algorithms can benefit paral-
lel programs in terms of the process initiation time, the
number of active connections, and the resource usage.
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grants from Intel, Mellanox, Cisco Systems and Sun MicroSystems;
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For parallel programs on a 16-node cluster, they can re-
duce the process initiation time by 15% and the initial
memory usage by 18%.

1. Introduction

Ultra-scale computing environments such as clusters
with multi-thousand processors [1] lead to many new
challenges in parallel programming, especially in their
requirements of supporting parallel programs over an
unprecedent number of processes. The MPI (Message
Passing Interface) standard [11] has evolved as a de facto
parallel programming model for these systems. Tradi-
tional research over MPI has been largely focused on
high performance communication between processes.
However, for parallel programs with thousands of pro-
cesses, another challenging issue is how to establish and
maintain the communication channels among thousands
of processes. Under such execution environment, even
how to get these programs launched gracefully can be a
major concern [4, 2, 7].

InfiniBand Architecture (IBA) [8] has been intro-
duced as an open standard in industry to design next gen-
eration high-end clusters for both data-center and high
performance computing. More and more large cluster
systems with InfiniBand are being deployed, such as the
5th, 20th, and 51th most powerful supercomputers as
listed in the November 2005 Top 500 list [1]. InfiniBand
provides four types of transport services: Reliable Con-
nection (RC), Reliable Datagram (RD), Unreliable Con-
nection (UC), and Unreliable Datagram (UD). Among
the four, the most commonly used service is RC due to
its high performance and RDMA capability.

MPI, on the other hand, does not specify any connec-
tion model, but assumes that all processes are logically
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connected and leaves the connection management spe-
cific issues to the lower device layer. For connection-less
interconnects, such as Quadrics [16] and Myrinet [12],
an MPI process can start MPI communication without
extra mechanisms to manage peer-to-peer connections.
On top of InfiniBand, however, for any pair of processes
to communicate over RC for its high performance and
RDMA capability, a pair of RC queue pairs (QPs) must
be created on each node with a connection established
between them. To enable high performance RDMA
fast path for small messages, additional RDMA receive
buffers also need to be provided for each connection.

Several of the most commonly used MPI implemen-
tations over InfiniBand, such as MVAPICH [13], set up
RC connections between every process pairs a priori.
Because of its connection-oriented nature, every process
needs to allocate a dedicated QP for each peer process.
This leads to quadratic increasing number of RC connec-
tions, e.g., 1024*1023 connections for a 1024-process
MPI program. These number of connections in turn lead
to prolonged startup time for the need of creating queue
pairs, exchanging connection information and establish-
ing connections. This also leads to heavy resource us-
age, taking into account of the memory needed for all
the QPs and their associated send and receive WQEs, as
well as RDMA send and receive buffers.

Table 1. Average number of communicating
peers per process in several large-scale appli-
cations (Courtesy of J. Vetter, et. al [17])
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In fact, research on communication characteristics
of parallel programs [17] indicates that not all pairs
of MPI processes communicate among each other with
equal frequency. Table 1 shows the average number
of communicating peers per process in some scien-
tific applications. The majority of process pairs do not
communicate between each other. Thus, maintaining
a fully-connected network not only leads to the afore-
mentioned scalability problems, but also negatively af-

fects the performance of the communicating processes.
This is because the MPI program has to continuously
check for potential messages coming from any process,
which drives the CPU away from attending to traffic
of the most frequently communicated processes and de-
stroys the memory cache locality that could be achieved
thereof. There have been discussions in the IBA commu-
nity to either provide only UD-based communication, or
RC on-demand via an out-of-band asynchronous mes-
sage channel. However, UD does not provide compa-
rable performance as RC; the processing of out-of-band
asynchronous messages will introduce the need of an-
other thread that contends for CPU with the main thread.
So these solutions can result in performance degrada-
tion. It remains to be systematically investigated what
connection management algorithms can be provided for
parallel programs over InfiniBand, and what are their
performance and scalability implications.

In this paper, we take on the challenge of provid-
ing appropriate connection management for parallel pro-
grams over InfiniBand clusters. We propose adaptive
connection management (ACM) to manage different
types of InfiniBand transport services. The time to es-
tablish and tear town RC connections is dynamically
decided based on communication statistics between the
pair of processes. New RC connections are established
through either an unreliable datagram-based mechanism
or an InfiniBand connection Management-based mecha-
nism. We have also studied strategies to overcome chal-
lenging issues, such as race conditions, message order-
ing and reliability, for the establishment new RC connec-
tions. The resulting ACM algorithms have been imple-
mented in MVAPICH [13] to support parallel programs
over InfiniBand. Our experimental data with NAS appli-
cation benchmarks indicate that ACM can significantly
reduce the average number of connections per process,
and it is also beneficial in improving the process initia-
tion time and reducing memory resource usage. Note,
one of the side effects of ACM is that it moves con-
nection establishment from the process initiation stage
into the actual critical path of parallel communication.
Our evaluation also indicates that ACM has little perfor-
mance impact to microbenchmarks and NAS scientific
applications since only very few connections are estab-
lished on the basis of frequent communication.

The rest of the paper is presented as follows. Sec-
tion 2 provides background information on InfiniBand
and its connection management interface. Section 3
and 4 describe ACM and the connection establishment
mechanisms in detail. Section 5 provides performance
results. Section 6 provides a brief review of the related



work. Section 7 concludes the paper.

2. Background

In this Section, we provide brief overviews of Infini-
Band architecture and its connection management inter-
face.

2.1. Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA) [8] is an open
specification designed for interconnecting compute
nodes, IO nodes and devices in a system area network.
As shown in Fig. 1, it defines a communication architec-
ture from the switch-based network fabric to transport
layer communication interface for inter-processor com-
munication. Processing nodes and I/O nodes are con-
nected as end-nodes to the fabric by two kinds of chan-
nel adapters: Host Channel Adapters (HCAs) and Target
Channel Adapters (TCAs). IBA supports communica-
tions in channel semantics with traditional send/receive
operations, as well as communications in memory se-
mantics with RDMA operations. RDMA operations al-
low one side of the communication parties to exchange
information directly with the remote memory without
the involvement of the remote host processors.

Fig. 1. The Switch Fabric of InfiniBand Architec-
ture (Courtesy InfiniBand Trade Association)

InfiniBand provides four types of transport services:
Reliable Connection (RC), Reliable Datagram (RD),
Unreliable Connection (UC), and Unreliable Datagram
(UD). The often used service is RC in the current In-
finiBand product and software. It is also our focus of
this paper. To support RC, a connection must be set
up between two QPs before any communication. In the
current InfiniBand SDK, each QP has a unique identi-
fier, called QP-ID. This is usually an integer. For net-
work identification, each HCA also has a unique a local
identifier (LID). One way to establish a connection is

to exchange the QP IDs and LIDs of a pair of QPs and
then explicitly program the queue pair state transitions.
Another way is to use InfiniBand connection manage-
ment interface as described later in Section 2.2. In the
IBA community, a new interface called RDMA CMA
(Connection Management Agent) has been proposed re-
cently [14]. RDMA CMA over IBA is derived on top of
IBCM, but provides an easy-to-use, portable, yet similar
approach for connection establishment. It is currently
available only in the OpenIB Gen2 stack. We plan to
study the benefits of RDMA CMA in our future work.

2.2. InfiniBand Connection Management

InfiniBand Communication Management (IBCM)
encompasses the protocols and mechanisms used to es-
tablish, maintain, and release different InfiniBand trans-
port services, such as RC, UC, and RD. Communication
Managers (CMs) inside IBCM set up QPs (or end-to-
end context for RD) upon calls to the IBCM interface.
CMs communicate with each other and resolve the path
to remote QPs through an address resolution protocol.
There are two models to establish a connection: one
is Active/Passive (also referred as client/server) model,
the other Active/Active (or peer-to-peer) model. In the
client/server model, the server side listens for connec-
tion requests with a service id; the client side initiates
a connection request with a matching service ID. In the
peer-to-peer model, both sides actively send connection
requests to each other, and a connection is established
if both requests contain matching service IDs. Com-
pared to the peer-to-peer model, the client/server model
is more mature in the current InfiniBand implementa-
tions, and is what we have studied in this paper.

ServerClient

 Call Connec t

 Call Lis ten

 Call Confirm

REQ

REP
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 Call Ac c ept

Create QP,
Modify to INIT

Create QP,
Modify to INIT

QP m odified to RT R
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Fig. 2. The Client/Server Model of IBCM
Fig 2 shows the diagram of the client/server model

of IBCM. The server begins to listen on a service ID.
A client then creates a QP and initiates a request (REQ)
to the server with a matching service ID. If the server



can match the service ID, a callback function is called
to create a QP, accept the client’s request, and confirm
the request with a reply (REP). When the client receives
the server’s reply indicating that its request is accepted,
a client-side callback handler is called, within which the
client confirms the establishment of a new connection
back to the server via a RTU (ready-to-use) message.
When the server receives RTU, the connection is then
ready for communication. In the client/server model,
QPs are created in an INIT state and progressed through
RTR (Ready-to-Receive) to RTS (Ready-to-Send) by
CMs as shown in the figure.

3. Adaptive Connection Management

Since different interconnects may have different soft-
ware and hardware capabilities and exhibit different
communication characteristics, the design of MPI [11]
in general leaves interconnect specific issues to ADI (ab-
stract device interface) implementations. For example,
MPI does not specify any connection model, but as-
sumes that all processes are logically connected. This
does not lead to complications for connection-less in-
terconnects, such as Quadrics [16] and Myrinet [12],
on which MPI process can start MPI communication
without extra care for managing peer-to-peer connec-
tions. InfiniBand [8], however, comes with a plethora
of transport services, from the typical connection-less
Unreliable Datagram (UD) to the high-performance
connection-oriented Reliable Connection (RC). Differ-
ent types of transport services come with different per-
formance qualities and different resource requirements.
Within a parallel application spanning thousands of par-
allel processes, a process potentially needs to handle
such resource requirements for a large number of con-
nections depending on the number of peers it is commu-
nicating with. On top of this, a scalable MPI implemen-
tation also needs to satisfy the memory requirements
from parallel applications. These complexities all need
to be handled within rigid resource constraints. There-
fore, when and how to enable what types of connections
is a very important design issue for scalable and high
performance MPI implementations.

To this purpose, we propose Adaptive Connec-
tion Management (ACM) to handle these complexi-
ties. There are two two different ACM algorithms: on-
demand and partially static. In the on-demand algo-
rithm, every process is launched without any RC con-
nections; in the partially static algorithm, each process
is initially launched with at most 2 ∗ logN of RC con-
nections to communicate with peers that have a rank dis-

tance of 2N from it. These initial 2 ∗ logN RC connec-
tions are meant to capture the frequent communication
patterns based on the common binary tree algorithms
used in many MPI collective operations. The main de-
sign objective of ACM is to manage InfiniBand transport
services in an adaptive manner according to the commu-
nication frequency and resource constraints of commu-
nicating processes. To this purpose, new RC connec-
tions are established only when a pair of processes have
exhibited a frequent communication pattern. In this pa-
per, this is decided when two processes have communi-
cated more than 16 (an adjustable threshold) messages.
Compared to the commonly used static connection man-
agement, ACM algorithms are designed to allow the
best adaptivity, while the partially static algorithm also
allows applications to pre-configure common commu-
nicating processes with RC connections at the startup
time. The rest of the section provides the design details
of ACM.

3.1. Designing ACM in MPI over InfiniBand

Fig. 3 shows a diagram about the intended ACM
functionalities in a typical MPI software stack. As
shown in the figure, ACM works in parallel with the
ADI’s channel interface (CH2), which is in charge of the
actual message communication functionalities. While
the channel interface mainly provides appropriate chan-
nels to transport messages based on their sizes and des-
tinations, ACM controls when to activate the transport
services of different performance capabilities and main-
tains the communication statistics of these channels.
Specifically, ACM manages the following information
about transport services over InfiniBand.

Abstraction Device Interface (ADI)

Internal MPI Architecture

Message Passing Interface

ManagementConnection Channel

Interface
Establishment Mechanisms

Existing ServicesStatistics

Communication Protocols

Fig. 3. Adaptive Connection Management in
MPI Software Stack

• Existing transport services – In ACM, each pro-
cess maintains information about which transport
services are available to reach peer processes. The
most commonly used InfiniBand transport services



are UD and RC. All processes start with a UD
queue pair, through which other processes can re-
quest the establishment of RC connections.

• Resource allocation and communication statis-
tics – Messages can be transmitted over the existing
transport services. The number of messages and the
total message size are recorded as communication
statistics, which determine when to set up new RC
connections. Future work can also introduce mech-
anisms to dismantle RC connections when some
processes are either quiescent or relatively less ac-
tive for a certain amount of time.

• Establishment mechanisms for new transport
services – Currently, we have exploited two dif-
ferent mechanisms for establishing new RC con-
nections over InfiniBand: (1) Connection estab-
lishment via UD-based QP-ID exchange; and (2)
IBCM-based RC connection establishment. In fu-
ture, we plan to study the benefits of RDMA CMA
for MPI connection management over the Infini-
Band Gen2 stack [14].

On-demand and partially static ACM algorithms can
use either connection establishment mechanisms to set
up new RC connections. In this work, we intend to study
combinations of ACM algorithms and connection estab-
lishment mechanisms to gain insights into the following
questions:

1. How much can the adaptive connection manage-
ment help on reducing the number of the connec-
tions for scientific applications?

2. What performance impact will the adaptive con-
nection management have?

3. How much can the adaptive connection manage-
ment help on reducing the process initiation time?

4. What benefits will the adaptive connection man-
agement have on the memory resource usage?

4. Connection Establishment

In this section, we describe the design of two mech-
anisms for connection establishment: UD-based and
IBCM-based mechanisms. Though these two mecha-
nisms have some similarities in their design issues, such
as progress rules and duplication avoidance, the strate-
gies to overcome them are different. The rest of the sec-
tion describes these issues separately in detail.

4.1. UD-Based Connection Establishment

Fig. 4 shows the diagram of UD-based connection
establishment. Upon frequent communication between
Proc A and Proc B, Proc A sends a request for new con-
nection to Proc B. Proc B responds with a reply to ac-
knowledge the request. A new connection is established
at the end of a three-way exchange of request, reply and
confirm messages. The actual scenario is more compli-
cated than what is shown in the diagram. We describe
the detailed design issues as follows:

Proc . A Proc . B

Reply (QP num ber, RDMA address)

 Confirm

Create QP,
Create RDMA
buffers  on proc .A

Reques t (QP num ber, RDMA address)

Create QP,
Create RDMA
buffers  on proc .B

Modify QP to RT S

Modify QP to RT R

Modify QP to RT R

Modify QP to RT S

Mark QP as  ac tive Mark QP as  ac tive

Fig. 4. UD-Based Connection Establishment

• Progress rules – When using UD-based connec-
tion management, an MPI process has to handle
extra UD messages for connection setup purposes.
To provide a clean and light-weight solution, we
provide a dedicated completion queue for UD mes-
sages. However, this completion queue is being
polled at a much reduced frequency compared to
the completion queue for regular data messages.
This is intended to reduce the extra burden on the
main MPI process for attending to extra traffic.

• Ordered reliable message delivery – Any of three
messages may get lost since they are sent over UD.
We introduce timeout-based retransmission to han-
dle such situations. However, this may also lead to
duplicated requests. For this problem, a sequence
number is introduced along with UD messages to
avoid redundant requests.

• Race conditions – Race conditions between two
requests can occur for the establishment of the
same RC connection since Proc B may have sent
out a connection request to Proc A at the same.
Both Proc A and B are trying to set up a RC con-
nection between them. To guard against race con-
ditions, a process responds to a request with a posi-
tive acknowledgment only when it has not initiated
a request or its rank is higher than the source rank



contained in the request. Status flags are introduced
to reflect the progression of connection state during
the connection establishment.

4.2. IBCM-Based Connection Establishment

In the IBCM-based mechanism each process starts a
new listening thread with a unique service ID, which is
set to its rank plus a constant so that every process knows
the service IDs of all other processes. When a process
wants to establish a connection, it sends a request to the
corresponding target. The procedure in general follows
what we have described in section 2.2. In particular, we
describe the following design issues as follows.

Synchronization – To establish a RC connection
via IBCM, some information such as source/destination
ranks must be exchanged during the connection estab-
lishment phase. And we also need to make sure that
the receive descriptor be posted before the RC connec-
tion progresses to RTR. Thus, it would be more effi-
cient if one can integrate the receive descriptor posting
and RDMA receive buffers exchange into the process of
IBCM connection establishment. To this purpose, we
ensure the server have prepared the receive descriptors
and buffers before it replies back to the client. After the
client receives the reply, we make sure that the client
completes the same preparation before it confirms back
to the server with a RTU (ready-to-use) message (Fig. 2).
Only until the server receives the expected RTU mes-
sage and the client get the correct local completion of
RTU message, will the connection be marked as active
on both sides. Both sides are then correctly synchro-
nized on the state of the new RC connection and the
connection is ready to use.

Race conditions – Each process has two possible
activities for establishing new connections. One is the
main MPI thread that may connect to a target process as
a client, the other being the listening thread that func-
tions as a CM server for incoming connection requests.
It is critical to ensure that, at any time, one of them is
driving the establishment of a new connection. Other-
wise, both of them will fail for incorrect sharing of the
same queue pair.

We describe our solution with two arbitrary pro-
cesses, Proc A and B, the rank of A greater than B. When
both of them simultaneously send a request to the other
process, we let A act as a server to continue and have
the CM server of B to reject the request from A. The
client request from B continues to be processed by the
CM server of A and finish the establishment of a new
connection. In addition, to avoid an inconsistent connec-
tion state, before A accepts B’s request, it also needs to

wait until a reject notification from B is received. Struc-
tures related to connection progression are critical sec-
tions being protected by mutexes and they are used to
avoid the race conditions between the main thread and
the CM thread.

5. Performance Evaluation

In this section, we describe the performance evalu-
ation of our design. The experiments were conducted
on two clusters. One is a cluster of 8-node SuperMicro
SUPER P4DL6, each with dual Intel Xeon 2.4GHz pro-
cessors, 1GB DRAM, PCI-X 133MHz/64-bit bus. The
other is a cluster of eight SuperMicro SUPER X5DL8-
GG nodes: each with dual Intel Xeon 3.0 GHz proces-
sors, 512 KB L2 cache, PCI-X 64-bit 133 MHz bus,
533MHz Front Side Bus (FSB) and a total of 2GB
PC2100 DDR-SDRAM physical memory. The nodes
are connected using the Mellanox InfiniScale 24 port
switch MTS 2400. The original MVAPICH [13] re-
lease we used is 0.9.5 with patches up to 118. We
evaluated the original static connection management of
MVAPICH-0.9.5 (referred to as Orig) and the follow-
ing combinations of ACM algorithms and connection
establishment mechanisms (UD/IBCM): partially static
ACM with UD (UD-PS), on-demand ACM with UD
(UD-OD), and on-demand ACM with IBCM (CM-OD).

5.1. Average Number of Connections

One of the main benefits of adaptive connection man-
agement is to increase the scalability of MPI imple-
mentations in terms of scalable usage of RC connec-
tions over InfiniBand. Table 2 lists the average number
of InfiniBand RC connections used in the NAS appli-
cation benchmarks with different ACM configurations
compared to the original static algorithm. With UD-OD,
the number of RC connections for NAS benchmarks are
in general less than the numbers reported before in [19].
This suggests that UD-OD can indeed eliminate all the
connections that are either not communicating or very
rarely. For example, the number of connections used
in EP is 0, because no connections are established be-
tween the processes since the processes only communi-
cate rarely with a few barrier operations for the purpose
of synchronization.

5.2. Process Initiation Time

Since adaptive connection management reduces the
initial number of InfiniBand RC connections, the time



Table 2. Average Number of Connections in
NAS Benchmarks

Algorithm SP BT MG LU IS EP CG
16 Processes

Orig 15 15 15 15 15 15 15
UD-OD 6 6 5 3.6 15 0 2.7
UD-PS 9.5 9.5 7 7 15 7 7.8

32 Processes
Orig – – 31 31 31 31 31

UD-OD – – 7 4.1 31 0 3.8
UD-PS – – 9.5 9 31 9 9.8

needed for the establishment of these connections in the
original static algorithm is no longer needed. We have
investigated the benefits of our algorithms in terms of
process initialization time. We first measured the initial-
ization time using a ssh/rsh-based startup scheme and
noticed that the variation in startup time is too high to
obtain the portion of reduced initialization time. In-
stead we incorporated the ACM algorithms into a scal-
able MPD-based startup scheme and measured the ini-
tialization time.
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Fig. 5. Initiation Time of Different Connection
Management Algorithms

Fig. 5 shows process initialization time for 32-
process programs over the 16-node cluster. Compared
to the original algorithm, UD-OD can reduce process
initialization time by 15-20%, while UD-PS can reduce
the time by around 10%. The amount of reduction in
initialization time is smaller for UD-PS because around
2 ∗ logN connections need to be established at the be-
ginning.

5.3. Reduction in Memory Usage

Another benefit of adaptive connection management
is reducing the memory resource usage. Because the

number of connections is tightly coupled to the com-
munication behavior of parallel applications, it is not
easy to decide an appropriate time to take a snapshot of
memory usage. To gain insights into the memory usage,
we measured the initial memory usage when the parallel
processes first start up, i.e., at the end of MPI Init.
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Management Algorithms

Fig. 6 shows the memory resource usage for a paral-
lel program with varying number of processes over the
16-node cluster. Compared to the original, all ACM al-
gorithms start with slightly higher memory usages, this
is because the connection management algorithms in-
troduced additional data structure such as a UD-queue
pair and/or a CM server thread, which consumes slightly
more memory. However, the original algorithm has a
clearly faster increasing trend of memory usage com-
pared to others. For a 32-process application, UD-OD
can reduce memory usage by about 17%, while UD-PS
can reduce the memory by about 12%. Again, because
UD-PS has to set up around 2 ∗ logN connections, the
amount of memory usage is higher than that of UD-OD.
These results suggest ACM algorithms are beneficial in
terms of memory resource usage. These benefits are ex-
pected to be more significant as system size increases.

5.4. Impact on Latency and Bandwidth

To find out the impact of ACM on the basic la-
tency and bandwidth performance of MVAPICH, we
have compared the performance of different algorithms
with the original. As shown in Figures 7 and 8, UD-OD
and UD-PS have negligible impacts on the latency and
bandwidth performance. This suggests that our imple-
mentations are indeed light-weight and efficient. How-
ever, CM-OD causes degradation on latency and band-
width. This is expected because the IBCM-based ACM
introduces additional threads for managing connection
requests and establish new connections.
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5.5. Performance of NAS Parallel Benchmarks

The NAS suite consists of a set of programs, such as
MG, CG, IS, LU, SP and BT. We compared the perfor-
mance of these NAS programs over UD-PS and UD-OD
to the original. Figures 9, 10, 11 and 12 show the per-

formance of NAS programs with different program sizes
and numbers of processes. Our testbed has 32 proces-
sors, the largest number of processes tested in CG, MG,
IS is 32, while only 16 in SP and BT since they require a
square number of processes. The performance results of
NAS benchmarks indicate that the proposed algorithms



have little performance impacts. Thus, the proposed al-
gorithms can provide benefits in terms of scalability and
memory resource usage while not having any impact on
performance. We believe that the benefits of scalable
resource usage would contribute to the performance im-
provement, which could become noticeable only with
larger scale scientific applications. We plan to investi-
gate into this issue further.

6. Related Work

Significant amount of research were done on char-
acterizing, optimizing and improving the performance
of different MPI implementations. Wong et. al. [18]
studied the scalability of the NAS Parallel benchmarks
from the aspect of resident working set and communi-
cation performance. Vetter et. al. [17] characterized the
communication pattern of large scientific applications in
terms of message sizes and most frequently used point-
to-point and collective operations. Liu et. al. [10] de-
signed high performance RDMA fast path over Infini-
Band. Liu et. al. [9] also studied how to exploit the
high bandwidth potential of InfiniBand by enabling mul-
tiple RC connections between pairs of MPI processes.
Brightwell et. al. [3] investigated the impact of receive
queue lengths to the MPI performance.

Lately, the scalability issues of the MPI implemen-
tations attracted attentions from more research groups.
Yu et. al. [20] studied how to improve the startup time
of parallel programs over InfiniBand clusters by opti-
mizing the all-to-all exchange of InfiniBand QP infor-
mation at the process initiation time. Castin et. al. [5]
designed a run-time environment for supporting future
generations of peta-scale high performance computing.
Petrini et. al. [15] investigated how system noise can
affect the performance of parallel programs over on a
large-scale system, ASCI Q.

There had been previous research efforts carried
out to study the impact of connection management on
the performance of parallel applications. Brightwell
et. al. [3] analyzed the scalability limitations of VIA in
supporting the CPlant runtime system as well as any
high performance implementation of MPI. While not
taking into account the impacts of the number of con-
nections on the scalable usage of computation and mem-
ory resources to different connections, the authors ar-
gued that on-demand connection management could not
be a good approach to increase the scalability of the MPI
implementation by qualitative analysis. Wu et. al. [19]
demonstrated that on-demand connection management
for MPI implementations over VIA [6] could achieve

comparable performance as the static mechanism with
efficient design and implementation. Our work contin-
ues the research efforts of on-demand connection man-
agement [19] and scalable startup [20] to improve the
scalability of MPI implementations over InfiniBand.

7. Conclusions

In this paper, we have explored different connection
management algorithms for parallel programs over In-
finiBand clusters. We have introduced adaptive connec-
tion management to establish and maintain InfiniBand
services based on communication frequency between
a pair of processes. Two different mechanisms have
been designed to establish new connections: an unreli-
able datagram-based mechanism and an InfiniBand con-
nection management-based mechanism. The resulting
adaptive connection management algorithms have been
implemented in MVAPICH to support parallel programs
over InfiniBand. Our algorithms have been evaluated
with respect to their abilities in reducing the process ini-
tiation time, the number of active connections, and the
communication resource usage. Experimental evalua-
tion with NAS application benchmarks indicates that our
connection management algorithms can significantly re-
duce the average number of connections per process.

In future, we intend to study the benefits of this con-
nection management framework in larger scale Infini-
Band clusters. We also plan to apply adaptive con-
nection management algorithms for MPI over the latest
OpenIB-Gen2 [14] stack.

Additional Information – Additional informa-
tion related to this research can be found on the follow-
ing website: http://nowlab.cse.ohio-state.edu/.
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