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Abstract

Workstation clusters equipped with high performance in-
terconnect having programmable network processors facili-
tate interesting opportunities to enhance the performance of
parallel application run on them. In this paper, we propose
schemes where certain application level processing in par-
allel database query execution is performed on the network
processor. We evaluate the performance of TPC-H queries
executing on a high end cluster where all tuple processing
is done on the host processor, using a timed Petri net model,
and find that tuple processing costs on the host processor
dominate the execution time. These results are validated
using a small cluster.

We therefore propose 4 schemes where certain tuple pro-
cessing activity is offloaded to the network processor. The
first 2 schemes offload the tuple splitting activity – compu-
tation to identify the node on which to process the tuples,
resulting in an execution time speedup of 1.09 relative to
the base scheme, but with I/O bus becoming the bottleneck
resource. In the 3rd scheme in addition to offloading tu-
ple processing activity, the disk and network interface are
combined to avoid the I/O bus bottleneck, which results in
speedups upto 1.16, but with high host processor utilization.
Our 4th scheme where the network processor also performs
a part of join operation along with the host processor, gives
a speedup of 1.47 along with balanced system resource uti-
lizations. Further we observe that the proposed schemes
perform equally well even in a scaled architecture i.e., when
the number of processors is increased from 2 to 64.

1 Introduction

Cluster computer systems, assembled from commodity
off-the-shelf components, have emerged as a viable alterna-

tive to high-end custom parallel computer systems for ap-
plications demanding high performance [1]. An important
component in such cluster computer systems is their high
performance interconnect with programmable network in-
terfaces such as Myrinet, Quadrics, and Infiniband [10].

The network processors available in such programmable
interfaces often have the capability to perform certain appli-
cation related processing, thus facilitating interesting oppor-
tunities to enhance application performance in cluster sys-
tems.

In this paper we consider parallel database query execu-
tion on such a cluster. Commercial database and data min-
ing applications, like scientific applications, are highly par-
allel and well suited for parallel computers [5]. They have
been implemented on a variety of parallel systems, includ-
ing cluster computers [5, 20]. However, unlike most scien-
tific applications, in database applications disk I/O costs are
a dominant factor. So, most efforts at improving database
application performance concentrate on reducing the effec-
tive disk I/O cost [6]. Further developments in fast RAID
technology equipped with high bandwidth disk and large
main memories may render disk I/O as a less dominant re-
source in query execution. Hence, in this paper, we conduct
a detailed performance evaluation of parallel query process-
ing on workstation clusters having high performance disks
with high disk bandwidth and larger memories.

We have developed a timed Petri net model for the par-
allel execution of database query on a cluster. We study the
performance of queries from the TPC-H benchmark [21]. A
salient feature of our Petri net model is that it captures the
application, the architecture, and their interaction. Thus the
model for the execution of each query is different. We vali-
date our Petri net model against the actual execution of hash
join on cluster of 4 machines connected by Myrinet NIs and
an 8-port switch.

First we study the performance of a base scheme where

1-4244-0054-6/06/$20.00  ©2006 IEEE



all the application related tuple processing is performed by
the host processor (HP). In this system, despite using a high
performance contemporary processor in the cluster, the host
processor is the bottleneck, while other resources such as
the network processor (NP) have low utilization. We start
by offloading the tuple splitting task from the host pro-
cessor (HP) to the network processor (NP). Our first two
suggestions are software schemes, Network Interface Tu-
ple Splitting (NITS) scheme, where tuple splitting is done
by NP only, and Duplicate Tuple Splitting (DTS) scheme,
where tuple splitting is done by both HP and NP. In these
schemes, the I/O bus becomes the system bottleneck, lim-
iting the performance improvement. We therefore propose
an architectural enhancement where the disk is directly at-
tached to the NI, with NP performing the tuple splitting.
The resulting scheme, referred to as Network Interface with
Attached Disk (NID), yields improved performance; but the
HP once again becomes a resource with high utilization.
We finally propose a NI Join (NIJ) scheme where a part
of the tuple processing activity is offloaded to the NP. This
scheme results in a significant improvement in execution
time speedup of 1.47 relative to the Base scheme with rea-
sonably balanced resource utilizations. More importantly,
the performance improvement increases with increase in the
computing power of NP. These results suggest how higher
processor power in future network interfaces can be effec-
tively utilized by applications. We performed two types of
scalability tests on the proposed schemes in large clusters.
In the first, the problem is scaled as the cluster size is in-
creased; in the second, the problem size is kept constant
while increasing the cluster size. We found that in both
tests, the proposed schemes exhibit near linear speedup,
which is an important criterion for the usefulness of the
schemes.

The main contributions of this paper include:

• A detailed Petri net model of parallel query execu-
tion on a cluster of workstations, where the application
behavior, architecture, and their interactions are mod-
eled.

• Software and hardware schemes which take advantage
of programmable network processors, to improve the
performance of parallel query execution on worksta-
tion clusters.

The rest of the paper is organized as follows: In Sec-
tion 2, we briefly review the background on clusters, pro-
grammable network interfaces, and query processing. We
describe our Petri net model for the Base scheme in Sec-
tion 3. This section also reports the performance of the Base
scheme. Section 4 discusses the Network Interface Tuple
Splitting (NITS) scheme and its simulation results. Follow-
ing this in Section 5 we discuss the Duplicate Tuple Split-
ting (DTS) scheme and its performance. In Section 6, we

describe the Network Interface with attached Disk (NID)
scheme and its simulation results. We describe our Network
Interface Join (NIJ) scheme and its results in Section 7. Fi-
nally scalability results are reported in Section 8. Related
work is discussed in Section 9 and concluding remarks are
provided in Section 10.

2 Background

2.1 Clusters

A cluster of workstations is a distributed memory ma-
chine where each node is a stand alone system with CPU,
memory attached to the memory bus, and peripherals like
disk, and network interface attached to the I/O bus. We
assume such a cluster of N nodes. Typical fast cluster
interconnects like the Myrinet network interface (NI) [13]
found in current day systems have NIs with a programmable
network processor (NP), on board memory (SRAM), a
host DMA engine (HDMA), an EBUS Interface (64-bit),
a send DMA engine (SDMA) and a receive DMA en-
gine (RDMA). The HDMA is used to transfer data across
the I/O bus to the node memory. SDMA and RDMA are
used to transfer data from the NI SRAM to the communi-
cation network (switch), and vice-versa. We assume that
the switch employs wormhole routing to transfer packets
between network interfaces.

Research in communication layers for high performance
scientific applications has lead to the development of user-
level communication techniques which have reduced the in-
volvement of HP in communication to deliver better appli-
cation performance [19]. We, therefore, assume such a user-
level communication layer in our system [7].

2.2 Parallel Query Processing

In a relational database system relational queries com-
posed of relational operators like select and join are used to
manipulate data. The join operator, which combines tuples
from two relations based on a common attribute, is the most
crucial and expensive operator [12]. Previous research has
shown that hash-based join algorithms are more efficient
than other join algorithms, such as sort-merge or nested-
loop, in systems with large main memories [12]. So, in this
work, join operators in queries are executed using hash-join
algorithms. We assume that each node has enough main
memory so that the hash table fits into the main memory
and no extra disk I/O is required other than for reading the
relations. Since complete query execution is being mod-
eled, we also consider the select operator. Although the join
operation can also be executed efficiently when indexes are
present, we do not consider indexes here [20].



Since query processing is a highly parallel resource in-
tensive task, several parallel query processing techniques
have been devised and employed in parallel database ma-
chines to improve query execution time [5]. Since a clus-
ter of workstations is essentially a shared-nothing archi-
tecture in which intra-operator parallelism is better ex-
ploited [5, 16] with horizontally partitioned relations, in our
work we consider only exploiting intra-operator parallelism
and horizontally partitioned relations.

When a query involves multiple joins, a query tree or a
query execution plan is used to represent the scheduling se-
quence of the constituent operations. Query trees are char-
acterized as left-deep, right-deep or bushy trees. Right-deep
and bushy trees have multiple operators simultaneously ac-
tive, and are suitable for pipelined implementations in mul-
tiprocessor systems [17, 4]. Left-deep trees assume that
one operator is simultaneously active on all the nodes; the
next operator starts after the current one is completed. Thus
a left-deep tree based query execution plan can easily be
mapped to intra-operator parallelism, and is well suited to
shared-nothing architectures. We adopt a left-deep query
tree representation for the queries we modeled.

The parallel hash join used in our study works as fol-
lows. It involves two phases, namely (i) the Build Phase,
where the inner relation is hashed on the join attribute and
a hash table is built, (ii) the Probe Phase, where the outer
relation is hashed on the join attribute using the same hash
function used in the build phase, and tuples are generated on
successful matches. In the parallel version, a separate hash
function is first used to determine the cluster node where
each tuple will be processed. We refer to this activity as tu-
ple splitting. The tuples are routed to the respective cluster
node. The join operation (build and probe) takes places in
that node. Thus both phases of parallel join involve commu-
nication between cluster nodes. In case a select or project
operation is required it is first applied on the tuples and then
the join operation takes place.

3 Base Scheme

Our objective is to study the performance of parallel
query execution on a cluster and evaluate the potential of
offloading various amount of tuple processing from the host
processor (HP) to the network processor (NP). We develop
a Petri net model for the query execution on a cluster. Petri
nets can model properties like concurrency, synchroniza-
tion, conflict etc. As our model has to capture timing of
query processing activities and probabilities associated with
tuple distribution, we used a stochastic timed Petri net. In
our Base scheme, query execution proceeds in a conven-
tional way, with the query processing done on HP and mes-
sage sends and receives done by NP.

3.1 Base Scheme Model Description

Figure 1 shows our Petri net model for a single node
of a cluster performing parallel query execution. For clar-
ity, only disk accesses and join operations are shown in
the figure, while the text describes the complete model. In
the figure, thin lines represent instantaneous transitions and
thick rectangular bars represent timed transitions. We use
the name of a timed transition e.g., T DiskRd to represent
the duration of the timed transition. The number of disk
blocks constituting the relation to be processed is modeled
by a fixed number of tokens in place P DskBlkCnt (ini-
tial marking). With the availability of HP (modeled by a
token in place P HProc), transition T InitDskRd fires
and a request to read a disk block is placed in P DskReq.
When the disk is free, modeled by the availability of a token
in place P Disk, a disk block containing a fixed number of
tuples is read from the disk. The disk read is modeled by the
timed transition T DiskRd. The tuples are transferred to
the host memory (P DskTupAv) on the availability of I/O
bus (P IOBus), and the transfer time is T IOBusDsk.

HP then computes the node id to which the tuples are to
be routed. This is modeled by the transition T Split, which
places the tuples into P TupGrp. The model assumes that
tuples are uniformly distributed across the nodes of the clus-
ter. Tuples that are to be processed on the same node are
placed into P TupBuff . Depending on whether a Build
Phase or Probe Phase is currently under progress, deter-
mined by the non-availability or availability of tokens in
P ProbeEn, tuples either go through the Build Phase (fir-
ing of T Build) or Probe Phase (firing of T Probe). In
the Probe Phase, depending on the join selectivity (denoted
by JoinSelProb), tuples which qualify in the join process
fire T TupSel and those that are dropped fire T TupDrp.
For tuples destined for other nodes (T Other), HP groups
the tuples into messages and initiates a message send op-
eration by enqueuing the message to the network interface.
T Move represents the time required for tuple grouping1

and buffer management and T Send the software overhead
for initiating a send operation.

The places and transition used in the following descrip-
tion of the Petri net are not shown in Figure 1. Depending
on the availability of the I/O Bus, NP initiates the HDMA
engine to transfer the message from host memory to SRAM
on the network interface. This is modeled by the timed tran-
sition T IOBusNI . The SDMA engine then puts the mes-
sage on the network link to the input port of the switch,
taking T SDMA time units. T route represents the time
required to route the message from the input port to the
switch output port where the destination node is attached.

1Grouping of tuples which are destined for the same remote node form
a single message.This avoids the overhead of sending several small mes-
sages. We group upto 128 tuples in a single message.
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Figure 1. Petri net model for Join operations

The incoming messages at the network link are transferred
to the SRAM of NI when the RDMA engine is available,
and from there to the host memory, when both the HDMA
and the I/O bus are available. These transitions and their
durations are modeled by T RDMA and T IOBusNI re-
spectively. The software overhead incurred by HP in receiv-
ing messages is T RecvHP . The received tuples are then
transferred to P TupBuff for join processing.

When all tuples of the relation have been processed, syn-
chronization messages are exchanged between nodes to sig-
nify the end of a phase (build or probe phase). This synchro-
nization ensures that only intra-operator parallelism is ex-
ploited in our model. The number of tuples to be processed
during the next operation is then loaded, and the process
continues for other operations in the query.

The N node cluster can be modeled using a colored Petri
net. However, since the traffic generated by a single node
is uniformly distributed and sent to other nodes in the clus-
ter, we can model the traffic originating from other nodes to
this node by routing the messages generated from the sin-
gle node back to itself through the switch. Thus a N node
cluster can be modeled using the Petri net model for a sin-
gle node with the above changes. We found that the dif-
ference in results between the full simulation of a N node
cluster and a single node simulation is within a small per-
centage (< 0.1%). A similar modeling approach was used
by Govindarajan, et al [8] in developing Petri net models
of multithreaded multiprocessor architectures.

3.2 Model Parameters

The architectural parameters of our model are set to rep-
resent contemporary high performance computing nodes.
Since our objective is to study the effect of offloading tu-
ple processing activities done by HP to NP, we model these
in detail. We estimated the time taken for such tasks for a
3.6GHz system (using measurements on an available Pen-
tium 4 system). The parameters for host communication
overheads were obtained from measurements on Myrinet
user-level messaging software running on Myrinet LANai
7 processor [13]. Network Interface parameter values are
set assuming a NI SRAM bandwidth of 1.6GB/s (200MHz,
64 bit bus). The network link bandwidth is assumed to be
4GB/s based on the Myrinet specifications [18].

The I/O bus transfer time parameters are set assuming
1GB/s (64 Bit, 133 MHz) bandwidth, similar to that of PCI-
X bus [14]. Disk system parameters are set assuming the
use of high performance disks and capability to satisfy se-
quential reads at sustained high bandwidth. The disk I/O
time, is set assuming the ability to deliver 1.28GB/s (4 *
320MB/s SCSI disk) in 64KB chunks. The values of the
various architectural parameters are shown in Table 1.

We set the database related parameters based on the
TPC-H benchmark [21]. TPC-H queries 3,5,7-10 which
are join intensive (upto 4 joins) were modeled, each using
a separate Petri net model, as the number of relations in-
volved and database parameters and the operation involved
are different for different queries. We assume a tuple size of
128B for all relations. The number of tuples per table is set
so that the horizontal partition of the relation in each node
occupies 1GB. Further, we assume that there is no skew in
the data, i.e., the frequency of all key values used in the join
attributes occurs with equal frequency and hence tuples are
uniformly distributed across the nodes. When a join is per-
formed, a part of the tuple is projected out. The size of the
projected tuple is 32 bytes. The model parameter values for
selectivity ratios were obtained using measurements from
query execution on a single node running PostgreSQL. The
query parameters are shown in Table 2. Si’s represent the
selectivities of select operation and Ji’s represent the join
probabilities.

3.3 Performance of Base Scheme

We simulated our Petri net models using CNET, an
event-driven Petri net simulation tool [22]. The simulator
reports the total simulation time for the Petri net model, as
well as the total firings times for each timed transition. For
discussing the performance of different schemes, we use
simulation results for a 8 node cluster. We have also stud-
ied the scalability of the schemes (up to 64 nodes) which
are discussed in Section 8. Results reported are averaged



Parameter Duration for Parameter
Value (µs)

Host Processor
T SplitHP Split Hash function 0.00027
T InsertHP Insert into hash table 0.17
T ProbeHP Probe hash table 0.30
T MoveHP Moving tuple attributes 0.50
T SendHP User level Send 0.40
T RecvHP User level Receive 0.18

Network Interface
T EnDMA Enable DMA Engine 0.01
T SDMA SDMA (NI to Network) 1.28
T RDMA RDMA (Network to NI) 1.28
T SW Switch Delay 8.19

IO Bus
T IOBusDsk IO Bus (Disk to Host) 61.59
T IOBusNI IO Bus (Host form/to NI) 3.84

Disk
T DiskRd reading 64KB Block 48.82

Table 1. Simulation Parameters: HP-1X
Configuration

Query 3 S1(R1) J1 S2(R2) J2 S3(R3)
Selectivity S1=0.2, S2=0.48, S3=0.54
Join Selectivity J1=0.10, J2=0.99
Relation Size R1=150016, R2=1499648, R3=6001152
Query 5 S1(R1) J1 R2 J2 R3 J3 R4
Selectivity S1=0.15
Join Selectivity J1=0.038, J2=0.577, J3=0.971
Relation Size R1=1499648, R2=6001152, R3=149504

R4=9728
Query 7 R1 J1 S1(R2) J2 R3 J3 R4
Selectivity S1=0.30
Join Selectivity J1=0.006, J2=0.33, J3=0.65
Relation Size R1=6001152, R2=1499648, R3=9728

R4=149504
Query 8 S1(R1) J1 R2 J2 R3 J3 S2(R4) J4 R5
Selectivity S1=0.007, S2=0.30
Join Selectivity J1=0.0002, J2=0.43, J3=0.029, J4=0.09
Relation Size R1=199680, R2=6001152, R3=9728

R4=1499648, R5=149504
Query 9 S1(R1) J1 R2 J2 R3 J3 R4 J4 R5
Selectivity S1=0.06
Join Selectivity J1=0.06, J2=0.99, J3=0.06, J4=0.25
Relation Size R1=199680, R2=799744, R3=9728

R4=6001152, R5=1499648
Query 10 S1(R1) J1 S2(R2) J2 R3
Selectivity S1=0.04, S2=0.24
Join Selectivity J1=0.15, J2=0.38
Relation Size R1=1499648, R2=6001152, R3=149504

Table 2. Query Parameters

across 5 independent runs for each query.

We use relative speedups of query execution times for
performance comparison and the utilization of resources
like host processor (HP), Disk, I/O Bus, Switch (SW) and
network processor (NP) to identify bottleneck resources. In
discussing the results, we report the average of the execu-
tion time of all the queries for a given scheme. The relative
speedup of a scheme is the ratio of the average query ex-
ecution time in the Base scheme (with HP-1X parameters
in Table 1) to that in the proposed scheme. Resource uti-
lization is computed as the ratio of total firing time of the
transition involving the resource to the total simulation time

of the query.
Table 3 shows the results for the Base scheme using the

HP-1X parameter values. Observe from Table 3 that the
query execution time is dominated by the tuple process-
ing cost of HP, which has a utilization of 92.9%. We also
consider another parameter setting where the HP speed is
doubled (i.e., the HP parameter values in Table 1 halved),
which we refer to as HP-2X. Observe that doubling HP
power yielded a relative speedup of 1.63 with respect to
HP-1X configuration, showing that tuple processing activi-
ties done by HP are a significant factor in query execution
time. The other resources I/O Bus, Disk, Switch and NP are
not bottleneck resources with utilizations of 54.9%, 32.3%,
15.8% and 0.1% respectively. The high resource utilization
of HP (92.9%) and low utilization of NP (0.1%) motivated
us to study options of offloading work from HP to the pro-
grammable processor in the network interface.

Utilization (%) Exec Relative
HP Disk HP I/O Bus SW NP Time(s) Speedup

1X 32.3 92.9 54.9 15.8 0.1 2.13 1.00
2X 45.3 63.4 78.2 22.0 0.1 1.31 1.63

Table 3. Resource Utilization and Speedup for
Base Scheme

3.4 Petri net model Validation

Before proceeding further, we validate our Petri net
model against a uniprocessor implementation of hash-
join (1 node) and with MPI based implementations on 2
nodes and 4 nodes. The implementation of hash join was
carried out on 3.4GHz Pentium 4 machines with 1GB RAM.
The Myrinet Network Interface card uses a 134MHz LANai
9.2 processor seated on 32bits/33MHz PCI slots. The ma-
chines were interconnected with a DUAL-8-PORT Myrinet
switch working at 1.28 Gbits/s per link, dedicated for MPI
communication.

Execution Time(s)
1 Node 2 Node 4 Node

Actual Execution Time 0.22 0.41 0.51
Petri net Simulation Time 0.21 0.36 0.43

Table 4. Validation of Petri net model

In our validation, we used two in-memory relations with
512K tuples per node for each relation. We assume a join
probability of 0.5. The keys were chosen from a uniformly
distributed random variable. Table 4 shows the performance
results for actual execution time and Petri net simulation
time. The problem size (total number of tuples) is scaled



as the number of processors is increased. We find that the
difference in execution times is less than 16%. This dif-
ference is partly due to the MPI test overhead incurred by
a non-blocking receive, which is not explicitly modelled in
our Petri net model.

4 Network Interface Tuple Splitting (NITS)
Scheme

During a parallel join under our Base scheme, the host
processor (1) builds and probes the hash table, (2) performs
tuple splitting.

In our NITS scheme, we propose offloading the tuple
splitting activities to NP. This is achieved as follows: Rela-
tions available on the disk are read as blocks into the main
memory and made available in contiguous buffers which
can be DMAed. This enables NP to transfer a relation from
main memory to the SRAM in the NI and to take respon-
sibility for tuple splitting and grouping activities involved
in distributing these tuples across the cluster nodes. More
specifically, tuples which are to be processed locally are
DMAed back to HP. The rest are communicated to their re-
spective destinations as in the Base scheme. Thus in the
NITS scheme, HP is relieved of the tuple splitting activities
and works only on the hash join operation.

The Petri net model of the Base scheme was modified
to account for the tuple processing activities being done by
NP. The execution time for the tuple splitting tasks depend
on the NP processing power. Typical NP clock speed is
much lower than that of the associated HP. For instance, a
contemporary HP runs at 3.6GHz while the Myrinet LANai
2XP clock is 300Mhz, which is one twelfth of the HP clock.
Technology trends suggest [18], that NP clock rates are in-
creasing. To study the sensitivity of the performance of our
schemes to NP computing power, we added a model param-
eter HP:NP, the ratio of the processing powers of HP to NP.

The relative speedup for queries and resource utilizations
under the NITS scheme are compared with those for the
Base scheme in Table 5. We see that there is reduction in
HP utilization from 92.9% for the Base scheme to 76.1%
for the NITS (HP:NP = 1:1) scheme, and an increase in the
nework processor utilization (11.6%). Although work has
been offloaded from HP, the bottleneck resource in the Base
scheme, we find the relative speedup to be less than 1 for all
values of HP:NP.

The data in Table 5 reveals why this happens. Observe
that with HP:NP ratios of 1:1/9 and 1:1/8, that NP is the
highest utilized resource (with utilization > 73.4%) sug-
gesting that the computing power of NP is insufficient to
handle the tuple splitting activities, and thus limits the per-
formance gains. With increase in NP power (HP:NP ratios
ranging from 1:1/7 to 1:1/6), the speedup increases from
0.83 to 0.89 and the I/O bus becomes the highest utilized re-

Relative Utilization (%)
Scheme HP:NP Speedup Disk HP I/O Bus SW NP

Base 1.00 32.3 92.9 54.9 15.8 0.1

NITS

1:1/9 0.72 23.5 59.6 66.2 11.5 76.6
1:1/8 0.77 25.3 64.2 71.3 12.4 73.4
1:1/7 0.83 27.4 69.6 77.3 13.4 69.7
1:1/6 0.89 29.9 75.9 84.3 14.6 65.3
1:1/4 0.90 30.0 76.0 84.5 14.7 43.9
1:1/2 0.90 30.0 76.0 84.5 14.7 22.3
1:1 0.90 30.0 76.1 84.6 14.7 11.6

Table 5. Comparison of Relative Speed-Up
and Resource Utilization: Base and NITS
schemes

source (utilization ranging from 77.3% – 84.6%). This sug-
gests that though there is some performance benefit from in-
creasing NP power, the I/O bus has become the bottleneck.
Increasing NP computing power further (from 1:1/4 through
1:1) results in no improvement in speedups, but worsens the
I/O bus utilization, confirming that the I/O bus has become
the system bottleneck.

We therefore studied the effects of doubling I/O band-
width under the NITS scheme. We observed an increase
in speedup (0.89 to 1.12), by doubling I/O bus bandwidth.
We looked into what caused the I/O bus to become the bot-
tleneck and found that it was the traffic generated by tuples
being DMAed over the I/O bus, along with the traffic caused
by tuples being routed from NP to HP to be joined locally
on the node. Our next attempt, therefore, is to look at mod-
ifications which eliminate the latter traffic.

5 Duplicate Tuple Splitting (DTS) Scheme

In this scheme we duplicate the task of splitting of tuples
on both the host and the network processor, and hence the
name Duplicate Tuple Splitting (DTS). All tuples read off
the disk are examined by both HP and NP. The HP computes
node id for all the tuples and processes (probes) only those
destined for itself, ignoring the remaining tuples. The NP
computes node id for all the tuples after performing DMA
operation of tuples in suitable chunks into NI SRAM. It then
ignores tuples to be processed locally and communicates the
rest to other nodes based on their node id. This modifica-
tion to the NITS scheme avoids the transfer of tuples to and
fro on the I/O bus, to be joined locally.

The speedup and resource utilizations under the DTS
scheme are compared with that of the Base scheme in Ta-
ble 6. We see that when HP:NP is 1:1/9 or 1:1/8, the
speedup is less than 1, and that NP has a high utilization
of 71.4% and suggesting that NP’s computing power is not
sufficient to perform the tuple splitting task. However, with
HP:NP = 1:1/7 and HP:NP = 1:1/6 the speedup increases
to 1.07, and 1.09 respectively. NP is no longer the bottle-



Relative Utilization (%)
Scheme HP:NP Speedup Disk HP I/O Bus SW NP

Base 1.00 32.3 92.9 54.9 15.8 0.1
NITS 1:1 0.90 30.0 76.1 84.6 14.7 11.6

DTS

1:1/9 0.92 29.5 76.5 67.0 14.4 71.4
1:1/8 0.99 32.0 83.0 72.7 15.7 68.9
1:1/7 1.07 35.1 90.8 79.6 17.1 66.1
1:1/6 1.09 35.6 92.2 80.8 17.4 57.6
1:1/4 1.09 35.6 92.2 80.8 17.4 38.6
1:1/2 1.09 35.6 92.2 80.8 17.4 20.5
1:1 1.09 35.6 92.2 80.8 17.4 10.1

Table 6. Comparison of Relative Speed-Up
and Resource Utilization: Base, NITS, and
DTS schemes

neck and its utilization is lower than that of HP and I/O
Bus. When NP’s computing power increases from 1:1/6 to
1:1, we see that there are no improvements in the speedup.
It can be inferred from the high resource utilization (92.2%)
of HP that the tuple processing costs of the host is a dom-
inant factor, which is closely followed by the I/O bus uti-
lization (80.8%). Although we notice a high I/O bus utiliza-
tion (80.8%) in the DTS scheme, it is relatively lower than
that in NITS scheme (84.6%), indicating that I/O bus traffic
has decreased in DTS scheme.

Since we observed a high I/O utilization for the DTS
scheme, we ran experiments with I/O bandwidth doubled.
We observed an increase in speedup from 1.09 to 1.14, sug-
gesting that I/O bandwidth still limits the performance gains
achieved due to offloading the tuple processing to NP. This
led us to next consider modifications to the cluster node ar-
chitecture whereby the I/O bus requirements could be re-
duced.

6 Network Interface with attached
Disk (NID) Scheme

Here, we consider a cluster node architecture where the
disk is directly attached to the network interface instead of
to the system bus as in previous schemes and hence the
name Network Interface with attached Disk (NID). Attach-
ing the disk to NI enables direct transfer of tuples from the
disk to the network interface rather than through the system
I/O bus, thus avoiding the I/O bus bottleneck. This archi-
tecture of a cluster with NID is shown in Figure 2. Since
our objective is to find out the performance benefits of re-
moving the I/O bus bottleneck, we have assumed that NI
has sufficient memory (roughly 4MB ) to stage the relations
from the disk.

In this scheme, NP reads the tuples directly from the at-
tached disk and computes node ids for all tuples. It then
communicates the groups of tuples to the appropriate nodes
using the node ids. Further, tuples to be processed locally

Interface
I/O

Cluster
Node 0

Cluster
Node 2

Cluster
Node N−1

Cluster
Node 1

CPU MEM

DiskNI

SWITCH

Figure 2. Cluster of Workstations with Disk
attached to NI (NID)

are DMAed to the host memory from the NI SRAM. The
host processor receives tuples from the NI (these could be
tuples from the same node or tuples arriving through the
network) and processes them, as in the Base scheme.

Relative Utilization (%)
Scheme HP:NP Speedup Disk HP I/O Bus SW NP

Base 1.00 32.3 92.9 54.9 15.8 0.1

NID

1:1/9 0.83 27.1 68.8 8.4 13.3 88.3
1:1/8 0.92 30.0 76.1 9.2 14.7 87.0
1:1/7 1.03 33.4 84.9 10.3 16.4 84.9
1:1/6 1.16 37.6 95.5 11.6 18.4 82.1
1:1/4 1.16 37.7 95.7 11.6 18.4 55.2
1:1/2 1.16 37.7 95.7 11.6 18.4 28.1
1:1 1.16 37.6 95.7 11.6 18.4 14.5

Table 7. Comparison of Relative Speed-Up
and Resource Utilization: Base and NID
schemes

Table 7 shows the relative speedup and resource utiliza-
tion of NID compared to that of the Base scheme. Attaching
the disk to the NI directly results in reduction in I/O Bus uti-
lization from 80.8% to 11.6%. However for HP:NP ratios
of 1:1/9 and 1:1/8, there is no improvement in execution
time. NP is the highest utilized resource and hence offload-
ing tuple processing activities does not reduce the query ex-
ecution time. Increasing NP computing power to 1/6 of HP
increases the speedup of NID scheme to 1.16. At this point
HP utilization is high (95.7%) and NP utilization decreases,
suggesting that the host processor dominates query exec-
tion time. Further increase in NP computing power does
not yield additional benefits. This is due to the fact that the
tuple processing tasks (related to the join operation) per-
formed by HP dominate the execution time. This motivates
us to next look for ways that tuple processing can be of-
floaded to NP.



7 Network Interface Join (NIJ) Scheme

In this scheme, both HP and NP perform the tuple pro-
cessing tasks i.e., perform the build and probe operation in
each stage. We accomplish this through a simple change
in the split hash function. In the proposed scheme, the
processor on the network interface (NI) also performs join
processing and hence we refer to this scheme as NI Join
scheme. This is an extension of the parallel hash join algo-
rithm in which each NP in a N node cluster is also a join
site, thus the join takes place on 2N processors. Note that in
this scheme the disk is attached to the system bus and HP
performs the tuple splitting task2.

In this scheme HP reads the tuples off the disk and com-
putes the node id, assuming a 2N processor system. The
tuples are grouped into buckets based on the node id, and
even/odd buckets are distributed to host/NP on each node
respectively. When the tuples arrive at HP, they are pro-
cessed (build/probe) in the usual manner. Those tuples des-
tined for NP are processed just as in HP while the rest are
forwarded to the respective destination nodes. Note that
since both HP and NP maintain their own hash tables, no
synchronization is required between the HP and NP in hash
table accesses.

As mentioned earlier, a possible mismatch in the pro-
cessing powers of HP and NP could lead to performance
problems if the load is not balanced between the host and
network processors. However this can be controlled by ap-
propriately splitting the number of tuples being processed
by the host and NP in the ratio of their respective comput-
ing power.

Tables 8 shows the speedup and resource utilizations un-
der the NIJ scheme compared to those of the Base scheme.
As the HP:NP changes from 1:1/9 to 1:1, the relative
speedup of the NIJ scheme improves from 1.05 to 1.47.
We make an important observation from Tables 8, viz, at
low values of HP:NP (<= 1:1/8) ratio, where other scheme
show performance degradation (speedup < 1), the NIJ
scheme shows a speedup of 1.05 to 1.07. Similarly when
HP:NP ratio is greater than 1:1/6, the maximum speedup
for the best scheme (NID) saturates at 1.16, whereas for the
NIJ scheme it increases to 1.47 (for HP:NP=1:1), making
a strong case for increasing the computing power of NPs.

The resource utilizations reveal interesting aspects of the
NIJ scheme. The HP and NP utilization vary from 89.8%
to 41.4% and 78.7% to 63.2%, respectively, indicating that
HP and NP have nearly balanced work load. In the NIJ
scheme, the I/O bus utilization is less than both host and NP
utilizations except for HP:NP equal to 1 and hence does not
limit the performance. Disk and Switch utilizations are also
less that 50%. The balanced utilization of resources makes

2It is possible to incorporate the idea of NID in this scheme. We defer
this to future work.

Relative Utilization (%)
Scheme HP:NP Speedup Disk HP I/O Bus SW NP

Base 1.00 32.3 92.9 54.9 15.8 0.1

NIJ

1:1/9 1.05 34.1 89.8 57.4 16.7 78.7
1:1/8 1.07 34.4 89.7 57.9 16.8 78.4
1:1/7 1.08 34.8 89.5 58.5 17.0 78.3
1:1/6 1.09 35.2 89.3 59.2 17.3 77.7
1:1/4 1.15 36.9 88.4 61.7 18.1 75.8
1:1/2 1.28 41.3 85.9 68.4 20.2 70.7
1:1 1.47 48.5 81.4 79.2 23.7 62.2

Table 8. Comparison of Relative Speed-Up
and Resource Utilization: Base and NIJ
schemes

the NIJ scheme attractive from the perspective of achieving
scalable performance. Further, if any other query process-
ing, like aggregation or sorting has to executed by HP, more
tuples can be diverted to NP so that load balancing can be
maintained. Thus, we find NIJ to be the best alternative of
all our schemes.

8 Scalability of Schemes

The results presented in the earlier sections are from sim-
ulations of an 8 node cluster connected by a single switch
giving rise to single hop delay. It is also important to study
the performance of the proposed schemes with larger clus-
ter sizes, where packets experience multi-hop delays as they
traverse multiple switches. In order to account for multi-
hop delays, we assume that the nodes are interconnected
by a 2D torus network and perform scalability tests for 64
nodes.

We perform two types of simulations on larger cluster
sizes: (a) Scaleup test – where the data size is increased
as the number of nodes in the cluster is increased, and (b)
Speedup test – where the total data size remains constant
when the cluster size is increased. We define Scaleup and
Speedup for a Scheme A as given by the equations in Fig-
ure 3. Note that for the Base scheme a Scaleup of 1 for a N
node cluster represents linear speedup.

Table 9 shows the Scaleup and Speedup results for dif-
ferent offloading schemes under various cluster sizes3. In
the Base scheme as the number of nodes is increased to 64,
the Scaleup reaches 0.84. This reduction in Scaleup is due
to the overhead in communication. We also see that the
Scaleup reaches 1.24 for NIJ scheme for 64 nodes. This
is attractive as (i) with the scaled problem size, the NIJ
scheme achieves better than linear speedup and, (ii) the
Relative speedup for 64 nodes (with respect to the Base
Scheme for 64 nodes) is 1.48, similar to what was achieved

3We do not report Scaleup and Speedup numbers for DTS, NID, and
NIJ schemes for single node case, as tuple splitting is relevant only for
multiple nodes



Scaleup =
Execution T ime of Original Problem on a Single node for Base Case

Execution T ime of (linearly) Scaled Problem on N nodes for Scheme A

Speedup =
Execution T ime of Original Problem on a Single node for Base Case

Execution T ime of Original Problem on N nodes for Scheme A

Figure 3. Definition for Scaleup and Speedup for a Scheme A

Scaleup Speedup
Scheme HP:NP 1 2 4 8 16 64 1 2 4 8 16 64

Base 1.00 0.92 0.88 0.86 0.85 0.84 1.00 1.83 3.51 6.89 13.58 54.33

DTS
1:1/6 - 0.96 0.94 0.93 0.93 0.93 - 1.93 3.78 7.48 14.97 58.68
1:1 - 0.96 0.94 0.93 0.93 0.93 - 1.93 3.78 7.48 14.97 58.68

NID
1:1/6 - 1.01 1.00 1.00 0.99 0.99 - 2.02 4.02 8.02 15.95 63.78
1:1 - 1.01 1.00 1.00 0.99 0.99 - 2.02 4.02 8.02 15.95 63.78

NIJ
1:1/6 - 0.99 0.96 0.94 0.93 0.92 - 1.99 3.84 7.52 14.97 58.68
1:1 - 1.32 1.28 1.26 1.25 1.24 - 2.65 5.15 10.12 20.10 81.50

Table 9. Scalability: Relative Speedup of Base, DTS, NID, and NIJ schemes

for 8 nodes (refer to Table 8). In the Speedup experiment,
we achieve a speedup of 54.33 for 64 nodes for the Base
scheme. This corresponds to an efficiency (Speedup/N ) of
0.85. Again for DTS, NID and NIJ schemes the speedup
increases to 58.68, 63.78, 81.50 respectively and the corre-
sponding relative speedup metric is 1.08, 1.17, 1.50 respec-
tively. These values which are for 64 nodes are similar to
those for 8 nodes (refer to Tables 6, 7 and 8).

We found that NIJ exhibits balanced utilizations of re-
sources as compared to the other schemes for larger clus-
ters also, which makes it a good choice for larger clusters.
Further, we note that switch utilization is less than 25%,
implying that interconnection network is not a bottleneck
resource. Thus, our Scaleup and Speedup tests indicate that
the proposed offloading schemes give good performance
benefits for clusters of larger sizes.

9 Related Work

In the database domain, various architectures have been
based on the idea of off-loading processing from the host
processor [2, 15, 11]. Active Disks assume that each disk
drive has reasonable processing power and memory, so that
application-specific code can be downloaded and executed
on data off the disk [2]. The application is split into a
disk-resident and host-resident code which communicate
using streams. Riedel et al report performance from run-
ning database, data mining and multimedia applications on
Active Disk architecture [15]. Memik et al evaluate a smart
disk cluster, where each disk has an embedded processor,
controller, disk and memory [11]. In order to avoid un-
wanted data transfer from disk, the host processor analyzes

the query for bindable operations and generates a new bun-
dled query execution plan. The host processor then passes
control messages to the smart disk indicating the order of
executing operations in the bundle. These approaches are
disk centric, while ours is NIC centric – they off-load higher
level database operations to the processor on the disk drive,
while we off-load operations that are communication re-
lated to NIC.

Krishnamurthy et al developed a network interface (NI)
architecture where the co-processor controls both commu-
nication links and SCSI disk interface [9]. They use this
architecture to build scalable media severs which stream
media frames at real time rates to clients. The heart of
this system is a media stream scheduler implemented on
the co-processor which can stream data from the disks at-
tached to the NI directly to the clients. This reduces the host
bus memory traffic and decreases the host processor utiliza-
tion. Our NID model, is similar; tuple processing activities
are offloaded to the network processor. This also prevents
the host I/O bus from being a bottleneck. In the work by
Binkert et al [3], the communication overhead is found to
be high due to the standard I/O bus. They propose alterna-
tives of how NIC can be closely coupled to CPU to reduce
the driver overhead through a detailed performance evalua-
tion. Our NID scheme is similar in spirit in that we attach
the disk to the NI so that I/O bus bottleneck is be avoided.

10 Conclusions

Today, workstation clusters are a cost effective solution
for large database query processing applications. Optimiz-
ing the performance of these parallel query processing clus-



ters is commercially important. We propose both software
and hardware modifications exploiting the programmable
features of NP to achieve higher performance with balanced
utilization of system resources. Maintaining balanced sys-
tem utilization is important for scalable growth, but not easy
to ensure. We evaluate the performance of the proposed
modifications using a validated timed Petri net models. We
find that certain modifications, like offloading tuple split-
ting work from the host processor to the network proces-
sor, results in execution time speedup of upto 1.16. By of-
floading a part of join processing to NP, our NI Join (NIJ)
scheme not only improves the execution time significantly
over the Base scheme, but also achieves balanced system
utilization. We suggest that if future network interfaces are
equipped with programmable processors of higher process-
ing power, applications should be able to exploit them in
improving system performance. We find that the proposed
schemes demonstrate near linear speedups for the scalabil-
ity tests which ensures their usefulness for cluster of large
sizes.

As mentioned earlier, we have assumed that data is dis-
tributed uniformly on the join attribute. As future work, we
plan to study the effect of skew in data distribution on the
performance of these schemes. Another interesting aspect
is to study how the schemes we proposed perform under
different query execution plans such as right-deep or bushy-
trees.
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