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Abstract

Many distributed systems may be limited in their
performance by the number of transactions they are
able to support per unit of time. In order to achieve
fault tolerance and to boost a system’s performance, ac-
tive state machine replication is frequently used. It em-
ploys total ordering service to keep the state of replicas
synchronized. In this paper, we present an architecture
that enables a drastic increase in the number of ordered
transactions in a cluster, using off-the-shelf network
equipment. Performance supporting nearly one mil-
lion ordered transactions per second has been achieved,
which substantiates our claim.

1 Introduction

In distributed computing, developing software has
been traditionally considered to be the main goal.
Since most of participating components in a distributed
system are software modules, it is usually assumed that
the number of “transactions” such a system could gen-
erate and handle is limited mainly by the CPU re-
sources.

A recent technological trend implies introducing
hardware elements into distributed systems. Imple-
menting parts of a distributed system in hardware
immediately imposes performance requirements on its
software parts. An example of a system that combines
hardware and software elements is a high-capacity
Storage Area Network, combining a cluster of PC’s,
Disk Controllers and interconnected switches that can
benefit from high-speed total order. The rationale is
elaborated on in greater detail in [1, 12].

This paper shows how message ordering can be guar-
anteed in a distributed setting, along with a significant
increase in the number of “transactions” produced and
processed. The proposed architecture uses off-the-shelf
technology with minor software adaptations.

Message ordering is a fundamental building block in
distributed systems. “Total Order” is one of the basic
message delivery order guarantees, allowing distributed
applications to use the state-machine replication model
to achieve fault tolerance and data replication. Exten-
sive analysis of algorithms providing total ordering of
messages can be found in [10]. One of the most pop-
ular approaches to achieve total order implies using a
sequencer that assigns order to all messages invoked.
This scheme, however, is limited by the capability of
the sequencer to order messages, e.g., by CPU power.
The goal of the methodology presented in this paper
is to achieve a hardware-based sequencer while using
standard off-the-shelf network components. The spe-
cific architecture proposed uses two commodity Ether-
net switches. The switches are edge devices that sup-
port legacy-layer-2 features, 802.1q VLANs and inter
VLAN routing, which are connected via a Gigabit Eth-
ernet link and a cluster of dual homed PCs (two NICs
per PC) that are connected to both switches. One of
the switches functions as the virtual sequencer for the
cluster. Since the commodity switch supports wire-
speed on its Gigabit link, we can achieve a near wire-
speed traffic of a totally ordered stream of messages.

In this paper, we describe the architecture, its as-
sumptions and the adjustments made to the software
of the PCs. Performance results presented show that
a near wirespeed traffic of totally ordered messages is
now a reality. The proposed architecture can be ad-
justed to various high-speed networks, among them In-
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finiBand [3] and Fiber-Channel [2], which do not sup-
port multicast with ordering guarantees. In addition,
our approach includes a highly efficient optimistic de-
livery technique which can be utilized in various envi-
ronments, e.g. replicated databases, as shown in [14].

2 Contribution

In this work, the following contributions have been
made:

• We proposed a new cost-effective approach that
uses only off-the-shelf hardware products. The ap-
proach is not limited to CSMA/CD networks and
can be applied to other networks as well.

• The approach has been implemented and evalu-
ated within a real network.

• We managed to remove significant overhead from
middleware that implements active state machine
replication. It is known that replication usually
provides good performance for read requests, but
incurs a significant overhead on write requests [5].
We reduced the message latency and increased the
throughput of the system that can now perform or-
dering of more than a million messages per second.

3 Model and Environment

The distributed setting is composed of a set of com-
puting elements (PCs, CPU based controllers, etc.) re-
siding on a LAN connected by switches. The com-
puting elements, referred to as nodes, can be either
transaction initiators (senders), or receivers, or both.

The nodes are connected via full-duplex links
through commodity switches. We assume that the
switches support IGMP snooping [17]. Support of
traffic shaping is not mandatory, but is highly recom-
mended. In addition, the switches can optionally sup-
port jumbo frames, IP-multicast routing and VLANs.

The communication links are reliable, with a mini-
mal chance of packet loss. The main source of packet
loss is a buffer overflow rather than a link error. In
Section 6, we discuss the fault tolerance issues. We as-
sume that the participating group of nodes is already
known. Dynamic group technology can be used to deal
with changes in group membership, although this case
is not considered in this paper.

4 Problem Definition

The main goal of our study is to provide an efficient
mechanism for total ordering of messages. Extensive

classification of total order definitions and algorithms
can be found at [10]. Informally, the primitive insures
that messages sent to a set of processes are delivered
by all these processes in the same total order.

Most algorithms attempt to guarantee the order re-
quired by a replicated database application, namely,
Uniform Total Order (UTO) defined in [23] by the
following primitives:

• UTO1 - Uniform Agreement : If a process
(correct or not) has UTO-delivered(m), then every
correct process eventually UTO − delivers(m).

• UTO2 - Termination : If a correct process sends
m, then every correct process eventually delivers
m according to UTO.

• UTO3 - Uniform Total Order : Let m1 and
m2 be two sent messages. It is important to note
that m1 < m2 if and only if a node (correct or
not) delivers m1 before m2. Total order ensures
that the relation “<” is acyclic.

• UTO4 - Integrity : For any message m, every
correct process delivers m at most once, and only
if m was previously broadcasted.

Our system guarantees not only UTO in accordance
with the above definition, but also FIFO for each pro-
cess.

• FIFO Order : If m1 was sent before m2 by the
same process, then each process delivers m1 before
m2.

Before a UTO is agreed on, a Preliminary Order
(PO) is “proposed” by each of the processes. If the PO
is identical for all correct (non-faulty) processes, it is
called Total Order (TO). PO and TO should either be
confirmed or changed by the UTO later.

5 Implementation

As noted above, our implementation of Total Or-
dering follows the methodology based on a sequencer-
based ordering. However, we implement this sequencer
using off-the-shelf hardware which is comprised of two
Ethernet switches and two Network Interface Cards
(NICs) per node. For the simplicity of presentation,
we assume that all the nodes are directly connected to
the two switches. However, our algorithm can work in
an arbitrary network topology, as long as the topology
maintains a simple constraint: all the paths between
the set of NICs for transmission (TX) and the set of



NICs for reception (RX) share (intersect in) at least
one link (see Section 8 for scalability discussion).

We assume that all the network components pre-
serve FIFO order of messages. This implies that, once
a packet gets queued in some device, it will be trans-
mitted according to its FIFO order in the queue. It is
noteworthy that if QoS is not enabled on a switch, the
switch technology ensures that all the frames received
on a network interface of the switch and egressing via
the same arbitrary outgoing link, are transmitted in
the order they had arrived; i.e., they preserve the FIFO
property. We verified this assumption and found that
most switches indeed comply with it, the reason being
that the performance of TCP depends on it. Similarly
to TCP, our algorithm makes use of this feature for
performance optimization, but does not require it for
the algorithm correctness.

In our implementation, multicast is used in order
to efficiently send messages to the nodes’ group. Our
goal is to cause all these messages to be received in the
same order by the set of nodes that desire to get them
(the receivers group). To achieve this, we dedicate a
single link between the two switches on which the mul-
ticast traffic flows. Figure 1 shows the general network
configuration of both the network (the switches) and
the attached nodes. The methodology of the network
is such that all the nodes transmit frames via a sin-
gle NIC (TX NIC connected to the “left” switch in
the figure) and receive multicast traffic only via the
other NIC (RX NIC connected to the “right” switch in
the figure). This ensures that received multicast traffic
traverses the link between the switches. Since all mul-
ticast traffic traverses a single link, thus all the traffic is
transmitted to the nodes in the same order via the sec-
ond switch. As the switches and the links preserve the
FIFO order, this in turn implies that all the messages
are received in the same order by all the nodes.

In a general network setting, there is a chance, al-
beit a small one, that a message omission may occur
due to an error on the link or a buffer overflow (e.g. in
the NIC, OS or in the switch). In a collision-free envi-
ronment (like full-duplex switched environment), a link
error is very rare. In addition, buffer overflow can be
controlled using a flow control mechanism. Thus, the
hardware mechanism enhanced with the proposed flow
control (described in the next section), ensures, with
high probability, the same order for all received mes-
sages. Ways to handle message omission when faults
occur are discussed in Section 6.
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Figure 1. Architecture

5.1 Providing UTO

The preliminary ordering of the hardware configu-
ration is not enough to ensure UTO because messages
may get lost or nodes may fail. To address this issue,
our protocol uses a simple positive acknowledgment
(ACK) scheme (similar to the TCP/IP protocol) to en-
sure that the PO is identical at all the receivers. Each
receiver node UTO-delivers (see Section 4) a message
to the application only after it has collected ACKs from
each receiver node in the system. In order to reduce
the number of circulating auxiliary control messages in
the system, the ACKs are aggregated according to a
configurable threshold parameter. If the system set-
tings are such that each sender node is also a receiver,
the ACK messages can be piggybacked on regular data
messages.

For the sake of reliability, the sender node needs to
hold messages for some period of time. This implies
that sender nodes need to collect ACK messages, even
though they do not deliver messages to the application.
The ACK messages are used by a flow control mecha-
nism (termed as local flow control in [18]) in order to
maintain the transmission window. Each sender node
is allowed to send the next data message only if the
number of messages which were originated locally and
are still unacknowledged by all the receiver nodes is less
than a defined threshold value (the transmission win-
dow size). Since the ACKs are aggregated, the number
of messages that could be sent each time may vary.

In order to increase the performance for small mes-
sages, a variation of a Nagle algorithm [20] is used as
described in Section 5.2.1. Since the main source of
message losses is buffer overflow, careful tuning of the



flow control mechanism combined with ACKs aggrega-
tion can reduce the risk of losing messages. For our
particular configurations, we identified the appropriate
combination of the window size and the number of ag-
gregated ACKs to achieve maximum throughput. The
specific implementation of the flow control mechanism
presented in this paper allows overall performance to
converge with the receiving limit of the PCI bus.

5.2 Optimizations for Achieving High
Performance

Various applications may be characterized by differ-
ent message sizes and packet generation rates. For ex-
ample, one application may be in a SAN environment
in which it is reasonable to assume that the traffic can
be characterized by a very large number numer of small
messages (where the messages carry meta-data, i.e. a
lock request). Another application can be a “Computer
Supported Cooperative Work” (CSCW) CAD/CAM,
in which data messages may be large. In view of these
modern applications, the need to achieve high perfor-
mance is obvious. Below, a description is presented of
the mechanisms and techniques we have implemented
and measured in order to reach that goal.

5.2.1 Packet Aggregation Algorithm

It was stated by [11] that at high loads, message pack-
ing is the most influential factor for total ordering pro-
tocols. We use an approach similar to that in the Nagle
algorithm [20], in order to cope with a large number of
small packets. Only the messages whose transmission
is deferred by flow control are aggregated in buffers.
The most reasonable size of each buffer is the size of
an MTU. When the flow control mechanism shifts the
sliding window by n messages, up to n “large” messages
will be sent.

5.2.2 Jumbo frames

The standard frame size in Gigabit Ethernet is ∼1512
bytes. The size of the jumbo frame is ∼9000 bytes.
Numerous studies show MTU size has an impact on
the overall performance, such as [7], which reports in-
creased performance for jumbo frames. The main rea-
sons for the performance improvement include:

• lower number of interrupts (when moving the same
amount of data) and

• less meta-data overhead (headers).

In order to fully benefit from the use of jumbo frames,
all components of the system should be configured to

support it; otherwise, fragmentation occurs. Since
we control all the components in the proposed sys-
tem, we avoid this problem. Performance results prove
that jumbo frames allow to obtain better throughput.
For example, in the configuration of two senders and
three receivers we achieve a maximum throughput of
722Mb/s.

5.3 Multicast Implementation Issues

As mentioned above, every node is dual-homed, i.e.
is connected to the network with two NICs. In the
IP multicast architecture, a packet accepted on some
interface must be received on the same interface from
which the node sends unicast traffic towards the source
of the multicast packet. This condition is called the
Reverse-Path-Forwarding (RPF) test, which is per-
formed in order to detect and overcome transient multi-
cast routing loops in the Internet. However, this poses
a problem for our network settings, since we intend to
receive the multicast traffic from the RX NIC while we
are transmitting it from the TX NIC. There are several
options for overcoming this difficulty, including:

• disabling the RPF test on the particular node;

• ensuring that the source address of the multicast
packets has the same subnet portion as the NIC
on which it is received (i.e., the RX NIC in our
case).

We used the second approach and modified the RX
flow in the NIC driver, so that it spoofs the source IP
address of the packet. Another issue related to the us-
age of IP multicast in our settings is that self-delivery
of multicast packet is usually done via internal loop-
back. Packets that are sent by the local host and are
supposed to be received by it, are usually delivered im-
mediately by the operating system. We disabled this
feature, so that ALL delivered packets are received via
the RX NIC and thus all the packets pass through the
same delivery process (thus ensuring that total order
is maintained).

6 Fault-Tolerance

Failures can be caused by different sources: a switch
failure, a physical link disconnection, a failure of a pro-
cess and a crash of a node running the process. All
these failures can be identified by failure detectors.

We implemented a loss-of-packet failure handling.
The proposed algorithm contains a built-in method for
identifying and retransmitting a missing packet by in-
troducing a leader node whose order takes over when a



conflict occurs. It is noteworthy that nodes in our sys-
tem do not wait for the leader’s ordering in failure-free
scenarios. In Technical Report [1] we elaborate on com-
baning our algorithm with either Virtal Synchrony [9]
or Paxos [16].

An alternative approach was presented by Pedone
et al. [22]. The authors define a weak ordering oracle
as an oracle that orders messages that are broadcast,
but is allowed to make mistakes (i.e., the broadcast
messages might be delivered out of order). The paper
shows that total-order broadcast can be achieved using
a weak ordering oracle.

In [1] we consider fault tolerance in greater detail as
well as present a solution for overcomming failures of
links and/or switches.

7 Performance

This section presents the results of the experiments
performed to evaluate the architecture. The following
configuration was used:

1. Five end hosts: Pentium-III/550MHz, with
256 Mb of RAM and 32 bit 33 MHz PCI
bus. Each machine was equipped also with
two Intel r©Pro/1000MT Gigabit Desktop Network
Adapters. The machines ran Debian GNU/Linux
2.4.25.

2. Switches: Two Dell PowerConnect 6024 switches,
populated with Gigabit Ethernet interfaces. These
switches are “store and forward” switches (i.e., a
packet is transmitted on an egress port only after
it is fully received).

The experiments were run on an isolated cluster of
machines. For each sample point on the graphs be-
low and for each value presented in the tables, the
corresponding experiment was repeated over 40 times
with about 1 million messages at each repetition. We
present the average values with confidence intervals of
95%. Unless otherwise specified, the packet size in
the experiments was about 1500 bytes (we also exper-
imented with small packets and with jumbo frames).
The throughput was computed at the receiver side as
packet size×average number of delivered packets

test time . In order
to simulate an application, we generated a number of
messages at every configurable time interval. However,
in most Operating Systems, and in particular in Linux
2.4, the accuracy of the timing system calls is not suf-
ficient to induce the maximal load on the system. We
therefore implemented a traffic generation scheme that

The paper hereafter refered to as Technical Report.

sends as many messages as possible after each received
ACK. Since the ACKs were aggregated, the size of the
opened flow control window varied each time.

7.1 Theoretical bounds

It is important to observe that, regardless of the al-
gorithm used to achieve the Total Order of messages,
there are other system factors that limit the overall or-
dering performance. One of the bottlenecks that we
encountered resulted from the PCI bus performance.
In [24] it is shown that the throughput achieved by
PCI bus in the direction from the memory to the NIC is
about 892Mb/s for packets of 1512 bytes size and about
1 Gb/s for jumbo frames. However, a serious downfall
in the PCI bus performance was detected in the op-
posite direction, when transferring the data from the
NIC to the memory. The throughput of 665Mb/s only
for packets of 1512 bytes size and 923Mb/s for jumbo
frames was achieved. Thus, the throughput allowed by
PCI bus imposed an upper bound on the performance
of a receiver node in our experiments. There are var-
ious studies on PCI bus performance, e.g. [19], which
suggest several benchmarks and techniques for tuning.
It will be shown later that our solution approximates
the theoretical and experimental upper bounds of PCI
bus. In future work, we plan to evaluate our architec-
ture over PCI Express whose throughput is higher and
is thus to yield significantly better performance.

We first discuss the best throughput results obtained
for each configuration. The latency obtained per result
is presented as well. Two types of configurations were
used: those where all the nodes were both senders and
receivers (all-to-all configurations), and those in which
the sets of senders and receivers were disjoint. It is im-
portant to note that for some configurations, such as
the all-to-all configuration and the experiments with
the jumbo-frames, we utilized the traffic shaping fea-
ture of the switching device, namely the one that is
connected to the TX NICs. This ensured that no loss
occurred on a node due to the PCI bus limitations.
The value serving to limit the traffic was selected by
measuring maximum achievable throughput for each
setting. The main benefit of using traffic shaping is
the limit it imposes on traffic bursts that were the ma-
jor cause of packet drops in our experiments.

7.1.1 All-to-all Configurations

Results for all-to-all configurations and configurations
with dedicated senders are discussed separately, since
when a node serves as both a sender and a receiver, the
CPU and PCI bus utilization patterns differ, and the
node is overloaded.



Nodes Throughput PO Latency UTO Latency
Number Mb/s ms ms

3 310.5 (0.08) 4.2 (0.03) 6.5 (0.03)
4 344.4 (0.04) 4.4 (0.02) 6.8 (0.02)
5 362.5 (0.09) 4.1 (0.02) 6.7 (0.02)

Table 1. Throughput and Latency for all-to-all configuration

Table 1 presents throughput and latency measure-
ments for all-to-all configurations, along with the cor-
responding confidence intervals shown in parentheses.
The nodes generate traffic at the maximum rate bound
by the flow control mechanism. Two different latency
values are presented: PO Latency and UTO Latency.
PO Latency is defined as the time that elapses between
transmission of message by a sender and its delivery
by the network back to the sender. UTO Latency is
defined as the time elapsed between a message trans-
mission by a sender and the time the sender receives
ACKs for this message from every receiver.

The number of the nodes that participated in this
experiment increases from 3 to 5. As presented in Ta-
ble 1, the achieved throughput increases with the num-
ber of participating nodes. This is accounted for by
the PCI bus behavior ( See Section 7.1). Since each
node both sends and receives data, the load on the
PCI is high, and the limitation is the boundary on the
total throughput that can go through the PCI bus.
As the number of nodes grows, the amount of data
each individual node can send decreases. When a node
sends less data, the PCI bus enables it to receive more
data. The nonlinearity of the increase in throughput
in this experiment can be attributed to the above men-
tioned property of the PCI bus, where the throughput
of transferring data from memory to NIC is higher than
in the opposite direction.

7.1.2 Disjoint Groups of Senders and Re-
ceivers

Table 2 presents the performance results of throughput
measurements for disjoint sets of nodes. We used 2-5
nodes for various combinations of groups of senders and
receivers. The maximum throughput of ∼512.7Mb/s
was achieved. In the trivial configuration of a single
sender and a single receiver, the result is close to the
rate achieved by TCP and UDP benchmarks in a point-
to-point configuration, where the throughput reaches
475Mb/s and 505Mb/s, respectively. The lowest result
was registered for a single sender and four receivers, the
achieved throughput of 467Mb/s not falling far from

the best throughput.
For a fixed number of receivers, varying the number

of senders yields nearly the same throughput results.
For a fixed number of senders, increasing the number of
receivers decreases the throughput. The reason is that
a sender has to collect a larger number of ACKs gener-
ated by a larger number of receivers. It is noteworthy
that the flow control mechanism opens the transmis-
sion window only after a locally originated message is
acknowledged by all the receiver nodes. Possible solu-
tions to this problem are discussed in Section 8.

Table 3 presents the results of UTO latency mea-
surements at the receiver’s side. As can be seen, in
case of a fixed number of senders, increasing the num-
ber of receivers increases the latency. The explanation
is similar to that for the throughput measurement ex-
periments: the need to collect ACKs from all the re-
ceivers. Increasing the number of senders while the
number of receivers is fixed causes an increase in the
UTO Latency. Our hypothesis is that this happens due
to an increase in the queues both at the switches and
at the hosts.

As was mentioned above, in case a node either sends
or receives packets, the utilization of the PCI bus and
other system components is different from the case
when a node acts as both a sender and a receiver. For
this reason, the results presented in this section cannot
be compared with those described above.

7.2 Tradeoffs of Latency vs. Throughput

In this section, we discuss the impact of an increased
load on latency. In order to study the tradeoff of La-
tency vs. Throughput, a traffic generation scheme dif-
ferent from that in the previous experiments was used.
The scheme was implemented by a benchmark appli-
cation that generated a configurable amount of data.

7.2.1 All-to-all Configuration

In this section, all-to-all configuration is considered.
Figure 2 shows the latencies for the 5-node configura-
tion. Obviously, the UTO latency is always larger than



Receivers
Senders 1 2 3 4

1 512.7 (0.47) 493.0 (0.17) 477.0 (0.34) 467.1 (0.40)
2 512.5 (0.27) 491.7 (0.67) 475.7 (0.33)
3 510.0 (0.55) 489.6 (0.41)
4 509.2 (0.30)

Table 2. Throughput (Mb/s) for different configurations
Receivers

Senders 1 2 3 4
1 2.3 (0.003) 3.1 (0.035) 3.2 (0.045) 3.1 (0.012)
2 2.5 (0.002) 3.1 (0.025) 3.4 (0.040)
3 3.2 (0.004) 3.6 (0.041)
4 4.9 (0.003)

Table 3. UTO Latency (ms) for different configurations
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Figure 2. Latency vs. Throughput (all-to-all
configuration)

the PO latency. One can see an increase in the latencies
when the throughput achieves the 50Mb/s value, i.e. a
point from which small transient packet backlogs were
created, and then a slight increase until the throughput
approaches about 250Mb/s. After this point, the laten-
cies start increasing. The PO latency reaches the value
of about 1ms and UTO of about 3ms for throughput
of about 330Mb/s.

We also measured the Application UTO Latency,
which is the time interval from the point when the

application sent a message until it can be “UTO de-
livered”. One can see that when throughput increases,
the Application UTO Latency increases too. This hap-
pens because the Linux 2.4 kernel allows events to be
scheduled with a minimal granularity of 10ms . Thus,
in order to generate a considerable load, the bench-
mark application has to generate an excess number of
packets every 10ms. Packets that are not allowed to be
sent by the flow control mechanism are stored in a lo-
cal buffer data structure. When ACKs arrive, the flow
control mechanism enables sending some more packets
previously stored for transmission. Packets that can-
not be immediately sent increase the Application UTO
Latency.

7.2.2 Large Packet Sizes

Figure 3 shows how increasing the application packet
size, along with increasing the MTU size, affects the
Application UTO Latency. In this experiment, we used
disjoint groups of two senders and three receivers. We
compared results achieved for jumbo frames with those
obtained for regular Ethernet frames of MTU size. As
expected, in case of jumbo frames, a larger through-
put can be achieved, mainly due to the significantly
reduced amount of PCI transactions.

When throughput increases, the Application UTO
Latency increases, too, the reasons being the same as
for the “all-to-all configuration”. One can see that at
lower throughput values, the jumbo frames show higher
latency. This can be attributed to the fact that when

The latest versions of Linux support 1ms granularity
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Figure 3. Latency vs. Throughput for differ-
ent MTU sizes

the system is relatively free, the high transmission la-
tency of jumbo frames dominates; in other words, the
time for putting a jumbo frame on the wire is larger.
As the load on the system increases, the overhead of
the PCI bus and packet processing becomes the domi-
nating factor, and using jumbo frames helps to reduce
this overhead and thus to achieve the UTO faster.

7.2.3 Packet aggregation

The experiment evaluated the effect of using the packet
aggregation algorithm described in 5.2.1. Figure 4
shows the performance of the system with small pack-
ets, the payload size being about 64 bytes. Two ac-
cumulating packet sizes were used, Ethernet MTU of
1500B and jumbo frame size of 9000B. In addition,
the same tests were conducted without packet aggre-
gation. Since the throughput without packet aggre-
gation is considerably smaller, in the same figure the
area corresponding to the throughput values between
0 and 40Mb/s is shown. One can see that the maxi-
mum throughput without packet aggregation is about
50Mb/s. On the other hand, using an accumulating
size of 1500B increased the maximum throughput up
to 400Mb/s. With accumulating size of jumbo frames,
the throughput climbed as high as 630Mb/s, which is
about one million small packets per second.

Comparing corresponding curves in Figures 3 and 4,
one can see that packet aggregating causes a higher
latency and a lower maximum achievable throughput.
It could be explained by the amount of CPU resources
spent on aggregating the messages.
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7.3 Comparisons with previous works

There are only few papers that evaluate performance
of total order algorithms over real networks. The rapid
advancement of networking technology in recent years
often makes the comparison irrelevant. For example,
[11] presented performance evaluations of several to-
tal order algorithms. However, the measurements were
carried out on a shared 10 Mb/s Ethernet network,
which is 100 times slower than Gigabit Ethernet which
is widely deployed today.

In the experiment described below, we compared the
performance of our system with results of an algorithm
based on weak ordering oracles ([22], described in Sec-
tion 6), and of an algorithm based on failure detec-
tors [6]. When carrying out the measurements for the
comparative experiment, we tried to provide similar
settings. All links were configured to 100Mb/s rate,
the message size was 100 bytes, no message packing was
used and the aggregation of ACKs limit was set to 3.
The experiments in [22] were performed at 4 nodes for
weak ordering oracles and at 3 nodes for the algorithm
based on failure detectors. In our experiments, we used
4 nodes. Since the main parameters of the experiments
under comparison coincide, while there might be differ-
ences in equipment and implementation environments,
it is likely that the approximation is sufficient.

As the comparison presented in [22] shows, the maxi-
mum throughput for both algorithms was 250 messages
per second. The latency of the weak ordering oracle al-
gorithm increased from about 2.5s for the throughput
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Figure 5. Number of ordered messages/s in
100Mb/s network.

of 50 messages/sec up to about 10ms for the through-
put of 250 messages/sec. The performance of the algo-
rithm based on failure detectors depends largely upon
the timeout set for heartbeat messages. For large time-
out of about 100ms, the latency was within the range
of 1.5-2ms, and for small timeout (2ms) the latency
was within the range of 8-10ms.

Figure 5 presents the results of our experiments in
100Mb/s network and shows that the throughput of
about 1000 messages/sec was achieved. The through-
put of 300 messages/sec induces the PO latency of
about 0.7ms, and the UTO latency was within the
range of 1.7-2.2ms. The 95%-confidence interval was
also computed and found practically negligible, as one
can see in the graphs. It is important to note that
while for low throughput our results do not differ sig-
nificantly from those achieved by Pedone et al. [22], for
a high throughput we reach lower latency. The reason
is that in our system, order is not distrupted even if a
message m is lost, as losses happen mostly in switch A
(see Figure 1). So, if m is missed by a process, there is
a high probability that m is lost by all the processes,
and PO order remains the same among all the pro-
cesses. When m’s sender discovers that m is lost, it
retransmits m promptly.

Another question is whether the propagation time of
a message in our two-switch topology is much higher
than in a one-switch topology. Theoretically, the prop-
agation time in a Gigabit network over a single link
is 1500∗8

109 =0.012ms, the speed of signal transmission
over the cable is negligible, and the maximum process-
ing time in the switch that we used is not more than

0.021ms. We performed two experimental measure-
ments of propagation time. In the first experiment,
the ping utility was used to measure the latency of
1500-size packet, and 0.05ms propagation time was ob-
tained in both topologies. In the second experiment,
we used application level ping based on UDP protocol,
as opposed to the original ping utility which works on
kernel level. In the application level ping, we regis-
tered 0.12ms latency in both topologies. The results
show that packet processing time (∼0.1ms) is much
higher than message propagation time (∼0.012ms). We
can conclude, therefore, that the two-switch topology,
without significantly increasing the latency, allows to
predict message order with much higher probability!

8 Scalability

The performance evaluation presented above was
carried out only for up to five nodes. This evalua-
tion proves that the architecture can be efficient for
small systems. As for larger systems, our measure-
ments showed only a small degradation of throughput
(about 0.5% per sender) when the number of senders
increases. However, increasing the number of receivers
decreases the throughput. In Technical Report [1], we
discuss a few solutions for making the system scalable
when the number of receivers increases. We also prove
that the number of ports in the switches does not put
any limitations on our apprach, and discuss the issue
of providing support for multiple groups [1].

9 Related Work

There are a number of works which deal with the
problem of Total Ordering of messages in a distributed
system. A comprehensive survey of this field, covering
various approaches and models, can be found in [10].
The authors distinguish ordering strategies based on
where the ordering occurs, i.e. senders, receivers or
sequencers. We use the network as a virtual sequencer,
so our algorithm falls into the latter category.

As was noted in Section 1, the approach called “Op-
timistic Atomic Broadcast” was first presented in [21].
In [8], an interesting approach to achieving total or-
der with no message loss was presented. The authors
introduced buffer reservation at intermediate network
bridges and hosts. The networking equipment connect-
ing the senders and receivers was arranged in a span-
ning tree. The reservation was made on the paths in
the spanning tree so that no message loss could oc-
cur. The ordering itself was performed using Lamport
timestamps [15]. The paper assumed a different net-



work and presents only simulation results, which makes
it hard to perform any comparisons.

An implementation of a Total Ordering algorithm in
hardware was proposed in [13]. This work offloads the
ordering mechanism into the NIC and uses CSMA/CD
network as a virtual sequencer. The authors assume
that a single collision domain connects all the partic-
ipating nodes. Using special software and hardware,
the algorithm prevents nodes that missed a message
from broadcasting new messages, thus converting the
network to a virtual sequencer. In our opinion, the use
of a single collision domain is the main drawback of
this approach, as it is known that collisions may signif-
icantly reduce the performance of system.

Another work that deals with Total Ordering and
hardware is presented in [4]. In this work, a totally
ordered multicast which preserves QoS guarantees is
achieved. It is assumed that the network allows band-
width reservation specified by average transmission
rate and the maximum burst. The algorithm suggested
in the paper preserves the latency and the bandwidth
reserved for the application.
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