
Unification of Verification and Validation Methods for Software Systems:

Progress Report and Initial Case Study Formulation

James C. Browne, Calvin Lin, Kevin Kane
Department of Computer Sciences

University of Texas at Austin
Taylor Hall – MS C0500

Austin, Texas 78712 USA
{browne,lin, kane}@cs.utexas.edu

Yoonsik Cheon, Patricia Teller
Department of Computer Science

University of Texas at El Paso
500 W. University Avenue
El Paso, Texas 79968 US

{cheon,pteller}@cs.utep.edu

Abstract

 This paper presents initial research on unification of
methods for verification and validation (V&V)of software
systems. The synergism among methods for V&V are
described. The requirements for a unification are defined.
The initial steps of a case study of application of the
unified approach to V&V is sketched including definition
of the problem domain, the approach and some details of
a property specification language. An undergraduate
course introducing the unified approach to V&V is
described. The relationship of this research to other
efforts toward unification of V&V are discussed.

1. Introduction

1.1 Status of Verification and Validation:

 The verification and validation (V&V) practice for
software systems is, with few exceptions, typically
approached through informal methods and tools or
occasionally approached through the application of
formal proof methods. Neither approach alone is
complete or satisfactory, and seldom are the methods
integrated effectively. The situation is even less
satisfactory in university curricula. Incredibly, few
computer science or computer engineering programs have
comprehensive coverage of methods and tools for V&V,
and even fewer have attempted courses that present a
unified perspective of V&V methods. Instead, the many
aspects of V&V are typically taught in isolation using
language-specific tools. Moreover, the role of software
design in facilitating V&V is often not emphasized.

1.2 Synergism Among Verification and

Validation Methods:

 Testing, model checking, static analysis, theorem
proving, and runtime monitoring are related in many
ways. Model checking can be viewed as systematic
testing of abstract states based on formal specifications.
Indeed, much research in testing focuses on path
coverage and the elimination of infeasible paths. Static
analysis can be viewed as an approximation of model
checking that is less precise but more scalable. Many of
the pre- and post-conditions used in theorem proving can
be expressed in temporal logic and verified by model
checking or validated by runtime monitors. These
techniques also have complementary strengths and
weaknesses. Testing and runtime monitoring are
necessarily unsound, while the other techniques can be
sound, complete, or neither.1

 Both testing and runtime monitoring can be guided by
static analysis, and static analysis is a critical enabling
technology for model checking, as it can project out states
and behaviors that are irrelevant to the property being
checked. Static analysis also can be used to generate code
for runtime monitoring. On the other hand, runtime
monitoring can be applied in cases where model checking
is intractable and static analysis is imprecise. Finally,
theorem proving has been used to improve the precision

1 A technique is sound if it never verifies as correct a
program that is incorrect, i.e., it reports all errors. A
technique is complete if it always verifies as correct all
programs that are correct, i.e., it never reports a false-
positive.

1-4244-0054-6/06/$20.00 ©2006 IEEE

of model checking. The relationship between model
checking and static analysis is worth particular attention.
Both model checking and static analysis are state space
analysis techniques that can verify typestate properties
[13], but the former explores each execution path in a
depth-first manner while data-flow analysis produces an
approximate answer by merging results at various control
flow merge points. Thus, model checking can be viewed
as path-sensitive data-flow analysis, and data-flow
analysis can be viewed as a method of approximating
model checking. In gross terms, the two approaches
represent different tradeoffs between precision and
scalability. Model checking and static analysis have
traditionally operated on different program
representations, but even these are converging as recent
work in BDD-based pointer analysis has used symbolic
representations to greatly improve scalability [15, 3]. A
key aspect of this project is to further develop the
synergies between these two approaches. Finally,
theorem proving has also been integrated with other
verification methods [9].

1.3 Opportunity:

 Given the potential synergies of testing, program
analysis, and model checking, and given the increasing
maturation of these techniques, it is now feasible to
intergrate these complementary approaches to V&V. It is
therefore logical to organize, structure, and present a
comprehensive approach to V&V that is language-
independent, although tools will always be language-
specific. This knowledge can then be used to select
methods and tools for V&V of a particular programming
paradigm or language.

 It is also noteworthy that the hardware development
community has begun to unify verification by integrating
simulation and model checking techniques [1].

1.4 Definitions:

 There are numerous definitions in the literature of
Verification and Validation (V&V). The following are
from the IEEE standards.

• Verification – “Confirmation by examination
and provisions of objective evidence that
specified requirements have been fulfilled.”

• Validation – “Confirmation by examination and
provisions of objective evidence that the
particular requirements for a specific intended
use are fulfilled.”

 In the context of software development, verification is
the activity that ensures the work products of a given
phase fully implement the inputs to that phase, or “the
product was built right.” Validation, in its simplest terms,
is the demonstration that the software implements each of
the software requirements correctly and completely, i.e.,
the “right product was built.”

 In the context of this proposed research, V&V means
the determination that a software system meets its
specifications beginning with analysis and design and
continuing throughout implementation. The focus is on a
comprehensive approach to determining that the
specifications are met.

 We believe that while in an ideal world software would
be specified and developed with formal and rigorous
methods, it is also important to enhance the effectiveness
of V&V for conventional software development methods.
Therefore, conventional software development methods
as typically taught in computer sciences departments are
the targets for the integrated approach to V&V proposed
herein.

 The following informal definitions give perspective on
our approach to integration.

• Testing – Determines the correctness of the
execution of a program for a given initial
condition and input set.

• Static Analysis – Determines program properties
such as data-flow paths and control flow paths
that can be deduced from the static structure of
the program.

• Model Checking – Determines the correctness of
a temporal property for the executions of a
program for all initial conditions and inputs.

• Formal Proof – Determines whether a program
conforms to a specification of behavior, usually
an input/output relation for all executions of the
program.

• Runtime Monitoring – Dynamically checks
whether the execution of a program conforms to
a specified condition.

1.5 Motivation:

 Computers are increasingly assuming central roles in
safety- and security-critical systems, leading to dire
consequences of viruses, worms, and software faults.
Almost all of these viruses, security attacks, and
equipment malfunctions are due to flaws in software

design and implementation that could have been found by
a truly comprehensive and well-structured process to
verify and validate the properties and behaviors of the
software. Additionally, there are specifications for
information flow, which are sometimes called security
policies, and the design and implementation of these
security policies also must be verified and validated. The
methods needed to verify and validate the security
policies largely overlap with those needed to verify and
validate other types of specifications.

 This work is further motivated by the increasing role of
concurrency and parallelism in embedded and control
systems. Conventional testing of concurrent, parallel, and
distributed systems remains relatively weak despite
considerable research. Model checking, on the other
hand, is naturally suited to the verification of such
systems.

1.6 Paper Contents

 The balance of the paper is organized as follows.
Section 2 gives the requirements for a unification of
V&V for software. The initial case study where the
unification is being piloted is defined and described in
Section 3. Section 4 mentions some related work that has
influenced our approach. The content for an
undergraduate course on the unified approach is given in
Section 5. Future research, both short term and long
term, are sketched in Section 6.

2. Requirements for Unification

 The requirements for an effective unification include:

• A unified property specification language
incorporating provision for representation of
domain specific properties,

• A taxonomy for classification of properties with
respect to applicability of verification and
validation methods, and

• An abstraction/translation capability for
translation of properties in the “universal” PSL
to the property specification languages of
method specific tools and generically specified
system models into representations for language
and method specific tools.

• A software design model which enables
compositional reasoning over the entire system.

2.1 Unified Property Specification Language:

 The unifying conceptual element for unification
is a “universal” property specification language that spans
properties that can be validated by testing or runtime
monitoring or are verifiable by static analysis, model
checking, or proof methods. This unification enables a
systematic approach whereby properties can be verified
by static analysis, testing, or model checking or be
compiled to runtime monitors as appropriate or required.
This comprehensive view of system behavior also serves
as a powerful tool for documentation. The only example
of a unified property specification language with which
we are familiar is the Property Specification Language
(PSL) [1] developed by the Acellera Consortium for
simulation-based testing and model-checking-based
verification of hardware systems. The Acellera PSL is a
general version of a future time temporal logic which can
be translated to several well-known forms of temporal
logic. The Acellera PSL has domain specific operands
and operators to facilitate formulation of properties of
clocked hardware systems. For example, it incorporates a
clock that can be modified for use in specification of
performance properties.

2.2 Property/System Classification:

 The appropriate choice of method and tool to verify or
validate a given property is dependent upon both the
property and the system. There currently exists no
systematic method for mapping property/system
characteristics to the most effective methods or tools for
the property system pair. The classification will require
characterizations of properties, systems and methods and
tools in operational terms.

2.3 Unification of Method/Tool Implementations:

 The unifying implementation technology of the
proposed approach is integration of static analysis, testing
including coverage analysis, translation/abstraction of the
program to a model checkable representation, and
generation and insertion of runtime-monitoring code
based on the property specification language. Model
checking is based upon translation/abstraction of the
software representation to a model-checkable
representation. The translation/abstraction infrastructure
will be extended to verify static properties specified in the
property specification language. Runtime monitoring will
be accomplished by source-to-source transformation of
the software representation based on the program

analyses built into the translation/abstraction and program
analysis infrastructure.

2.4 Software Design Model

 Rigorous componentization is the software design
model used in this study. The example system and the
property specification language are based on self
describing components. A self-describing component has
its properties specified in its interface. This enables
compositional reasoning by enabling representation of
components by their properties in the verification of
compositions of components.

3. Initial Case Study for UVV: Access

Control for Distributed Systems of Services

 The content of subsections 3.1, 3.2, 3.3, 3.4 and 3.7 are
summarized from Kane and Browne [8]. More detail can
be found in [8].

3.1

 Access control systems are typically formulated in
three stages: formulation of a policy, representation of
that policy as a scheme, and finally realization of that
scheme in an implementation. An access control policy is
a definition of how a system should provide or deny
access which can range from an abstract statement like,
“only users on this list should have access,” or “only
users who have given me service in the past should have
access,” to programs in policy languages with executable
semantics. An access control scheme, as defined by [14],
is a state transition system in which access control
decisions are specified as changes of state in an
appropriate representation such as an access control
matrix. A set of access control schemes is an access
control model.

3.2 System Architecture

 A distributed system of services is constructed from a
set of nodes, each of which hosts one or more services.
Services are active entities which provide their own
access control as opposed to passive resources which do
not. The nodes (services) are connected by a network that
provides bi-directional communication and a mechanism
for discovering other services. Each service interacts with
other services through an interface, which is the portion
of the service exposed to the network. An interface is a
set of operations, which are individual units of
functionality invoked by users. In the context of an

interaction between two services, we refer to the user as
the service invoking the operation, and still refer to the
service as the service providing the operation. Human
operators are abstracted as services which provide no
operations, and so only ever play the part of users. We
split the interface into the interface mediating requests
made to the service, as well as requests made by the
service.

 We assume there are cryptographic primitives available
for establishing private channels between two services,
and also for guarding protected objects against tampering.

3.3 Formulation of Access Control for

Distributed Systems of Services

 The access control problem is then specified as a state
transition system where:

• The states and state transitions are for an access
matrix and an associated trust matrix.

• Trust matrix entries are trust values held by
services about other services.

• Transitions in access control matrix result from
granting and delegation of contractually limited
capabilities which are defined following.

• Transitions in trust matrix result from yet to be
defined trust computations.

 Since the state of the system will be distributed across
the set of services comprising the system, the information
content of the access control matrix will be distributed
across the services. This means that access control
enforcement cannot always be by prevention but may be
by detection and update of the trust matrix.

 Access control is designed and implemented in terms
of contractly limited capabilities (CLC’s). A basic
capability [12] is a self-validating credential that provides
access to a resource. It is both a reference to a resource
and a set of access rights on it. Possession of a capability
implies authorization, and so the access control decision
is only validating the capability. For example, in an
operating system on a single host, a user holds a set of
capabilities to files in the file system in a special memory
segment, and presents a capability to the kernel in order
to execute a desired operation on a file. These capabilities
can then be copied to other users to delegate all or part of
a user’s authority to another. Capabilities are kept in
tables, where they are mapped to particular functions or
operations, so that validation is mapping it to a valid
operation; if no such mapping exists, the capability is by

definition invalid. In this way, verification is reduced to
function/operation table look-up.

 The properties to be established are that grants of
capabilities conform to the stated policies in terms of
values in the trust matrix and the access matrix and that
access to the operation for which a capability is granted is
accepted or declined in conformance to the stated policies
in terms of the values in the access matrix and the trust
matrix.

3.4 Contractually-Limited Capabilities

Definitions
 A contract is a set of access rights on the invocation of
a capability by the user2. It is represented as a (possibly
stateful) function evaluated by the service at the point of
invocation. Input to this function is operation-dependent,
but consists of the capability and parameters used in the
invocation, together with any state the operation is
programmed to use in its decision. The function then
returns true or false to indicate whether the invocation
should be serviced.

• A contract can specify any condition expressible
in the programming language in which the contract
is written.

A contractually-limited capability is a 6-tuple (I, O, K, C,
P, S), where:

• I is a pointer into the operation table of the
service component, represented as an integer,

• O is a string containing the human-readable
name of the operation as provided by the service,

• K is the certificate of the service,

• C is the contract,,

• P is the list of parameter types for the operation,
and

• S is the cryptographic signature computed across
the other five fields, and signed with the private
key corresponding to K.

When invoked, a contractually-limited capability is
satisfied if and only if:

• I is a valid pointer into the operation table,

• K is the certificate of the service where this
capability is invoked,

• The arguments provided are of the correct types
as listed by P ,

2 A more complete implementation of contracts including
obligations on the service and were as obligations on use
of the capability will be incorporated in future research.

• S is the correct signature as computed across the
other five fields, and

• Evaluation of C returns true.

 These conditions are to be expressed in the property
specification language and verified by the verification
and validation process.

3.5 Formulation of a Unified Property

Specification Language

 The UPSL will be based on integration of BAN [4]
logic for reasoning about beliefs held by one service
concerning another service with past time and future time
temporal logic [5] for reasoning about formulas over
states of the access matrix and domain specific base terms
for capabilities and services.

3.6 Verification and Validation Methods

 Establishment of trust entries in the trust matrix will be
by manual proofs on properties formulated in BAN logic.
Verification of properties on the states of the access
matrix will be of properties formulated in the integration
of past time and future time temporal logic and will be
accomplished either by model checking of the
interactions of the state machines defined by the
interaction protocols of the interacting services or by
compiling the past time logic properties to runtime
monitors to be validated on execution traces at services.

3.7 Implementation

 Distributed systems of services are implemented in an
extended version of the CoorSet [7] coordination
language system where the compiler and runtime system
provide for independent components to work with one
another through associative interactions [7]. Associative
interactions are interactions where messages are
addressed to descriptions of receiver sets, and receivers
are described not by an arbitrary name but by an
application dependent descriptive name. They are so
named due to their modeling after the addressing of
associative memory. These interactions are mediated
through two interfaces on each service: an accepts
interface, describing the functionality provided by the
service, and a requires interface, describing the
functionality required by the service. We also add a third
interface, the capability interface, which is the internal
mapping of capabilities to internal functionality, and is
consulted when an invocation is made with a capability.
Entries are added to this interface most often by a

successful handshake, although application routines may
create and extend capabilities as well. Space precludes a
detailed presentation of the extended CoorSet [7]
(CapCoorSet [8]) system. Details are given in the
referenced papers.

3.8 Status

 The logic upon which the property specification
language is based has been formulated. The grammar for
the translation system for the property specification
language is being developed. An example distributed
system of services has been coded and tested. Examples
of properties for verification have been formulated.

4. Related Research

 Each of the methods for verification and
validation has an extensive (if not vast) literature. The
research discussed here is confined to the relatively
sparse literature on integration of multiple methods of
V&V. There are numerous papers that address some
degree of integration but literally none that we have been
able to find that propose a unification and integration
across all of static analysis, testing, model checking and
runtime monitoring. For example, Richardson and Clarke
addressed integration of testing and verification in 1985
[11]. There have been some research integrating various
methods in pairs, for example Kuncak, et.al [9] discuss
combining theorem proving with static analysis. There is
considerable literature combining testing and runtime
monitoring. McHugh in his dissertation [10], combined
runtime monitoring with formal proofs. The Java
PathFinder [6] project integrates formal specification of
properties with runtime monitoring. One of the more
interesting but peripherally related papers compares the
effectiveness of different methods of V&V in
experiments reported by Brat, et. al. [2].

5. Course Development

 Bringing a comprehensive approach to V&V that
exploits both synergisms and complementarities into the
standard curriculum of computer science and computer
engineering is essential to enable effective application of
the unification. Development of graduate and
undergraduate courses are integral to this research
project. The classes will be the laboratories in which the
concepts and their implementations are evaluated. A
graduate seminar was offered in the Spring of 2005. The
first offering of the undergraduate course will be in Fall

2006. The content for the undergraduate course will
include:

a. Design for test and verification.
b. Unified Property Specification
c. Introduction to program analysis (static analysis

methods).
d. Formal and complete approaches to testing:

Specification of properties, behaviors and
assertion
Test coverage algorithms based on static
analysis processes
Testing as a continuous process integrating
runtime monitoring with conventional testing,
model checking and proof-based verification.

a. Applied model checking:
Model checking as the endpoint of testing
Property formulation
Compositional reasoning

b. Classical Dijkstra/Hoare and other proof-based
verification.
This material is already covered in other courses
and will not be repeated but the role of this
material in a comprehensive approach to
verification and validation will be covered.

 g. Run-Time Monitoring
 Methods and Tools
 Automated compilation of property monitors.
 h. Integration of all the methods in a coherent,
 complete structure for validation and
 verification.
 i. Extension of verification and validation to security
 policy issues such as information flow.
 j. Failure analysis, fault-tolerance, practical self-
 stabilization, etc.
 k. Verification and validation of non-functional
 properties such as performance.

6. Future Research

 A comprehensive unification of verification and
validation methods for software is a generation-long
process. The immediate steps are to formalize the logic
and the domain specific UPSL for access control in
distributed systems of services, to formulate a
comprehensive set of properties to be established, to map
verification of the properties to methods for verification
and validation and to then begin implementing a
translation infrastructure which will support verification
and validation process. But this example is merely a
partial trial run for the unification approach.

The longer term goals for the project include:

a. A uniform approach to specifying properties and
behaviors that provides a systematic basis for
verification and validation. Currently tests
typically are specified as input and output
relations (pre-condition and post-condition
pairs); properties for model checking are
specified as formulas in some temporal logic;
properties for formal proofs are specified as
equivalence relations, invariants, constraints, or
pre-condition and post-condition pairs.

b. A systematic formulation of design principles
that enables comprehensive and effective
verification and validation, and establishes a
process for developing software in which the
unified verification approach can be applied.

c. A systematic exploration of the applicability of
each method and tool.

d. Development of an implementation that
coordinates application of the methods and tools
for Java.

e. Evaluation of the unified approach through
experimental applications. The experiments will
be conducted in the context of the offerings of
classes based on the unified methodology and its
prototype implementations.

f. Extension of the property specification language
and support tools to non-functional properties
and performance in particular.

7. Acknowledgements

 This research has been supported by NSF grant number
0509354 “Collaborative Research: CSR---AES:

Unification of Validation and Verification Methods.”

8. References

[1] http://www.eda.org/vfv/docs/PSL-v1.1.pdf
[2] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K.
Havelund, M. Lowry, C. Pasareanu, A. Venet, R. Washington,
and W. Visser “Experimental Evaluation of Verification and
Validation Tools on Martian Rover Software,” Formal Methods
in Systems Design, Sept./Nov. 2004.
 [3] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N.
Umanee, “Points-to Analysis using BDDs,” Proceedings of the
ACM Conference on Programming Language Design and
Implementation, pp. 103-114, 2003.
[4] M. Burrows, M. Abadí, and R. Needham. A logic of
authentication. ACM Transactions on Computer Systems,
8(1):18–36, Feb 1990.

[5] E. A. Emerson. Temporal and modal logic, volume B, pages
955–1072. MIT Press, 1990.
[6] Klaus Havelund and Grigore Ros “An Overview of the
Runtime Verification Tool Java PathExplorer” Formal Methods
in System Design, 24, 189–215, 2004
[7] K. Kane and J. C. Browne. CoorSet: A development
environment for associatively coordinated components. In
Coordination Models and Languages, Proceedings of
COORDINATION 2004, pages 216–231, Feb 2004.
[8] K. Kane and J. C. Browne Capability-Based Access Control
for Distributed Service-Oriented Systems (Submitted to
SACMAT’06)
[9] V. Kuncak, P. Lam, K. Zee, and M. Rinard, “Combining
Theorem Proving with Static Analysis for Data Structure
Consistency,” Proceedings of SVV’04, Seattle, WA, Nov. 2004.
[10] J. McHugh, Towards the Generation of Efficient Code from
Verified Programs, PhD Dissertation, University of Texas at
Austin, 1983.
[11] D. J. Richardson and L. A. Clarke, “Partition Analysis: A
Method Combining Testing and Verification,” IEEE
Transactions on Software Engineering, 11(12):1477-1490,
1985.
[12] J. Shapiro. What is a capability, anyway? http://www.eros-
os.org/essays/capintro.html.
 [13] R. Strom and S. Yemini, “Typestate: A Programming
Language Concept for Enhancing Software Reliability,” IEEE
Transactions on Software Engineering, 12(1):157-171, 1986.
[14] M. V. Tripunitara and N. Li. Comparing the expressive
power of access control models. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
Oct 2004.
[15] J. Zhu, “Symbolic Pointer Analysis,” Proceedings of the
IEEE/ACM International Conference on Computer-Aided

Design, pp. 150-157, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

