
High-Level Execution and Communication Support for

Parallel Grid Applications in JGrid

Szabolcs Pota and Zoltan Juhasz

University of Veszprem
Dept. of Information Systems

Veszprem, Hungary
{pota,juhasz}@irt.vein.hu

Abstract

This paper describes the high-level execution and
communication support provided in JGrid, a service-
oriented dynamic grid framework. One of its core
services, the Compute Service, is the key component in
creating dynamic computational grid systems that enable
the execution of sequential and parallel interactive grid
applications. A fundamental set of program execution
modes supported by the service is described, then a
programming model and its corresponding application
programming interface is presented. The execution
support of the service architecture is described in detail
illustrating how remote evaluation and run-time task
spawning are provided. The paper also shows in detail
how task spawning and dynamic proxies can be used for a
service-oriented communication mechanism for coarse-
grain parallel grid applications.

1. Introduction

Traditionally Grid systems were created to connect
geographically distributed resources for solving large
computational problems. The computing resources were
typically batch runtime systems running on clusters or
parallel supercomputers. While the advent of service-
oriented architectures is changing the grid landscape, the
majority of production grids still only support this rather
limited form of execution mode.

Future service-oriented grid systems will need to
provide richer functionality, e.g. dynamic service
discovery, support for interactive applications, more
effective mechanisms to connect and orchestrate multiple
services to solve complex problems, and the ability to
integrate and collaborate with non-computational
services.

The goal of the JGrid project [1] is to investigate these

problems and develop a novel service-oriented grid
system that supports the above mentioned new features,
provides a high-level, effective service-oriented
programming model for developers. In the computational
domain, it aims to create a dynamic computational service
fabric in which applications can discover and use
computing resources on-demand.

In this paper, we introduce one of its core services, the
Compute Service, that enables the execution of sequential
and parallel interactive grid applications. A fundamental
set of program execution modes supported by the service
is described, then a programming model and its
corresponding application programming interface is
presented. The execution support of the service
architecture is described in detail illustrating how remote
evaluation and run-time task spawning are provided.

The outline of the paper is as follows. In Section 2, a
short overview of previous results related to our paper is
given. Section 3 describes the functionality, execution
modes and architecture of the JGrid Compute Service.
Section 4 explains how the programming model interacts
with the underlying infrastructure of the Compute Service
covering remote evaluation and dynamic task spawning.
Section 5 describes a high-level service-oriented
communication mechanism for parallel grid applications
and illustrates its use in a sample parallel image
processing application. Section 6 summarizes our
experience gained in using the JGrid Compute Service for
executing sequential and parallel programs in various
application areas. The paper ends with a summary of the
results and planned future improvements.

2. Related Work

Next-generation grid systems, their architecture,
functionality and programming questions are in the
forefront of current grid research. While the current
preference is for the OGSA/Globus-type Web Service
technology based Grid architecture, due to its lack of

1-4244-0054-6/06/$20.00 ©2006 IEEE

high-level programming support, Java-centric systems are
demonstrating alternative ways and strategies for building
grid systems.

Early Java metacomputing systems (e.g. SuperWeb
[2], Javelin [3]) relied on Java RMI but the inflexibility
and scalability problems of RMI limited their
applicability at a global scale. Several groups
concentrated on creating a Java implementation of the
MPI message passing standard aiming to create a
platform-independent communication fabric that can be
used effectively in Java computing grids mpiJava [4],
MPIJ [5], JavaMPI [6]. The most successful
implementations are MPJ [7] and MPJ/Ibis [8].

Several researchers designed and developed novel
Java-based metacomputing systems, such as the Harness
system [9] and its successor H2O [10] and ProActive
[11]. The dynamic discovery support of Jini Technology
[12] is central in several grid systems, such as ICENI
[13], JISGA [14], JGrid [1], aiming to create more
dynamic and service-oriented environments. The JGrid
project provides a complete dynamic service-oriented grid
infrastructure including wide-area service discovery,
security support, core computational service (batch,
compute and storage services) and a high-level
programming API for interacting with the services.

3. Compute Service

The Compute Service is the key entity in supporting
the execution of sequential and parallel grid applications
within the JGrid framework. It allows clients to execute
Java programs using virtualized remote resources, which
can represent single, multi-processor computers or
clusters. The Compute Service was designed to support
dynamic grid applications that can adapt to changes in the
number and quality of resources, detect and react to
execution errors or environment failures in a highly
heterogeneous environment.

The service, in fact, is a special Java runtime system
that (i) enables clients to execute programs in a secure and
controlled way, and (ii) acts as core building block in
dynamic grids that can execute interactive grid
applications. This way, it complements our batch
execution service (JGrid Batch Service) that integrates
traditional batch execution functionality in JGrid using a
service-oriented interface to batch execution systems (e.g.
Sun Grid Engine [15] or Condor [16]).

3.1. Supported Program Execution Modes

Our aim during the design of the Compute Service was
to create a universal compute engine that supports the
majority of parallel and grid programming models and
can be accessed via a single API instead of relying on the

integration of several existing tools.
The service offers four different types of execution

modes: (i) synchronous remote evaluation, (ii)
asynchronous remote evaluation, (iii) process spawning
that creates dynamic server objects that are accessed via
remote method invocation, and (iv) MPI-like message
passing. This makes the Compute Service suitable for a
wide range of sequential and parallel grid applications.

Synchronous remote evaluation is the fundamental
form of remote task execution. A client task object
containing data and executable code is serialized and
transported to the Compute Service for execution. The
executable code is downloaded to the service
automatically relying on the mobile code support of the
Java Platform, and the computed result is returned to the
client upon successful execution. The synchronous remote
evaluation is a blocking operation; consequently, it is
most suitable for relatively short single or multi-threaded
programs.

Asynchronous remote evaluation facilitates the
execution of long running tasks. The task object is sent to
the service similarly to the synchronous remote evaluation
mode, but the result is returned as an asynchronous
remote event. This mode of execution is very suitable for
parameter sweep or master-worker type of applications
with independent tasks, or graphical applications in which
the user interface needs to be refreshed regularly without
continuous polling.

The disadvantage of remote evaluation is that every
method call requires the transfer of executable code. In
such applications, where only the input parameter changes
between successive method calls, this mechanism creates
unnecessary overheads. Creating and deploying specific
remote computational server objects could solve this
problem but leads to a fixed configuration and contradicts
the fundamental concepts of grid computing.

The task spawning execution mode of the service
provides an efficient and elegant solution for dynamically
creating remote processes in the Grid. Clients, in run-
time, can create and deploy tasks in the Compute Service
as remote server objects, and then interact with them via
remote method calls. Using task spawning, executable
code is transferred only once. With this mechanism,
clients can turn the Compute Service into an arbitrary
server executing application-specific computational tasks.
The key mechanism enabling this execution mode is
dynamic proxy generation described in detail in Section 4.
The dynamic proxy can also be used for inter-task
communication between spawned objects creating a high-
level object-oriented communication model for parallel
applications.

When Compute Services represent nodes of a cluster
with low-latency, high-speed interconnect, a low-level,
message-passing communication mode is more suitable
for creating high-performance parallel applications. To

support these environments, the Compute Service
provides MPI-style message passing communication
primitives based on the MPJ (Message Passing interface
for Java) API recommended by the Message Passing
Group of the Java Grande Forum [17].

3.2. Service Architecture

After looking at the execution modes, we describe the
internal architecture of the Compute Service. As shown in
Fig. 1, the core of the service is a special thread pool in
which client programs (tasks) execute. A task is received
by the Task Manager that prepares the task for execution:
access control checks, object unmarshalling, resource
allocation and task adapter generation.

Tasks are not executed directly in a thread of the

Thread Pool but wrapped in Runnable adapter objects
that manage the entire lifecycle of the task. The Adapter
is responsible for staging input files, returning output to
the task submitter, handling exceptions and providing
information to the internal monitoring subsystem. It also
handles task control commands (cancel, suspend,
resume), and provides host context to the running task.
After initialization, the Task Manager places the adapters
into the thread-pool for execution.

The minimum and maximum number of the threads
within the pool is configurable, allowing the execution of
one or more tasks simultaneously. The service uses its
own security manager that ensures that tasks execute in
isolation, so they cannot access resources of other tasks.

Initially, tasks are in the ready-to-run state and the
Scheduler decides upon their exact execution order. The
modular architecture of the Compute Service allows one
to use schedulers most suitable for the given resource or
workload. By default, tasks are scheduled by the built-in
thread scheduler of the JVM. A prototype Lottery
scheduler is also implemented to allow proportional share
scheduling of the CPU among the tasks. Batch execution
functionality can be achieved using an FCFS scheduler.

The Monitor keeps track of important events within the
service in order to provide detailed information to the
service providers.

The Lease Management and Task Control Module is
responsible for automatic resource management. Each
task is executed under a lease, i.e. it can only use service
resources for allotted time duration. If the client cannot
renew the lease due to some system failure (client error,
broken network connection, etc.) before its expiration
deadline, the task is cancelled and the resources it used
are freed.

Figure 1. Internal architecture of the
Compute Service.

The Inter-task communication module is an interface
to the lower level transport layer that allows task objects
executing at different locations to communicate via
remote method invocations or message passing.

4. Programming Models and Their

Execution Support

This section describes the programming models used
in the Compute Service and illustrates how the execution
of programs created with these models is supported by the
Compute Service architecture. Using code examples we
show the use of the application programming interface,
and the internals of the corresponding execution
mechanism.

The JGrid system is a Jini-based service-oriented grid,
consequently each service is represented to the client
program (and the developer) as a Java interface. The
Compute Service interface is shown in Fig. 2. The two

execute() methods represent the synchronous and

asynchronous remote evaluation, with the allocate()
method one can create message passing parallel

applications, while the spawn() method is used for
creating remote tasks.

Before using a service, the client must discover it using
the Jini service discovery mechanism. In fact, the client
discovers a Lookup Service in which it will search for
services suited to its needs. A Jini service is described by
its functionality (Java interface) and other, non-functional
descriptors (attribute objects) that can provide other
important information about the service (e.g. location,
number and performance of processors, size of memory,
etc.). This allows a client to discover and select only those
services whose resources are suitable for the execution of
the given task. By default Compute Services

Figure 2. Description of the Compute
Service in Java.

use attributes that advertise their number of processors,
processor architecture, maximum memory size, physical
location, software and vendor information.

Lines 1-12 of the code sample in Fig 3 show how to
obtain a compute service reference via discovery. First a
service template is constructed (lines 1-7) that consists of
a unique id, a set of service interfaces and a set of
attributes, and used for finding matching services [14]. In
our example, only the service interface is specified
implying that resource attributes are ignored. The result of
the discovery step (lines 8-10) is a service proxy that
implements the service interface (lines 11-12) and will
delegate service method calls to the remote service.

4.1. Synchronous Remote Evaluation

Once a Compute Service reference is available in the
program, the client can start executing its tasks. Our first
example (Fig. 4) demonstrates the synchronous remote
evaluation. In Line 1 a task object is instantiated that

implements the mandatory Task interface. This is then
sent and executed on the remote compute service using
the synchronous execute method call (Lines 3-4). For
.

Figure 3. Programmatic discovery of the
Compute Service.

1. Task task = new MyTask();
2. try {
3. Double result =
4. (Double)computeService.execute(task);
5. System.out.println("Result: "+result);
6. }catch(Exception ex) {
7. /* handle exceptions */
8. }

Figure 4. Executing a task using
Synchronous Remote Evaluation.

space limitations we omitted exception handling

On invoking the execute method, the task object is
serialized and transferred to remote service transparently.
The transport protocol between the client and the service,
the authentication and authorization of clients are
completely hidden to the programmer which greatly
simplifies grid application development. The programmer
can focus on the application tasks instead of system
programming issues. On the service side, the arriving task
is unmarshalled, then a worker thread is allocated from
the thread-pool to the task, execution starts immediately,
and the remote call is blocked until the execution is
finished. The result is received as the return value of the
method call.

4.2. Asynchronous Remote Evaluation

There are slightly more steps when executing a task
asynchronously. As it is shown in Fig 5, first a remote
event listener is created that will receive the result and
exported so that it could accept remote method
invocations (event delivery) from the Compute Service
(lines 1-5). The Jini object export mechanism can be
configured to use a suitable transport protocol between
the proxy and the backend service object (TCP/IP, HTTP,
SSL, HTTPS). The proxy of the exported listener object is

then passed to the asynchronous execute() method
(lines 9-11). The task instantiation is identical to the
synchronous case.

The third parameter is the requested lease duration.
The lease can be renewed via the control proxy object
(line 12) returned as the result of the successful task
submission (line 8). The controller can also be used to
monitor the state of the running task, suspend or cancel
the task.

Lines 1-12 of Fig. 6 depict a simple remote event

listener class with a single notify() method. When the

execution of the task is finished in the service, a remote
event is created containing the result object, and sent back

to the client by invoking the notify()method. The
result then is extracted from the event (lines 5-6).

The execution of the task in the service is similar to the
synchronous remote evaluation except the result in this

1. ServiceID id = null;
2. Class[] serviceTypes =
3. new Class[] {ComputeService.class};
4. Entry[] attr = null;
5. ServiceTemplate template =
6. new ServiceTemplate(id,
7. serviceTypes,attr);
8. ServiceItem item =
9. discoveryManager.lookup(template,
10. null);
11. ComputeService computeService =
12. (ComputeService) item.service;

interface ComputeService {
 public Object execute(Task t)

throws RemoteException, ...;
 public TaskControl execute(Task t,

RemoteEventListener result,
 long leaseDuration)

 throws RemoteException,...;
public TaskAllocation allocate(
 Uuid AppID, Task task,
 TaskDescriptor desc,
 long leaseDuration)

 throws RemoteException,...;
 public Object spawn(Task task,

 long leaseDuration)
 throws RemoteException,...;

}

1. RemoteEventListener listener =
2. new ResultListener();
3. RemoteEventListener listenerProxy =
4. (RemoteEventListener)exporter.
5. export(listener);
6. Task task = new MyTask();
7. try {
8. TaskControl controller =
9. computeService.execute(task,
10. listenerProxy,
11. 60*1000);
12. leaseMgr.renewFor(controller.
13. getLease())
14. } catch (Exception) {/* handle ex.*/}

Figure 5. Executing a task using
Asynchronous Remote Evaluation.

case is sent back by the TaskAdapter object, and the

execute() method will return immediately and the

ResultListener object will wait for the arrival of the
result in a separate thread.

4.3. Task Spawning

Consider an interactive rendering task where the client
drives the rendering process with parameters calculated at
run-time. A rendering task spawned on a Compute
Service with which the client can interact can provide and
elegant solution.

The code example in Fig. 7 outlines the structure and
execution flow of this program. The renderer task (line 1)
is spawned on the Compute Service (lines 3-5). The
spawn() method is an asynchronous call that returns a
special proxy object. The proxy is created dynamically in
the Compute Service using Java reflection. The details of
this process are described in Section 4.4.

The proxy implements several interfaces and thus
needs to be casted to the type that defines the required
functionality (lines 6-9). In our example, the client casts

the proxy to the Renderer interface, consequently it can

invoke the render() method on the proxy, and execute

Figure 6. Listener class handling result
collection based on remote events.

1. Task process = new SceneRenderer();
2. try {
3. Object processProxy =
4. computeService.spawn(process,
5. 60*1000);
6. TaskControl controlProxy =
7. (TaskControl)processProxy;
8. Renderer rendererProxy =
9. (Renderer)processProxy;
10. Scene scene1 =
11. rendererProxy.render(0, 0, 10, 12);
12. Scene scene2 =
13. rendererProxy.render(10,10,100,100);
14. } catch(Exception ex) {
15. /* handle exceptions */
16. }

Figure 7. Programming the task spawning
process.

this functionality on the service. This provides the illusion
of invoking the method locally on the task object, but in
fact the method invocation and the parameters are
delegated to the remote service that, in turn, invokes the

render() method on the spawned task (lines 10-13).

4.4. Dynamic Proxy Creation

In our dynamic and interactive grid environment, we
envisage programmatic clients that send executable
objects to Compute Services discovered in run time. This
cannot be achieved with existing distributed computing
techniques.

Java RMI mandates the use of the Remote interface

and relies on the developer and the rmic compiler to

generate stubs (proxy). The use of the Remote interface
differentiates remote code from local one in development
time, and the remote object must be deployed on the
server before starting the server. Objects implementing
arbitrary interfaces cannot be deployed and exported as
server objects in run-time.

Our approach builds on Java reflection and Jini proxy
objects. We describe our solution with the help of the
sequence diagram in Fig. 8. When the client spawns a task
(1) on the compute service (the service proxy object is not
shown for simplicity) than the URL classloader of the
service downloads all the necessary class files from the
client class server (2) making them available for
execution and dynamic proxy generation. The task object
is than wrapped in an adapter object (3) that is placed into
the thread-pool and waits for incoming calls (not shown).
Then, the Compute Service generates the dynamic proxy
(4) that implements the TaskControl and all other task

interfaces, and returns it to the client. This dynamic proxy
will contain a special invocation handler and a reference

1. public class ResultListener
2. implements RemoteEventListener {
3. public void notify(RemoteEvent ev) {
4. try {
5. Double result = (Double)ev.
6. getRegistrationObject().get();
7. System.out.println(result);
8. } catch (Exception ex) {
9. /* handle exceptions */
10. }
11. }
12. }

Figure 8. Simplified sequence diagram of
the task spawning process.

to the remote service. The client then casts the returned
proxy to the required interface and stores it (5) for later
use (see lines 8-9 of Fig 7).

Since the user interfaces that the task implements are
not remote interfaces and part of the Compute Service

interface, their methods (e.g. render(), Fig. 8) cannot
be invoked directly using traditional remote method
invocation. The solution to this problem used in the
Compute Service implementation is as follows.

The invocation handler of the task proxy will forward
the name and parameter list of the task method and the

task ID to the Compute Service (invoke(ID, name,
params), Fig. 8). Using these parameters, the Compute
Service identifies the Task Adapter in the thread-pool that
controls the execution of the client task. The adapter then
is responsible for invoking the given method on the task
using Java reflection and returning the result. Note that if
the Compute Service runs in secure mode, then all method
calls via the task proxy will also be secure, consequently,
the Compute Service will ensure that clients can only
invoke methods on tasks they own.

5. Service-Oriented Communication

Support

Tasks spawned at runtime that act as user-generated
application-specific services along with the dynamic
proxy connection are ideal for creating coarse-grain
parallel grid applications. Depending on the tasks used,

Figure 9. Logical view of the parallel image
processing example.

developers can easily create various application
topologies (farming, SPMD, workflow, etc.), as well as
integrate non-computational services into their
applications. (The Compute Service also supports explicit
MPI-style message passing but due to space limitations,
this is not discussed in this paper.)

We use a simple SPMD-style parallel image
processing problem to illustrate the programming aspects
of our service-oriented communication model and its
execution support. The example performs simple image
processing operations, e.g. edge detection, in parallel
during which nearest-neighbour communication is
required.

After the tasks are spawned, the client will configure
the topology by exchanging task proxies between
neighbouring tasks. Assuming four compute services
creating a 2 x 2 processor array, this will result in the
structure illustrated in Fig. 10. Once the configuration is
set, the client distributes the image segments and starts the
computation.

Figure 10. The structure of the example
image processing application after
spawning and configuration.

Figure 11. Interface of the image processing
task.

The fundamental step in creating this parallel program
is the definition of the image processing task, which is
done via a Java interface (Fig. 11). The interface in our
example contains processing and communication

methods. Method setNeighbour() is used to configure
the topology by passing a neighbouring task proxy and its

location to the task. The setInput() method passes the
input data segment to the task before the call to

process() starts the computation. The method

setBorder() will be used by the tasks to send border
information to each other.

The client program discovers compute services as
before, creates the service tasks (lines 1-5, Fig. 12),
spawns the tasks (lines 6-7), then starts configuring the
parallel service architecture (lines 9-16). Once the
configuration is done, it distributes the image parts (line
18) and starts the computation (line 19). The client
collects the results asynchronously via the listener object
passed to the task objects (not shown in code).

The outline of the processing taking place in the image
processing task is shown in Fig. 13. The execution starts

upon the call to process(). The task first exchanges the
border values, then performs the imaging operation. The
communication of border values consists of two steps: (i)

in sendBorders() each task invokes the setBorder()
method of its neighbour tasks to send its border values;

(ii) in recvBorders() the task collects the border values

sent by its neighbours via setBorder(). On completion
the task creates the result object and returns it to the client
through the listener proxy.

Although task spawning requires complex support
from the underlying service infrastructure, it provides an
intuitive programming model for parallel applications.
The programmer can use the familiar Java models used in
sequential programs and hence concentrate more on the
application logic. The support for discovery enables
clients to react to changes in the computing environment
and add newly arrived services to its resource pool.

6. Applications of the Compute Service

The Compute Service of the JGrid project has been used
in various tests and projects to experiment with its

1. ImageProcessor[] tasks = new
2. ImageProcessorImpl[4];
3. for(int i=0;i<4;i++){
4. tasks[i] = new
5. ImageProcessorImpl(i,listenerProxy);
6. tasks[i] =
7. services[i].spawn(tasks[i],60*1000);
8. }
9. tasks[0].setNeighbour(tasks[1],RIGHT);
10. tasks[0].setNeighbour(tasks[2],BOTTOM);
11. tasks[1].setNeighbour(tasks[0],LEFT);
12. tasks[1].setNeighbour(tasks[3],BOTTOM);
13. tasks[2].setNeighbour(tasks[0],TOP);
14. tasks[2].setNeighbour(tasks[3],RIGHT);
15. tasks[3].setNeighbour(tasks[1],TOP);
16. tasks[3].setNeighbour(tasks[2],LEFT);
17. for(int i=0;i<4;i++){
18. tasks[i].setInput(getImagePart(i));
19. tasks[i].process();
20. }

Figure 12. The client program of the image
processing examples.

1. sendBorders();
2. recvBorders();
3. doWork(i);
4. Object result = new
5. MarshalledObject(imageData);
6. listenerProxy.notify(new
7. RemoteEvent(null,taskNumber,0,result));

Figure 13. The execution steps of the
image processing task.

programming model, study its performance, and evaluate
the developer support for creating high-level grid
applications.

A financial Monte Carlo simulation project
demonstrated that developers with little experience in grid
computing could develop grid programs and use our
system for its execution. The execution runs also
demonstrated the reliability of the Compute Service
implementation.

Based on the example programs of the ProActive
project [12] we have investigated how difficult it is to port
a third-party Java program onto the JGrid Compute
Service. We have ported the ray tracing and N-body
simulation sample programs and found that except adding
additional interfaces for exported objects and changes to
the deployment system, the application program did not
require modifications. In contrast to ProActive, in JGrid
we did not need static resource descriptors to execute the
program; they could execute dynamically on available
services discovered at run-time.

We have also examined how a sequential but compute-
intensive, long-running applications can execute on the
Compute Service. After minor modifications the system

interface ImageProcessor {
 public void setNeighbour(
 ImageProcessor n, int position);
 public void setInput(byte[] imageData);
 public void process();
 public void setBorder(int borderWidth,

byte[] imageData, int position);
}

could execute BioJava [18] based bioinformatics
programs with execution time of several hours per run.

Due to its service-oriented design, the Compute
Service can work together with other, non-computational
services as well. As a demonstration, we have created a
media streaming service that used could use a
dynamically changing number of Compute Services
hosting streaming server tasks providing a scalable
internet media distribution mechanism.

7. Conclusion

This paper described the Compute Service of the JGrid
project that is a fundamental building block for creating
computational grid applications. We showed that it allows
the construction of dynamic and interactive grid
applications. A range of execution modes is supported by
the service that is presented to the developers in a
compact Java programming API. The service also
supports explicit message passing and service-oriented
communication for parallel programs. We showed in
detail how these execution modes are mapped to and
supported by the internal architecture of the service.

We argue that future grid systems need new styles of
execution support that complements traditional batch
execution and allows users to integrate non-computation
services with computational components using a high-
level programming abstraction. The JGrid project and its
rather universal Compute Service is a possible step into
this direction. Future work on the Compute Service
include further improvements of the service in
functionality and performance, and creating further
demonstration applications to illustrate the use and benefit
of its execution modes.

Acknowledgment

The authors thank Krisztian Kuntner and Mark
Magyarodi for their contribution to the discovery and
security architecture of the JGrid environment.

This work was supported in part by the Hungarian
Ministry of Education under Grant IKTA-5 089/2002 and
the National Office for Research and Technology
Department of Commerce under Grant GVOP-3.1.1.-
2004-05-0035/3.0. The generous support of Sun
Microsystems, Inc. under their Academic Equipment
Grant is gratefully acknowledged.

References

[1] JGrid: A Jini-based Universal Service Grid,
http://www.irt.vein.hu/jgrid.

[2] A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman,
“SuperWeb: Research Issues in Java-Based Global

Computing,” Concurrency: Practice and Experience, June
1997.

[3] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser , D. Wu, “Javelin: Internet-based
parallel computing using Java,” Concurrency: Practice and

Experience, Dec 1998, vol. 9, No. 11, pp. 1139-1160
[4] M. Baker, B. Carpenter, G. Fox, S. H. Ko, “mpiJava: An

Object-Oriented Java interface to MPI,” in Proc. Intl.
Workshop on Java for Parallel and Distributed Computing,
IPPS/SPDP, 1999, LNCS, Springer Verlag, Heidelberg,
Germany

[5] G. Judd, M. Clement, Q. Snell, V. Getov, “Design issues
for efficient implementation of mpi in Java,” in Proc. ACM

Java Grande Conference, 1999, pp. 58-56
[6] S. Mitchev, V. Getov, “Towards Portable Message Passing

in Java: Binding MPI,” in Recent Advances in PVM and
MPI, Lecture Notes in Computer Science, 1997, Vol. 1332,
pp. 135-142.

[7] M. Baker. B. Carpenter, A. Shafi, “MPJ: Enabling Parallel
Simulations in Java,” DSG Technical Report
DSGTR19062005, June 2005

[8] M. Bornemann, R. V.v. Nieuwpoort and T. Kielmann,
“MPJ/Ibis: a Flexible and Efficient Message Passing
Platform for Java,” in Proc. EuroPVM/MPI 2005, Eds. B.
DiMartinoet al., vol. 3666, pp. 217-224.

[9] M. Migliardi, V. Sunderam. “The Harness metacomputing
framework,” In Proceedings of the Ninth SIAM Conference
on Parallel Processing for Scientific Computing, San
Antonio (TX), USA, March 22-24 1999.

[10] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V.
Sunderam, “Towards self-organizing distributed computing
frameworks: The H2O approach,” Parallel Processing
Letters, 2003, vol. 13, No. 2, pp. 273–290.

[11] D. Caromel, “ProACtive Java Library for Parallel,
Distributed and Concurrent Programmming”, 2001,
http://www-sop.inria.fr/oasis/ProActive/

[12] J. Waldo and K. Arnold, The Jini Specifications. Jini
Technology Services, Addison-Wesley, Reading, MA,
USA, second edition, 2001.

[13] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J.
Darlington, “ICENI: An Open Grid Service Architecture
Implemented with Jini,” in Proc SuperComputing 2002
(SC2002), Baltimore, MD, USA (2002).

[14] Y.Huang, “JISGA: A Jini-based Service-oriented Grid
Architecture,” The International Journal of High
Performance Computing Applications 17 (2003) 317–327
ISSN 1094-3420.

[15] Sun Microsystems, Sun N1 Grid Engine 6,
http://www.sun.com/software/gridware/

[16] D. H. J Epema, M. Livny, R. van Dantzig, X. Evers, and J.
Pruyne, “A Worldwide Flock of Condors : Load Sharing
among Workstation Clusters,” Journal on Future
Generations of Computer Systems, 1996, vol. 12.

[17] B. Carpenter, V. Getov, G. Judd, A. Skjellum and G. Fox,
“MPJ: MPI-like message passing for Java,” Concurrency:
Practice and Experience, Nov. 2000, vol. 12, No. 11, pp.
1019-1038.

[18] M. Pocock, T. Down, T. Hubbard, “BioJava: open source
components for bioinformatics,” ACM SIGBIO Newsletter,
August 2000, vol. 20, No. 2, pp. 10-12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

