
Schedulability Analysis of AR-TP, a Ravenscar Compliant
Communication Protocol for High-Integrity Distributed Systems ∗

Santiago Urueña1, Juan Zamorano1, Daniel Berjón2,
José A. Pulido2, and Juan A. de la Puente2

1Technical University of Madrid 2Technical University of Madrid
Dept. of Comp. Architecture and Technology Dept. of Telematic Systems Engineering

E28660 Boadilla del Monte, Spain E28040 Madrid, Spain
{suruena,jzamora}@datsi.fi.upm.es {berjon,pulido,jpuente}@dit.upm.es

Abstract

A new token-passing algorithm called AR-TP for avoid-
ing the non-determinism of some networking technologies is
presented. This protocol allows the schedulability analysis
of the network, enabling the use of standard Ethernet hard-
ware for Hard Real-Time behavior while adding conges-
tion management. It is specially designed for High-Integrity
Distributed Hard Real-Time Systems, being fully compliant
with the Ravenscar Profile.

1 Introduction

A Distributed Hard Real-Time System must not respond
later than expected to its inputs. Therefore the timing be-
havior of all of its actions shall be bounded, including
the access to the network. Fieldbuses like CAN Bus [14]
were the communication networks traditionally used in au-
tomation systems because they fulfilled the requirements of
distributed hard real-time systems, including predictability
(deterministic behavior), low cost and reliability [19]. But
nowadays these networks cannot provide the required band-
width for the more demanding distributed real-time systems
[17]. For example, CAN Bus cannot improve its bandwidth
because it is limited by the propagation time. Therefore de-
velopers are looking for cost-effective alternatives, includ-
ing network technologies that were not designed for sys-
tems with real-time requirements.

Two widely-used Local Area Network (LAN) tech-
nologies that do not have a deterministic behavior are
IEEE 802.3 [9] (commonly known as Ethernet), and the

∗Work supported by MEC, project TRECOM (TIC2002-04123), and
the EC 6FP, project ASSERT (IST 4033).

IEEE 802.11 family of standards [10] (also known as
Wi-Fi). These technologies are by far the most used com-
munication networks in office environments, and through
the years they have increased their bandwidth and decreased
their cost, becoming de facto networking standards. This
ensures that they will continue to be maintained and im-
proved in the future. These advantages over other com-
munication networks make both technologies appealing op-
tions for the development of distributed systems. Industrial
versions of Ethernet and Wi-Fi have been developed to sup-
port more aggressive conditions, like those faced in automa-
tion and other industrial environments, hardening network
interfaces and wires. But their non-deterministic arbitration
mechanism, designed for a shared physical medium, pre-
vents their direct use as a communication network with real-
time constraints. A deterministic network protocol must be
used to enable a hard real-time communication.

This paper describes the Arbitrated Real-Time Proto-
col (AR-TP), a communication protocol designed for High-
Integrity Distributed Hard Real-Time Systems that employs
token passing for avoiding collisions. The protocol was
based on the Real-Time Ethernet Protocol (RT-EP) [12], a
research protocol also based on transmission control tech-
niques, but with some extensions (increased performance,
congestion management, and better fault-tolerance mecha-
nisms). AR-TP has been designed for safety-critical em-
bedded hard-real time systems, especially in the aerospace
and transportation domains. These high-integrity systems
exhibit a set of strict requirements not found in other appli-
cation fields, heavily derived from the entailed certification
process.

The certification of an application to a high level of crit-
icality can be hard to held (usually impossible) if no con-
straints are imposed to the development process. The Ada
Ravenscar Profile [3] is a subset of the Ada programming

1-4244-0054-6/06/$20.00 ©2006 IEEE

language [18] developed with the certification process in
mind. It restricts the Ada tasking features in such a way
that defines a computational model that allows current re-
sponse time analysis techniques [1, 15]. A proof of the cor-
rect temporal behavior must be provided for the certification
process of a hard real-time system. Some examples of the
restrictions are the use of a static number of threads and
locks, that no more than one thread can be waiting at any
condition variable, executing under fixed preemptive prior-
ity scheduling (FPS) [2] with the immediate ceiling priority
protocol [7]. As a side effect, the obtained reduced com-
plexity Ravenscar run-time systems have also high perfor-
mance and small footprint, being thus well suited for hard
real-time systems with tight deadlines or embedded systems
with low hardware resources.

Although the Ravenscar profile does not place any re-
striction on the sequential part of the programming lan-
guage, usually some restrictions are adopted in order to en-
able static analysis and other validation techniques that are
also needed for the certification process. All in all, the pro-
gramming language subset derived from the Ravenscar re-
strictions is enough for the development of embedded sys-
tems. However, although most communication protocols
could be coded using the Ravenscar Profile, the timing anal-
ysis can be difficult to held or nearly impossible. AR-TP
has been specifically designed to be easily implemented
under those restrictions, as well as predictable enough for
modeling its temporal behavior. The Ravenscar profile has
been standardized by ISO as part of the Ada 2005 lan-
guage revision, and together with deterministic protocols
like AR-TP paves the way for certifying High-Integrity Dis-
tributed Hard Real-Time systems.

This paper is organized as follows. Section 2 describes
the arbitration mechanism of Ethernet and Wi-Fi, explain-
ing the sources of non-determinism and outlining the differ-
ent types of methods developed to overcome this limitation.
Section 3 gives a detailed description of the protocol, in-
cluding its precise temporal behavior and an analysis tech-
nique of the schedulability of the network. Section 4 briefly
illustrates the experiences with the implemented prototype,
enumerating the future research that will be made about the
Arbitrated Real-Time Protocol. Finally, section 5 presents
the conclusions of this work.

2 Real-time over non-deterministic networks

The arbitration mechanism of Ethernet (CSMA/CD)
monitors the physical medium until no signal is detected,
sending the message when the Interframe Gap (IFG) time
has expired (96-bit times, i.e. 9.6 µs at 10 Mbit/s). If a col-
lision is detected during the transmission of the frame, the
node stops transmitting the message, sends a jam signal to
ensure that other stations detect the collision too, and waits

for a random time before trying to send the frame again.
The basic arbitration mechanism of Wi-Fi (CSMA/CA)

senses the physical medium when the node wants to trans-
mit. If it is idle for a DIFS interval (Distributed coordination
function Inter Frame Space) it broadcast the message imme-
diately. But if the medium is busy when the node begins to
sense the channel or while waiting for the DIFS interval, the
transmission is deferred, selecting a random back off timer
that is only decremented when the medium is idle.

This random wait in both arbitration mechanisms is the
main cause of the non-predictability of Ethernet and Wi-Fi.
Researchers have been looking for a solution to make Ether-
net real-time capable for years, methods that sometimes
could also be used with other network technologies such
as Wi-Fi. Several approaches have been proposed [13]:

• Modification of the Media Access Control: Some re-
searchers ([5, 16]) have proposed to modify the Me-
dia Access Control (MAC) layer of Ethernet to make
the arbitration algorithm deterministic, not conforming
with the IEEE 802.3 back off algorithm. In some cases
this can be achieved with a special device driver, or
reprogramming the firmware of the network interfaces
of some manufacturers.

• Switched Ethernet: To avoid the performance penalty
caused by collisions, the full-duplex Ethernet architec-
ture was introduced. When two or more stations are
connected through a switch collisions are completely
avoided because there are two distinct communication
channels for the transmission and reception of frames,
thus eliminating the source of non predictability (al-
though they introduce a processing delay that must be
taking into account when analyzing the timing behav-
ior of the system, and could introduce a small amount
of extra traffic caused by the management protocols
among switches).

• Traffic shaping: This type of proposals tries to avoid
collisions controlling the amount of traffic being sent
into the network [11]. When the volume of traffic is
low the probability of a collision decreases (however,
it is not zero), thus limiting the number of possible re-
transmissions. Although this approach works for soft
real-time it cannot be used within a hard real-time sys-
tem because it is a probabilistic method.

• Addition of transmission control: As well as trans-
mission control can make reliable an unreliable trans-
mission medium, a software layer can make Ethernet
deterministic. If at every instant only one node has
the right to transmit the occurrence of collisions are
completely avoided, and therefore the behavior of the
network is predictable.

The biggest problem with the solutions that require mod-
ifying the Media Access Control layer is that they do not
follow the standard, not working with off-the-self network
devices, and therefore the main advantage of Ethernet is
lost. Traffic shaping in half-duplex Ethernet is a valid ap-
proach for soft real-time, but not for systems with hard real-
time constraints because it is not fully deterministic.

Although full-duplex Ethernet avoids collisions, a
switched Ethernet network is not directly hard real-time ca-
pable because messages can be lost if the buffers of a switch
become full. However, this is a promising approach when
combined with other methods like traffic shaping (transmis-
sion control for a fully switched Ethernet is overkill because
there are no collisions), bringing new possibilities like the
categorization of messages [8].

Finally, the use of transmission control techniques to
avoid non-determinism is an effective method that can
be implemented by a portable software layer above full-
conforming standard hardware, and without modifying the
device drivers. This method can work with any net-
work topology, including Wi-Fi, half-duplex Ethernet, full-
duplex Ethernet, or a heterogeneous network made of any
combination of hubs, switches, bridges, repeaters or other
network devices. However, some of them do not support
the use of switches or bridges for full performance.

In summary, there are two trends for hard real-time sys-
tems: either the use of transmission control techniques, or
full-duplex Ethernet combined with other methods. (It is
worth noting that starting with 10 Gbps Ethernet the half-
duplex mode has been dropped from the standard, so more
studies about real-time for switched Ethernet will come.)
The first approach will be used when it is required a shared
physical medium like half-duplex Ethernet (for those appli-
cations that cannot tolerate the processing delays introduced
by switches), and, of course, wireless LANs.

3 Description of the Protocol

3.1 Overview

The Arbitrated Real-Time Protocol (AR-TP) is a re-
search real-time communication protocol for local area net-
works with a non-deterministic shared media like half-
duplex Ethernet, Wi-Fi, or other wireless networks. It is
based on RT-EP (Real-Time Ethernet Protocol), a research
multipoint local area network protocol designed to achieve
full predictability over half-duplex Ethernet thanks to the
addition of a transmission control layer for avoiding colli-
sions. In RT-EP a station is not allowed to put any frame on
the network until it receives a special frame, called token,
which gives it the right to transmit. Stations are organized
into a logical ring where, as the network is a shared medium,
every station receives all the frames.

In RT-EP the token is first circulated through all stations
to write onto this special frame the priority of their mes-
sages. When the token arrives to the last node, the right to
transmit is finally granted to the station with the highest pri-
ority message. When the data message has been transferred,
the token is circulated again to start another negotiation cy-
cle. The protocol is fully distributed, and is prepared to de-
tect and solve some types of faults, like the loss of a token
or a failing station. Under RT-EP the maximum blocking
time for a message can be computed because the random
wait introduced by the Media Access Control of Ethernet
is completely eliminated. Moreover, as fixed priorities are
assigned to messages, there are mature schedulability tech-
niques for analyzing the timing behavior of the network,
thus being adequate for distributed systems with hard-real
time requirements. Other advantages of the protocol are its
fault-tolerance mechanisms (e.g. there is no single point of
failure) and especially that it works with unmodified Ether-
net hardware.

However, the performance of RT-EP is lower than other
protocols because a high number of arbitration packages are
needed for every transferred message. This means that the
network bandwidth is decreased, and that the nodes must
circulate the token even when there are no messages to
transmit (a delay is introduced before sending every token in
order to reduce the CPU overhead). Other issues of RT-EP
are that it is Ethernet specific, and that reduces the Maxi-
mum Transfer Unit (MTU) of the network due to the addi-
tion of a new header to data messages.

AR-TP was developed in order to eliminate some
drawbacks of RT-EP —specially the performance and
CPU overhead— while maintaining its advantages —
predictability and fault-tolerance— as well as adding other
features derived from the requirements. The main differ-
ences of AR-TP with respect to RT-EP are:

• multiple messages per cycle: more than one message
could be sent in the transmission phase.

• congestion management: a framework for handling
network overloads is added.

• better fault-tolerance: addition of a mechanism for
message acknowledgment.

The bandwidth is increased in AR-TP because up to
n messages could be sent in each transmission phase, as
well as other improvements like decreasing the number of
packets needed in the arbitration. Therefore the ratio be-
tween info data and control data is higher, the overhead of
the protocol is lower and thus the throughput is increased.
Moreover, less control messages are used in AR-TP than in
RT-EP. However, the higher the cycle time, the worse the
maximum blocking time —a vital concern of hard-real time
systems—, so the optimum value of n is constrained by the

characteristics of the system. It depends on the number of
stations, the maximum size of data messages, and the worst
admissible blocking time.

3.2 Detailed Description

Given a distributed system composed by M stations in-
terconnected by a communications network, where each
station can be a producer or/and a consumer, i.e. sends data
messages or receives data messages (or both). All the pro-
ducer nodes of the network are organized into a logical ring
where each station has been assigned with a unique network
identifier (ID). Each node must be informed about the con-
figuration of the ring to know the ID of its successor and
predecessor.

In AR-TP the access to the (shared) medium is controlled
by the use of a token. The possession of this special mes-
sage gives the station the right to transmit. It also contains
information about the number of messages waiting to be
transmitted, and the ID of the stations with the highest pri-
ority messages. After the initialization of the system, when
the logical ring has been established, the first communica-
tion cycle starts when the node with the lowest ID creates
a new token. This token is initialized by setting to zero
the number of enqueued frames (messages waiting to be
sent) and the sequence number. Each communication cycle
has two phases: the arbitration phase and the transmission
phase.

At the arbitration phase the token circulates through all
the stations to determine the nodes with the n highest pri-
ority messages. While holding the arbitration token, each
station checks the n priority slots of the token, where empty
slots have priority 0. If one or more slots have recorded a
lesser priority than any of the messages of the current sta-
tion, it overwrites those slots with the priority of its mes-
sages and its ID. But if the station has no messages or the
preceding nodes have filled all the slots with higher priori-
ties, it does not modify these fields of the token. If the num-
ber of enqueued messages of this station has changed with
respect to the previous cycle, it modifies the token field with
the global number of enqueued messages, and then trans-
mits the token to its successor.

When the arbitration token arrives to the last node, it will
have recorded the ID of the stations with the highest pri-
ority messages. Then this last station, just after determin-
ing whether any of its messages has higher priority than the
other nodes, modifies the message type to the “transmission
token” value, starting the transmission phase. At this phase
the token is circulated among the “winning” stations to al-
low them to send their messages. The token is updated with
the new global number of enqueued messages. When all
the messages have been sent, the transmission phase ends,
starting a new communication cycle.

The last node that has transmitted a data message puts
the new token in the next arbitration phase. This new token
is circulated immediately unless no frames were sent at the
transmission phase of the previous cycle. In that case, if the
priority of zero messages were recorded in the token at the
end of the arbitration phase, a delay W is introduced before
starting the next cycle to reduce the transmission of control
packets when there are no messages to send. It should be
noted that the new initiator of the arbitration phase is prob-
ably different in every cycle.

Due to the fault-tolerance mechanisms, the behavior of
the protocol requires some time-outs to detect the token
loss, as well as a failing station. Refer to the paper about
RT-EP [12] for more information.

3.3 Temporal Behavior

As stated above, temporal predictability is of paramount
importance when certifying a hard real-time system. The
response time of the protocol is defined as the time since
between the message is passed to the AR-TP layer at the
sender node, until its arrival at the destination node. All
operations are bounded, and schedulability analysis can be
done. The cycle time of AR-TP can be modeled as shown
below. The k-th cycle time Cyclek, of a system with M pro-
ducer nodes can be obtained from the equation

Cyclek =

arbitration phase︷ ︸︸ ︷(
tdelay + ttoken

) ·M +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W nk = 0

transmission phase︷ ︸︸ ︷
nk

∑
i=1

(
tdelay +Msgi,k

)
nk > 0

where ttoken is the token transmission time, tdelay is the delay
between messages, nk is the number of messages sent in the
k-th arbitration phase, Msgi,k is the transmission time of the
i-th message of the cycle k, and W is the wait time.

The minimum delay between messages (tdelay) is im-
posed by the hardware, e.g. in Ethernet it is equal to the
IFG (0.96 µs at 100 Mbit/s). This delay could also be aug-
mented by software for other purposes, e.g. to leave enough
execution time to process the token in some slow nodes (e.g.
microcontrollers). Note that in RT-EP this delay between
messages is used to reduce the CPU overhead of the sta-
tions (mainly when there are no messages to send), whereas
in AR-TP the wait time W is used for this purpose, and this
wait is only introduced after an arbitration phase with no
messages. Of course W ≥ tdelay.

Under AR-TP, the response time of any message is
bounded. The best response time of the protocol is when the
last node of the arbitration phase wants to send a minimum-
size message with a higher priority than any of the other sta-
tions just before writing the final token, i.e. the minimum-
size message is produced just before the start of the trans-

mission phase, being the first to be sent, i.e.

Rbest = ttoken + tdelay + Msgmin,

where Msgmin, is the transmission time of a minimum size
message. However, the best case is not used to analyze the
schedulability of a hard real-time system, but the worst case.
In the worst case, the response time of a message µi is

Ri = Qi + Tr,

where Qi is the queuing delay —the longest time that a mes-
sage can be enqueued before being sent— and Tr is the du-
ration of the maximum transmission phase, i.e.

Tr =
(
tdelay + Msgmax

) ·n.

The duration of the arbitration phase does not depend on
the value of n, and is defined as

Ar =
(
tdelay + ttoken

) ·M,

i.e. M−1 arbitration tokens plus the transmission token sent
by the last node announcing the highest priority messages.

The value of the queuing delay Qi is composed of three
delays: the blocking time, the interference and the arbi-
tration phase. The response time in the worst case has
to take into account the blocking time caused by the non-
preemptability of the network, potentially causing a priority
inversion. The maximum blocking time B of the protocol is
given by

B = Ar + max(Tr,W),

that occurs when the initial node produces a message just af-
ter the arbitration token has been transmitted, having to wait
the whole arbitration phase as well as the longest transmis-
sion phase.

The interference of a message is defined as the number
of cycles it must wait until being sent because there are en-
queued messages of higher priority. Therefore,

Qi = B +

⎢⎢⎢⎢⎢⎣
∑

j∈hep(i)

⌈
Qi
Tj

⌉

n

⎥⎥⎥⎥⎥⎦(Ar + Tr)+ Ar

where hep(i) is the set of messages with higher or equal pri-
ority than µi, and Tj is the minimum interarrival time (the
period) of message µj. The interference depends on Qi it-
self, thus a recurrence relation can be formed to obtain the
final value of the queuing delay [20].

This blocking time depends heavily on the number of
messages sent by cycle (n), the delay time (tdelay) and the
size of the maximum message (Msgmax). The system de-
signer can adjust any of these parameters to obtain an ad-
equate blocking time, while maximizing the throughput of

the network and minimizing the CPU overhead. The value
of n can be as high as the allowed by the maximum ad-
missible blocking time. If the application needs a very tight
response time, n can be reduced to 1, giving the same block-
ing time as RT-EP (in fact the response time is slightly better
because there are less arbitration frames in AR-TP than in
RT-EP).

The priority of a message is proportional to the temporal
constraints of its data, i.e. the closer the relative deadline the
higher its assigned priority. This fixed priority assigned to
a message is obtained by using the deduced response time
analysis technique. However, although the current imple-
mentation uses Fixed Priority Scheduling, the message pri-
orities do not need to be fixed, and they could be scheduled
using dynamic techniques like Earliest Deadline First, for
example. New techniques are being developed to analyze
the schedulability of the network under other scheduling
methods.

3.4 Congestion Management

The system is said to be overloaded when it has to pro-
cess more jobs than the constrained by its resources can
cope with. Overloads can happen by an unforeseen event
not taken into account at development time, or during op-
eration due to an implementation bug. Therefore, although
temporal analysis is conducted during system design to ob-
tain a correct behavior, dependable systems must be pre-
pared to handle overloads at runtime. The protocol has been
designed to cope with network overloads (congestions), i.e.
when there are too many messages to be sent by the nodes
without violating their time constraints. Usually, under the
nominal mode of operation, the priority of a message is pro-
portional to the temporal constraints of its data, as stated
above. However, when the system is overloaded not all
messages will be sent before the violation of their deadlines,
therefore the priority of the message should be proportional
to the criticality of the data, and not the urgency.

To achieve this behavior, in AR-TP each message has as-
sociated two priorities, one used when the system is in the
nominal operating mode, and the other when the network is
under an overload. A network congestion is detected when
the number of enqueued messages at the end of the previ-
ous cycle exceeds a determined threshold O1. Each station
checks this value reading the last token sent in the previ-
ous cycle. In the next arbitration phase the overload priority
will be considered instead of the regular one. The network
congestion is considered to be finished when the number of
enqueued messages decreases to a given constant O2, where
O1 ≥ O2. Two thresholds are used for the mode change in-
stead of one to avoid overload mode bouncing. The value
of both constants depends on the network bandwidth, the
number of nodes of the ring, as well as the maximum size

of messages, being thus system specific.
The whole algorithm has been designed to have a con-

stant computational complexity, i.e. O(1) in the big O nota-
tion: in the average case, only a constant number of frames
has to be examined before updating the arbitration token
(the upper bound is the maximum number of messages al-
lowed in a transmission phase), even when a mode change
have just occurred. To this end, the current implementation
uses two output queues in every node —one ordered by the
regular priority whereas the other is ordered by the conges-
tion priority— and thus there is no need after a mode change
to reorder the messages.

During a congestion it is highly probable that some mes-
sages violate their time constraints while being enqueued,
so, to avoid sending obsolete data, each message has also
assigned an absolute deadline that must be checked before
recording its priority in an arbitration token. Of course, the
sender task of that message is informed when this happens.
However, in the worst case, all the messages of a node can
have violated their deadlines before being sent. Therefore,
the entire queue would be examined dropping all messages
while searching for the highest priorities, having thus a lin-
ear complexity. A background task is introduced for drop-
ping all enqueued messages that have violated their dead-
lines, trying to avoid this situation.

4 Implementation and Future work

A preliminary version of the AR-TP protocol has been
developed with the GNAT/ORK [6] cross-compilation sys-
tem for PC-compatible computers. The target computers
are Advantech PCM-3350 single board computers, which
are PC/104 compatible and include an AMD Geode proces-
sor at 300 MHz as well as an Intel i82559 LANCE (Local
Area Network Controller for Ethernet). The i82559 can op-
erate the network at 10 or 100 Mbit/s and it was designed for
the PCI bus. It must be noted that the stations are intercon-
nected by a 100 Mbit/s Ethernet hub and not by a switch,
which would introduce a noticeable transmission delay as
well as extra traffic.

The intended middleware layers for high integrity dis-
tributed applications are shown in figure 1. The whole sys-
tem —the low-level driver and the AR-TP protocol layer—
has been implemented from scratch following the Raven-
scar profile, which is supported by the Open Ravenscar Ker-
nel. It is planned to add new low-level drivers for other
network technologies, e.g. wireless local area networks.
The Ravenscar profile provided a foundation adequate in-
deed for the development of the user application, the com-
munication protocol, and the low-level Ethernet driver. It
retains nearly every element from the Ada language needed
for low-level development, such as representation clauses,
which greatly improve code readability. The guide of us-

Embedded Computer

Open Ravenscar KernelLow-Level Driver

AR-TP

Ravenscar Ada
Run-Time System

Middleware

Ravenscar-Compliant Application

Figure 1. General architecture

age of the Ravenscar profile [4] has been a great reference
while implementing the protocol. The computational model
of the Ravenscar profile has allowed a precise response time
analysis and keeps the run-time kernel small and efficient.

The first impressions are that AR-TP greatly improves
the performance of RT-EP and the behavior of the system
under transient and permanent overloads. Future work is
directed towards the integration of the protocol with higher
layers of the communication stack, and the modification of a
middleware to fully exploit every AR-TP feature (e.g. dual
priorities, message deadlines). At that point, performance
measures will be taken to compare the behavior of AR-TP
with respect to RT-EP and maybe other predictable proto-
cols. It is also planned to develop a tool for analyzing the
network schedulability of a given hard real-time distributed
system, and able to give a feasible priority assignment to
each message. Finally, more studies about the dependabil-
ity of AR-TP should be done, modeling also the temporal
behavior of the protocol when recovering from a token loss
or a failing station.

5 Conclusions

As the complexity of distributed real-time systems
grows, their hardware resources must be increased. The
networks traditionally used in this type of systems are be-
coming not capable of transmitting the required amount of
information, therefore faster network technologies are be-
ing used, and even those without a real-time behavior like
Ethernet or Wi-Fi. This paper has presented AR-TP, a pro-
tocol that employs transmission control techniques to avoid
the non-determinism of Ethernet or Wi-Fi, making them us-
able for hard real-time systems.

This token-passing protocol can be implemented by
a portable software layer above full-conforming standard
hardware, working with any network technology and topol-
ogy, including Wi-Fi, half-duplex Ethernet, full-duplex

Ethernet, or a heterogeneous network made of any combi-
nation of hubs, switches, bridges, repeaters or other network
devices. It offers advanced network scheduling policies
(including congestion management), static temporal anal-
ysis techniques, and its distributed architecture guarantees
a fault-tolerant protocol well suited for wireless networks.

The protocol has been fully implemented in the Ada
programming language, taking advantage of the Ravenscar
Profile. Ada is well suited for the development of hard-real
time applications and high-integrity systems, specially the
Ada 2005 revision that includes several facilities not found
in other programming languages. Future work is directed
towards the integration of the protocol with communication
middlewares, as well as developing new temporal analysis
techniques. Also, it is planned to explore the behavior of
AR-TP in Wireless Local Area Networks.

References

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static pri-
ority preemptive scheduling. Software Engineering Journal,
8(5), September 1993.

[2] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems. Prentice-Hall, 1994.

[3] A. Burns, B. Dobbing, and G. Romanski. The Raven-
scar tasking profile for high integrity real-time programs.
In L. Asplund, editor, Reliable Software Technologies —
Ada-Europe’98, number 1411 in LNCS, pages 263–275.
Springer-Verlag, 1998.

[4] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use
of the Ada Ravenscar profile in high integrity systems. Ada
Letters, XXIV(2):1–74, 2004.

[5] R. Court. Real-time ethernet. Computer Communications,
15:198–201, April 1992.

[6] J. de la Puente, J. Ruiz, and J. Zamorano. An open
Ravenscar real-time kernel for GNAT. In H. B. Keller
and E. Plöedereder, editors, Reliable Software Technologies
— Ada-Europe 2000, number 1845 in LNCS, pages 5–15.
Springer-Verlag, 2000.

[7] J. Goodenough and L. Sha. The priority ceiling protocol:
a method for minimizing the blocking of high priority Ada
tasks. In Second International Workshop on Real-Time Ada
Issues. ACM SIGAda, 1988. Ada Letters, 8(7).

[8] The Institute of Electrical and Electronics Engineers, New
York, USA. IEEE Std. 802.1D-2004, June 2002.

[9] The Institute of Electrical and Electronics Engineers, New
York, USA. IEEE Std. 802.3-2002, March 2002.

[10] The Institute of Electrical and Electronics Engineers, New
York, USA. IEEE Std. 802.11-2003, June 2003.

[11] S.-K. Kweon, K. G. Shin, and G. Workman. Achieving
real-time communication over ethernet with adaptive traffic
smoothing. In 6th IEEE Real-Time Technology and Appli-
cations Symposium (RTAS 2000), Washington, USA, June
2000.

[12] J. M. Martínez and M. González Harbour. RT-EP: A fixed-
priority real time communication protocol over standard
ethernet. In T. Vardanega and A. Wellings, editors, Reliable
Software Technologies - Ada-Europe 2005, volume 3555 of
LNCS. Springer-Verlag, June 2005.

[13] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet pro-
tocol: Mergin flexibility, timeliness and efficiency. In 14th
Euromicro Conference on Real-Time Systems, pages 1–10.
IEEE Computer Society Press, 2002.

[14] R. Bosch Gmbh, Germany. CAN Specification-Version 2.0
Part A, 1991.

[15] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok. Real time scheduling theory: A historical perspective.
Real-Time Systems, 28:101–155, November 2004.

[16] Y. Shimokawa and Y. Shiobara. Real-time ethernet for in-
dustrial applications. In IECON’85, pages 829–834, 1985.

[17] Y. Song. Time constrained communication over switched
ethernet. In 4th IFAC International Conference on Fieldbus
Systems and their Applications, Nancy, France, November
2001.

[18] S. T. Taft, R. A. Duff, R. L. Brukardt, and E. Plöedereder, ed-
itors. Consolidated Ada Reference Manual. Language and
Standard Libraries. International Standard ANSI/ISO/IEC-
8652:1995(E) with Technical Corrigendum 1, volume 2219
of Lecture Notes in Computer Science. Springer-Verlag,
2001.

[19] J. Thomesse. Fieldbuses and interoperability. Control Engi-
neering Practice, 7(1):81–94, January 1999.

[20] K. Tindell, A. Burns, and A. Wellings. Calculating con-
troller area network (can) message response times. Control
Engineering Practice, 3(8):1163–1169, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

