Realization of Virtual Networks in the DECOS Integrated
Architecture

R. Obermaisser and P. Peti
Vienna University of Technology, Austria
email: {ro,php}@vmars.tuwien.ac.at

Abstract

Due to the better utilization of computational and
communication resources and the improved coordina-
tion of application subsystems, designers of large dis-
tributed embedded systems (e.g., in the automotive do-
main) are eager to replace existing federated architec-
tures with integrated ones. This paper focuses on the
communication infrastructure of the DECOS integrated
system architecture, which realizes for each application
subsystem a so-called virtual network as an overlay net-
work on top of a time-triggered communication proto-
col. Since all virtual networks share a single physical
network, virtual networks promise massive cost savings
through the reduction of physical networks and reliabil-
ity improvements with respect to wiring and connectors.
Furthermore, virtual networks support application sub-
systems that range from ultra-dependable control ap-
plications (e.g., an X-by-wire system) to non safety-
critical applications such as comfort systems. For this
reason, two classes (event-triggered and time-triggered)
of virtual networks are realized. Encapsulation mecha-
nisms ensure that the temporal properties of each vir-
tual network are known a priori and independent from
the communication activities in other virtual networks.
In order to ensure that the virtual network abstrac-
tions hold also in the case of software faults, each ap-
plication subsystem possesses a dedicated virtual net-
work with statically assigned resources at the underly-
ing time-triggered communication service.

1 Introduction

Integrated architectures share network and compo-
nent resources among different application subsystems
in order to evolve beyond a “1 Function — 1 Electronic
Control Unit (ECU)” strategy. In the automotive area
the trend of steadily increasing numbers of ECUs along
with the addition of functionality has lead to luxury
cars with up to 75 components [3]. Integrated archi-

OThis work has been supported in part by the European
IST projects ARTIST2 (No. IST-004527) and DECOS (No. IST-
511764).

1-4244-0054-6/06/$20.00 ©2006 IEEE

tectures not only permit a dramatic reduction in the
overall number of ECUs through tackling this “1 Func-
tion — 1 ECU” problem, but also offer increased reliabil-
ity by minimizing the number of connectors and wires.
Field data from automotive environments has shown
that more than 30% of electrical failures are attributed
to connector problems [12].

Within the Dependable Embedded Components and
Systems (DECOS) EU Framework Programme 6, we
have developed the conceptual foundation for the com-
munication infrastructure of the integrated DECOS ar-
chitecture [7]. We provide each application subsystem
with a dedicated communication infrastructure that
is realized as an encapsulated virtual network, i.e. an
overlay network on top of a time-triggered physical net-
work. FEach virtual network supports a correspond-
ing communication paradigm (event-triggered or time-
triggered control) and is tailored to the requirements of
the respective application subsystem via its temporal
properties (e.g., latencies, bandwidth).

This paper describes a realization of virtual net-
works on top of a physical network executing the pro-
tocol TTP [13]. We use the Time Division Multiple
Access (TDMA) scheme of the physical network as
a starting point and subdivide each TDMA slot into
smaller subslots that are dedicated to the different vir-
tual networks used in the system. Within each DE-
COS node of the integrated distributed system, a TTP
communication controller offers a state message inter-
face for the time-triggered exchange of messages. The
application computers, which are part of the multi-
processor DECOS nodes, use the real-time operating
system Linux/Real-Time Application Interface (RTAI)
and employ middleware services as kernel modules for
realizing the event-triggered and time-triggered virtual
networks. The middleware services provide to the ap-
plication software a set of interface data structures,
which consist of message queues for event-triggered vir-
tual networks and state variables with update-in-place
semantics for time-triggered virtual networks. The
state variables of the time-triggered virtual networks
always provide the most recent version of a real-time
entity, which is ideal for the construction of highly reg-
ular applications, such as control loops. The message

queues support exactly-once processing, which is re-
quired for handling event information [7], despite mes-
sage transmissions at a priori unknown points in time.

The paper is structured as follows. Section 2 gives
a short overview of the DECOS integrated architec-
ture that employs virtual networks as the communi-
cation infrastructure of Distributed Application Sub-
systems (DASs). The construction of virtual networks
on top of a time-triggered core network is the focus of
Section 3. Section 4 discusses the implementation of
virtual networks within an integrated node computer.
Node computers consists of three distinct hardware el-
ements that realize a hierarchic subdivision of network
resources. The paper finishes with a discussion of the
benefits of virtual networks in Section 5.

2 DECOS Integrated Architecture

The DECOS architecture [8] offers a framework for
the development of distributed embedded real-time
systems integrating multiple DASs with different levels
of criticality and different requirements concerning the
underlying platform. The DECOS architecture aims at
offering to system designers generic architectural ser-
vices, which provide a validated stable baseline for the
development of applications.

2.1 System Structuring

For the provision of application services at the con-
trolled object interface, the services of a real-time
computer system are divided into a set of nearly-
independent DASs. Each DAS is further decomposed
into smaller units called jobs. A job is the basic unit
of work and is executed within a partition. A partition
is an encapsulated execution space within a node com-
puter with a priori assigned computational (e.g., CPU,
memory, 1/O) and network resources (e.g., network
bandwidth) that can host a job. Partitions are the
target of job allocation and each job is always assigned
in its entirety onto a partition, i.e. a job is never frag-
mented onto multiple partitions.

Jobs exploit a wirtual network [7] in order to ex-
change messages with other jobs and work towards a
common goal. A wvirtual network is the encapsulated
communication system of a DAS. All communication
activities of a virtual network are private to the DAS,
i.e. transmissions and receptions of messages can only
occur by jobs of the DAS unless a message is explic-
itly exported or imported by a gateway. Furthermore,
a virtual network exhibits predefined temporal proper-
ties that are independent from other virtual networks.

A port is the access point between a job and the vir-
tual network of the DAS the job belongs to. Depending
on the data direction, one can distinguish input ports
and output ports. In addition, we classify ports into

state ports and event ports depending on the informa-
tion semantics of sent or received messages.

A state port aims at messages with state semantics.
Information with state semantics contains the absolute
value of a real-time entity (e.g., temperature in the en-
vironment is 41 degrees Celsius). Since applications are
often only interested in the most recent value of a real-
time entity, a state port contains a memory element
that is overwritten with newer state values whenever a
message arrives at the port (i.e. update in place).

An event port supports event semantics, i.e. infor-
mation about the change in value of a real-time entity
associated with a particular event. Messages contain-
ing event information transport relative values (e.g., in-
crease of the temperature in the environment by 2 de-
grees). In order to reconstruct the current state of a
real-time entity from messages with event semantics,
messages are queued at an event port in order to pro-
cess every message exactly-once. The loss of a single
message with event information could affect state syn-
chronization between a sender and a receiver.

2.2 Architectural Services

The DECOS architecture distinguishes a minimal
set of core services and an open-ended number of high-
level services. The core services include predictable
time-triggered message transport, clock synchroniza-
tion, and fault isolation. Based on the core services,
the DECOS integrated architecture realizes high-level
architectural services, which are DAS-specific and con-
stitute the interface for the jobs to the underlying plat-
form. Among the high-level services are gateway ser-
vices, virtual network services, and encapsulation ser-
vices. On top of the time-triggered physical network,
different kinds of virtual networks are established and
each type of virtual network can exhibit multiple in-
stantiations.

3 Virtual Networks

A virtual network is an overlay network that is es-
tablished on top of a physical network [7]. In the DE-
COS integrated system architecture, we provide vir-
tual networks on top of the time-triggered commu-
nication service of the core architecture. To achieve
the complexity management and fault isolation advan-
tages of the federated approach in an integrated archi-
tecture, we propose the provision of a dedicated vir-
tual network for each DAS in order to exchange mes-
sages between the jobs of the DAS. Each virtual net-
work is tailored to the requirements of the respective
DAS via the provided functionality (e.g., broad-cast
service, request /reply messages), the operational prop-
erties (e.g., bandwidth, latencies), and the namespace
(e.g., CAN identifiers). Furthermore, each virtual net-
work is encapsulated, thus communication activities in

Node 1 Node 2 Node 3

Job 2 liJob 3 §l Job 1

Overlay Networks

TDMA Slot of Node Slot 1 TDMA Slot of Node Slot 2 TDMA Slot of Node Slot 3
[Z] [z S ZARN

1
VN Slot VN Slot VN Slot 'VN Slot| VN Slot VN Slot VN Slot
11 ETL TTI_ ETI 72 171 12 s
Job Job~ “Job Job_ Job Job Job ~ Job” “Job real
Slot1 | siot1 Siot2 Il Siot2 Siot3 Siot1 MMM Slot3 siot2 siot3 HEKIG

Figure 1. Hierarchic Subdivision of Commu-
nication Resources

Core Network

other virtual networks are neither visible nor have any
effect (e.g., performance penalty) on the exchange of
messages in the virtual network. Consequently, vir-
tual networks extrapolate the idea of node-level error
containment to the network-level. The multiplexing
of node computers for multiple jobs not only requires
error containment with respect to the computational
resources (e.g., processor and memory resources), but
also error containment for a node computer’s network
resources.

For the realization of virtual networks at the phys-
ical level, we employ the time-triggered core commu-
nication service (e.g., TTP [13] or FlexRay [4]) and
perform a hierarchic temporal subdivision of the com-
munication resources (see Figure 1). The media access
control strategy of the time-triggered core communi-
cation service is TDMA. TDMA statically divides the
channel capacity into a number of slots and controls
access to the network solely by the progression of time.
Fach node computer is assigned a unique node slot that
periodically recurs at a priori specified global points
in time. A node computer sends messages during its
node slot and receives messages during the node slots
of other node computers.

We further subdivide each node slot in correspon-
dence to the functional structuring of a DECOS sys-
tem. In a first step, the node slot is subdivided into
subslots for the virtual networks. Such a virtual net-
work slot contains those messages that are produced by
the jobs in the node computer that are connected to a
particular virtual network. Since there is a one-to-one
mapping between virtual networks and DASs, the vir-
tual network slots are DAS-specific and the jobs that
produce messages for this virtual network belong to the
same DAS. On its part, a virtual network slot consists
of smaller subslots denoted as job slots. When a node
computer hosts multiple jobs of a DAS that send mes-
sages to the virtual network of the DAS, then each of
these jobs is assigned a job slot carrying the messages
sent by that job.

4 Implementation

In the following we describe the implementation of
virtual networks. We will explain the employed inte-

grated DECOS node computers, which are multipro-
cessor nodes with dedicated hardware elements for core
architectural services and application software. Em-
phasis is placed on the encapsulation of communication
resources by means of temporal and spatial partition-
ing. On the basis of Figure 2, we discuss the realization
of virtual networks in an integrated DECOS node com-
puter.

4.1 Platform

A DECOS node computer is a multiprocessor node
as depicted in Figure 2. It consists of a Basic Connector
Unit (BCU) and two application computers, namely
one for each of the two node subsystems (safety-critical
and non safety-critical). FEach application computer
hosts the application software (i.e. jobs) in conjunc-
tion with the corresponding high-level architectural
services. The purpose of the BCU is the primary alloca-
tion of network resources in order to enable partitioning
between the safety-critical and the non safety-critical
subsystem of a DECOS node computer. The BCU
splits the bandwidth between the two application com-
puters implementing the safety-critical and non safety-
critical node subsystems.

This design facilitates modular certification [10], be-
cause applications with different criticality levels are
assigned to separate hardware elements. The BCU,
which also contains a time-triggered communication
controller, is realized using a single hardware element:
the TTP MPCS855 single board computer. This single
board computer is equipped with an MPC855 PowerPC
from Freescale clocked with 80 MHz and provides a C2
TTP communication controller [14].

Each application computer is implemented on a
Soekris net4521 embedded computer from Soekris En-
gineering, which is based on a 133MHz 486 class
ElanSC520 processor from AMD. The interconnection
between the application computers and the BCU is per-
formed using time-triggered Ethernet (100 Mbps).

We deploy on all embedded computer nodes the real-
time Linux variant LXRT/RTAI [2] as the operating
system and execution platform. The operating system
in conjunction with the architectural services provides
encapsulated partitions for the execution of the jobs
of the respective node subsystem. According to the
DECOS fault hypothesis (see also [7]), a job is treated
as FCR for software faults. Therefore, partitions have
to ensure that a faulty job cannot interfere with any
other job. This includes the computational as well as
the communication resources.

4.2 Realization of Basic Connector Unit

Figure 2 gives an overview of the BCU software
in the TTP MPC855 single board computer. Two
Linux/RTAI drivers (TTP driver and Ethernet driver)

Allocation Layer (Extended Ethernet Driver)

RTAILXRT Linux (Operating System) | l

Job 1 LXRT Tasks Eom i I DECOS NODE COMPUTER
N N 1 S e
Links (Shared Memories) Ports Ports 1 Application Computer of i Application Computer of
N . 1 Safety-Critical Non Safety-Critical
1
Virtual Network Middleware (LXRT Task) Tl ' NodelSubsystem NodelSubsystem
1
1
1
1
1
1

Linux-based Software in MPC855

invoke
send routine

Kernel Module: TTP Driver Ethernet Driver

N <
" ~ e Y 0
N 100 Mbps Ethernet
AN with TDMA scheme

v

p-- SR e

‘ TTP ISR

Transmission Routine

»

Ethernet msg. Receive ISR

(

N
|
T
T

Interrrupt

slpt|start

v
CNI: Memory element with
@ state messages
TTP Comm. Controller

Message Buffer E
Ethernet Controller —tL

BCU and Communication Controller

to Time-Triggered Core Network

S inkeiuinien, ikttt | S
O TTP network with two redundant channels too 0 Ethernet towards appl. compL'Jters within the 0 """"

other nodes same node

r
i
i
1
3
H
L
[fe——mmmmm=ee

Figure 2. Implementation of an Integrated DECOS Node Computer

perform the subdivision of the communication re-
sources for the safety-critical and non safety-critical
node subsystems.

TTP Driver The TTP driver is a Linux/RTAT ker-
nel module that is responsible for interacting with the
TTP communication controller. The TTP driver con-
tains an Interrupt Service Routine (ISR), which is in-
voked periodically by a control signal from the TTP
communication controller at the beginning of each com-
munication slot on the TTP network. The global points
in time of these invocations are a priori defined through
the Message Descriptor List (MEDL) of the TTP net-
work.

The TTP ISR is responsible for reading incoming
messages from the TTP network and forwarding these
messages from the TTP network to the application
computers. Upon each invocation, the ISR determines
the current MEDL position, i.e. the current TDMA
round within the cluster cycle and the actual commu-
nication slot within the TDMA round. With the a
priori knowledge available via the MEDL, the TTP
driver, then, determines which node has sent during
the previous slot. The state message that has been
broadcast by this node during the previous slot is con-
tained in the CNI, which is realized as a Dual Ported
RAM (DPRAM) in the TTP MPCB855 single board
computer. The TTP driver copies the state message
from the CNI and constructs an Ethernet message that
is passed to the Ethernet driver for the dissemination
on the node-internal Ethernet network.

Ethernet Driver The Ethernet driver is the inter-
face towards the Fast-Ethernet core of the MPC855T.
It is a modified version of the Standard 8xx-Ethernet
driver, which has been optimized for time-triggered
transmissions and receptions in order to minimize the
latency jitter. The Ethernet messages to be sent to
the application computers are passed to the Ethernet

driver by the TTP driver. The Ethernet message with
the data from a certain slot of the TTP network is
sent on the node-internal network during the subse-
quent slot, regardless of whether a node has sent or
received at the TTP network according to the MEDL.
In case the node itself has sent during the slot on the
TTP network, the Ethernet message realizes a loop-
back service. On the one hand, this mechanism enables
the application computer to verify that the correct in-
formation has reached the BCU. Secondly, the loop-
back interface is the need for synchronizing application
computers to the global time base. The reception of an
Ethernet message sent by the BCU is a synchronizing
event for the application computers (i.e. master/slave
clock synchronization).

‘ Ethernet header

status area ‘control area‘ data channel 0 ‘ data channel 1 ‘ checksum ‘

14 bytes 56 bytes 24 bytes 130 bytes 130 bytes 4 bytes

Figure 3. Structure of Ethernet Messages Ex-
changed via the Node-Internal Network

The Ethernet messages that are sent from the BCU
to the application computers have a structure as de-
picted in Figure 3. The status and control area of the
Ethernet message are snapshots of significant status
and control variables in the TTP controller’s CNI [14].
Following the status and control areas, the Ethernet
message contains two state messages from the two re-
dundant TTP channels, which have been copied from
the CNI. The destination Ethernet MAC address in
the header is set to a broadcast address, meaning that
the message is sent from the BCU to both of the two
application computers.

In addition, the Ethernet driver contains an ISR
that is invoked when Ethernet messages from an ap-
plication computer arrive at a priori specified global
points in time at the BCU. The purpose of these Eth-
ernet messages is to transfer outgoing messages, which
have been sent by jobs, from the two application com-

puters in a node to the BCU, so the BCU can forward
these messages to the TTP network.

Upon the invocation of the ISR, the Ethernet driver
reads the source MAC address in the message header in
order to determine which of the two application com-
puters has sent the message. If a message from the
respective node subsystem is actually due in this slot,
then the Ethernet driver copies the data contained in
the Ethernet message into the CNI of the TTP com-
munication controller.

The arrival of Ethernet messages is implicitly syn-
chronized with the control signals that are generated by
the TTP controller at the beginning of communication
slots. Hence, there is no concurrency between the TTP
driver and the Ethernet driver. This solution not only
minimizes latency jitter, because the ISRs are never
delayed, but also guarantees that the information read
from the CNI is consistently forwarded (i.e. no par-
tially updated messages) to the TTP network and the
node-internal network, respectively.

4.3 Realization of Application Computers

Based on the state message interface provided by
the BCU, each of the application computers in Figure 2
realizes virtual networks via two software layers. The
allocation layer is an extended Ethernet driver, which
is based on RTnet [5]. It is responsible for interacting
with the BCU. The virtual network layer is an LXRT
task that constructs event-triggered and time-triggered
overlay networks using the state message interface of
the allocation layer. The jobs, which are also realized
as LXRT tasks, exploit the virtual network layer by
accessing shared memories containing the ports of the
event-triggered and time-triggered virtual networks.

Allocation Layer The allocation layer provides to
the higher layers of the application computer a mem-
ory region that is updated at a priori specified global
points in time. This memory region maps into the ap-
plication computer the node’s CNI towards the time-
triggered communication service. The layout of this
memory region, which is an image of the node’s CNI,
is depicted in Figure 4. The CNI is structured into
smaller state variables. For each subsystem, node, and
channel of the cluster, the CNI contains a dedicated
state variable. At a particular application computer,
the state variable associated with the application com-
puter (which corresponds to a node subsystem) at the
CNI is written by the virtual network service, while all
other state variables are read by the virtual network
service. The time-triggered communication system be-
haves inversely, reading the state variable associated
with the application computer before broadcasting its
contents via the core network. All other state vari-
ables are updated with the contents of messages re-
ceived from other nodes. The global point in time of a

CNI Address 80 144 240 336
| | | |
T t

t t
07 [Status and Channel 0 Channel 1
Control Non Safety-Critical Non Safety-Critical [LCECXY
336
Status and Channel 0 Channel 1
Control Non Safety-Critical Non Safety-Critical [JLLE
672

Status and Channel 0 Channel 1
Control Non Safety-Critical Non Safety-Critical \LLCx)
1008—-

Status and Channel 0 Channel 1
Control Non Safety-Critical Non Safety-Critical [[LEx]
1344 —

Status and Channel 0 Channel

1
Control Non Safety-Critical Non Safety-Critical [LLETS

1680

Channel 0 Non Safety-Critical

Job) JobJob Job) JobJob ~ob JobJob

Figure 4. Layout of CNI

message reception not only denotes the identity of the
sending node and subsystem, but also determines the
state variable in the CNI that is to be overwritten.

Within the RTnet Ethernet driver, the allocation
layer provides an ISR that is periodically invoked by
Ethernet messages received from the BCU. Upon the
reception of an Ethernet message, the allocation layer
determines the current position within the TDMA
round, which is denoted by a variable within the sta-
tus area of the Ethernet message (cf. Figure 3). With
the knowledge about the position within the TDMA
round, the allocation layer can determine the sending
node and the corresponding location within the CNI
memory region. If the Ethernet message contains a
state message from another DECOS node, then the al-
location layer copies — except for the Ethernet header
— the complete message into the CNI memory region.
In case the Ethernet message contains a state message
from the same DECOS node, the allocation layer copies
only those parts into the CNI memory region, which
originate from the other node subsystem. Thus, the
parts in the CNI memory region that are updated by
the virtual network service are never overwritten by
the allocation layer. Nevertheless, the allocation layer
provides to the higher layers the state messages from
the other node subsystem, which is necessary for the
implementation of gateways between safety-critical and
non safety-critical DASs.

If the current position within the TDMA round in-
dicates that the sending back of a message to the BCU
is due, the allocation layer constructs an Ethernet mes-
sage with the data from a CNI memory region updated
by the virtual network layer. This Ethernet message is
sent via the RTnet Ethernet driver with the MAC ad-
dress of the BCU as its destination.

Virtual Network Layer The main purposes of the
virtual network layer are the subdivision of communi-
cation resources from subsystem granularity to virtual
network and job granularity, the conversion of control
paradigms and the switching of messages.

The interface of the virtual network layer to the jobs
are state and event ports. A state port contains a state
variable that is accessed by the virtual network layer
at a priori specified global points in time. The state
variable is either updated by the virtual network layer

Jobs on Node m Jobs on Node n Jobs on Node k

ET Job 1| [ET Job 2|32 3| [[ET Job 3| |ET Job 4 |3 ¢ 3| || TT Job 1| |TT Job 2| %[00 »
DAS i DASi [Bf¢SB| | DASi DASi [B[¢$B|| DASj DASj [B[¢528
nnike O =ryryryiie (@] 0 O O
rlslsss JHNRERE naRERE
T el eeaaalenaaat| [== [
‘ (IN Layern i % ‘ {ll\ Layer i % ‘ VN Layer s) %
: g
Q (@]
c c

Figure 5. Partitioning at Virtual Network Level

(data copied from CNI memory region to the input
state port) or read by the virtual network layer (data
copied from output state port to the CNI memory re-
gion). An event port, on the other hand, contains a
message queue into which messages that are read from
the CNI memory region are inserted by the virtual net-
work layer in case of an input event port. For an output
event port, the virtual network layer retrieves messages
from the queue and writes them into the CNI memory
region.

The state and event ports are realized with the
shared memories in Figure 2 in between the LXRT
tasks of the jobs and the LXRT task of the virtual
network layer. Each job possesses a dedicated shared
memory area that is protected by the Memory Man-
agement Unit (MMU) from other jobs, thus preventing
unintended interference between jobs via ports. Within
the shared memory provided to a job, there is a ded-
icated input port for each other job of the DAS that
sends messages to the job (see Figure 5). Providing a
dedicated input port for each sender at all receivers is
a key element for encapsulating senders within a DAS:

e Spatial partitioning by handling mas-
querading failures. Masquerading is defined
as the sending or receiving of messages using the
identity of another sender without authority [1].
Systems that rely on an explicit name stored in
a message to identify the transported message are
vulnerable to masquerading failures. Such a fail-
ure results in the possibility that a single faulty
node computer can masquerade other node com-
puters, without the receiver having a chance to
detect the fault.

The virtual network addresses masquerading fail-
ures through a static association between jobs and
sending slots both at the time-triggered inner-node
network and at the time-triggered core network.
In addition, each of these sending slots is asso-
ciated with a corresponding input port and thus
a corresponding message buffer. Jobs can exploit
the provision of separate input ports for the de-
tection of masquerading failures. Each input port
exclusively stores messages from a single sender
job only. Although a sender job can transmit a
message with an incorrect message name (e.g., a
message identifier that is reserved for another job),

such a message is exchanged within the sending
slot of the sender job and reaches the sender job’s
input port at the receiver job. Hence, the presence
of the message at the wrong input port enables the
receiver job to detect such a masquerading failure.

e Temporal partitioning between jobs. Tem-
poral partitioning requires the communication la-
tencies and communication jitter for messages sent
by one job to be independent from the communi-
cation activities of other jobs. In case of time-
triggered ports, the prototype implementation en-
sures temporal partitioning by performing the up-
dates of real-time images at a priori fixed global
points in time. In case of event-triggered ports,
separate input ports and thus separate queues en-
sure that the queuing delays for messages received
from one sender job do not depend on the com-
munication activities of other jobs. In addition,
separate message queues prevent a sender job that
violates its message inter-arrival time specification
from causing the loss of messages sent by other
jobs. A message omission failure caused by queue
overflow at an input port only affects the messages
sent by a single sender job.

The conversion of control paradigms is performed for
event-triggered virtual networks by mapping the state
message interface of the allocation layer to an event
message interface. Since the temporal firewall inter-
face provided by the allocation layer is a purely time-
triggered communication service, the virtual network
layer implements an event-triggered packet service. A
job places event messages into the message queues at
an output port resulting in a sequential stream of event
messages that forms the input to the virtual network
layer. The insertion of inactivity messages preserves
the assumption of a coherent message stream during
time intervals, in which the job does not produce mes-
sages. The virtual network layer performs a fragmenta-
tion of these outgoing messages into packets and places
these packets in the job slot in the Communication
Network Interface (CNI) memory region. Virtual net-
work configuration data structures define the addresses
and sizes of the job slots in the CNI memory region.
The size of event message relative to the size of the
job slot in the CNI memory region also determines the
transmission latency of the event-triggered virtual net-
work. In case the job slot is smaller than the event mes-
sage, the transmission of the message will take several
TDMA rounds. If the job slot is larger than the event
message, data from multiple event messages can be
transmitted within a single TDMA round. Adversely,
the virtual network layer is also responsible for fusing
packets, which are received via the job slots, into event
messages and offering these messages to the jobs via
the message queues in event input ports.

In order to copy messages between ports and the
CNI memory region, the virtual network layer is acti-

read message of node 3
from the CNI image and
sent it on the network

process messages from
nodes 0,1,2,4

write message from
node 3 into CNI
Image

VN Service T
accesses CNlimage |

Allocation layer z
accesses CNlimagz"|

N

write message of| [write message of|:[write message of
node 3 received|| node 4 received||| node 0 received|
from the network| | from the network|:| from the network
into the CNI image| |into the CNI image|: into the CNI image

Siot3 | Slot4 | Slot0 | Slot1 | Slot2 | Slot3 | Slot4 . Slot0

write message of|
node 1 received

write message of]
node 0 received|

write message of]
node 2 received

from the network| | from the network| | from the network|
into the CNI image| |into the CNI image| |into the CNI image|

TDMA Round TDMA Round TDMA Round
X X+1 X+2

Figure 6. Activities in Node Computer 3

vated at the beginning of each TDMA round after the
execution of the allocation layer. The virtual network
layer reads the CNI areas belonging to other nodes and
the second subsystem at the same node. In addition,
the virtual network layer writes the CNI area belonging
to itself, i.e. the node subsystem in which the virtual
network layer is being executed. The virtual network
layer accesses the CNI in time-triggered manners and
is thereby implicitly synchronized with the allocation
layer. Figure 6 illustrates this scheme for node com-
puter 3 in an ensemble of five node computers. This
design prevents the transmission and reception of par-
tially updated messages.

Jobs The jobs implement the application services
and access the virtual network via the shared memory
containing the ports. In order to simplify the imple-
mentation of jobs, a virtual network library is available
that can be linked to a job. This library aims at simpli-
fying startup and provides function calls for accessing
the shared memories containing the ports. The library
provides the following function calls:

o t_link *fetch_link(int networkId, int linkId). Dur-
ing startup, a job can invoke this operation for
gaining access to the ports towards a specific vir-
tual network. The link with is identified through
two numerical identifiers: the network identifica-
tion and a link identification that is valid within
the network. The link consists of all ports towards
the virtual network that are accesses by the job.
The fetch-link operation initializes the port config-
uration data structure and maps the shared mem-
ory area containing the port buffer into the address
space of the job.

e int sndEtMessage(t_port *port, t_message *msg).
This operation is used for requesting the trans-
mission of an event message. This function can
be invoked at a priori unknown point in time
within the execution of a job. The output port
is identified by the first parameter and must be
part of a link that has been previously acquired
with the fetch-link operation. The message, which
is passed via the parameter msg is inserted into
the message queue associated with the port. The
send operation detects queue operations and in-

forms the job through the return value (ET-OK
or ET_.ERROR).

e int rcvEtMessage(t_port *port, t_message *msg).

By invoking this operation, a job can pull a previ-
ously received message from an input port. This
function is invoked at a priori unknown point in
time within the execution of a job. The input
port is identified by the first parameter and must
be part of a link that has been previously ac-
quired with the fetch-link operation. The sec-
ond parameter points to a memory area to which
the event message will be copied to. The return
value (ET-QUEUE_-EMPTY or ET-OK) informs
the job, whether a message has been available and
copied to the specified memory area.

For time-triggered ports, no send and receive op-
erations are required, because the port buffer already
contains a pointer to the periodically updated state
variable. The job can simply write (in case of an out-
put port) or read (in case of an input port) the state
variable, which is autonomously communicated by a
time-triggered virtual network. In order to ensure con-
sistency of communicated state variables, the tasks im-
plementing the jobs are implicitly synchronized with
the task implementing the virtual network middleware.

5 Discussion

Virtual networks in the DECOS architecture pro-
vide each of the DASs that are executed on the
shared distributed computer system with a communi-
cation infrastructure that meets the respective require-
ments w.r.t. to the temporal properties (e.g., control
paradigm, bandwidth, latencies) of message exchanges.
Each virtual network is encapsulated to prevent unin-
tended interference between DASs at the level of the
communication resources. Encapsulation is a key ele-
ment for cost-effective development of mixed criticality
systems with modular certification of different DASs.
In addition, encapsulated virtual networks facilitate
system integration, because the temporal properties of
the messages sent by already integrated jobs are not af-
fected when adding further node computers and jobs.

5.1 Encapsulation of Messages

For capturing the term of encapsulation, we take
on a sender-centric view. This means that we look at
the non interference in the message transmissions be-
tween sender jobs, while abstracting over interference
between message transmissions from the same sender
job. According to the DECOS fault hypothesis, each
sender job forms a Fault Containment Region (FCR)
w.r.t. to software faults. For analyzing interference, we
focus on both the temporal and value domain. When

looking at mechanisms for the prevention of interefer-
ence, this bivalent distinction maps to the concepts of
temporal and spatial partitioning [9].

We regard the following temporal properties as po-
tentially subject to interference:

e Transmission latency. The end-to-end delay of a
message transmission from a sender to a receiver
job includes latencies induced by the communi-
cation system, namely the access delay and the
transmission duration of a message. Encapsu-
lation w.r.t. to the transmission latencies means
that the access delays and transmission durations
(worst-case, best-case, actual, variability) of mes-
sages transmitted by a particular sender to its re-
ceivers are not affected by messages transmitted
by other senders.

e Bandwidth. The bandwidth available to a specific
sender is the number of bytes transported within
the messages sent by this sender per second. Tem-
poral encapsulation requires the bandwidth (max-
imum, minimum, average, variability thereof) that
is available to a sender job to be independent from
the behavior of other jobs.

We regard the following value domain properties as
potentially subject to interference:

e FEncapsulated name spaces. In many protocols the
message name uniquely identifies the sender of the
message. For example, an Ethernet message con-
tains the MAC address of the sender. Similarily, a
CAN message contains a unique identifier, which
is usually exclusively used by a single sender to
avoid collisisions. The arbitration mechanism of
the CAN protocol would be apt to fail when more
than one sender simulteanously sends a message
with the same identifier.

In order to prevent the misinterpretation of mes-
sages at receiver jobs, a sender job must not to use
the identity of another sender job (also called mas-
querading [1]). A communication protocol that
satisfies this requirement provides encapsulated
name spaces.

e Data integrity. A communication protocol ensures
data integrity, if for each sender job the contents
of the sent messages cannot be affected by other
sender jobs.

5.2 System Integration

A seamless system integration phase is closely re-
lated to the concept of composability. Composabil-
ity is defined as the stability of component proper-
ties across integration. Composability is necessary for
correctness-by-construction of component-based sys-
tems [11]. Temporal composability is an instantiation

of the general notion of composability. A communica-
tion system is temporally composable, if temporal cor-
rectness is not refuted by the system integration [6].

A necessary condition for temporal composability is
that if n nodes are already integrated, the integration of
node n+ 1 will not disturb the correct operation of the
n already integrated nodes. This condition guarantees
that the integration activity is linear and not circular.
It has stringent implications for the management of the
network resources.

In contrast to communication protocols that dy-
namically share bandwidth at the Media Access Con-
trol (MAC) layer, a virtual network supports invariant
temporal properties at the communication system dur-
ing an incremental integration process. The network
resources are statically assigned to each node com-
puter. At the cost of reduced flexibility, virtual net-
works provide to each newly integrated node computer
a communication slot that has already been reserved
at design time via a static communication schedule.

References

[1] G. Coulouris, J. Dollimore, and T. Kindberg. Dis-
tributed Systems: Concepts and Design. Addison-
Wesley, 2nd edition, 1994.

[2] D. Beal et al. RTAIL: Real-Time Application Interface.
Linuz Journal, April 2000.

[3] A. Deicke. The electrical/electronic diagnostic concept
of the new 7 series. In Convergence Int. Congress &
Ezxposition On Transportation Electronics, 2002.

[4] FlexRay Consortium. FlezRay Communications Sys-
tem Protocol Specification Version 2.1, May 2005.

[5] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink. RT-
net — a flexible hard real-time networking framework.
In Proc. of 10th ETFA Conference, 2005.

[6] H. Kopetz and R. Obermaisser. Temporal compos-
ability. Computing € Control Engineering Journal,
13:156-162, Aug. 2002.

[7] R. Obermaisser, P. Peti, and H. Kopetz. Virtual net-
works in an integrated time-triggered architecture. In
Proc. of 10th IEEE WORDS, 2005.

[8] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino, and
S. Cerchio. An integrated architecture for future car
generations. In Proc. of the 8th ISORC, 2005.

[9] J. Rushby. Partitioning for avionics architectures: Re-
quirements, mechanisms, and assurance. NASA con-
tractor report, NASA Langley Research Center, 1999.

[10] J. Rushby. Modular certification. Technical report,
SRI International, Sept. 2001.

[11] J. Sifakis. A framework for component-based construc-
tion. In Proc. of 3rd SEFM Conference, 2005.

[12] J. Swingler and J. McBride. The degradation of road
tested automotive connectors. In Proc. of the 45th
IEEE Holm Conference on FElectrical Contacts, 1999.

[13] TTTech Computertechnik AG. Time-Triggered Proto-
col TTP/C — High Level Specification Document, 2002.

[14] TTTech Computertechnik AG. TTP/C Controller C2
Controller-Host Interface Description Document, Pro-
tocol Version 2.1, Nov. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

