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Abstract

The quest for high performance drives parallel scien-
tific computing software design. Well over 60% of the
high-performance computing (HPC) community writes
programs using the MPI library; to gain performance,
they are known to perform many manual optimizations.
Even tools that accept high level descriptions often gen-
erate MPI code, due to its eminent portability. How-
ever, since the overall performance of a program does
not usually port (due to variations in the target ar-
chitecture, cluster size, etc.), manual changes to the
code are inevitable in today’s approaches to MPI pro-
gramming and optimization. This, together with the
vastness and evolving nature of the MPI standard, and
the innate complexity of concurrent programming in-
troduces costly bugs.

Our research addresses these challenges through spe-
cific efforts in the following broad areas: (i) high
level expression of the parallel algorithm and compi-
lation thereof into optimized MPI programs, (ii) op-
timizations of user-written detailed MPI programs
through localized transformations such as barrier re-
moval, (iii) formal modeling of complex communication
standards, such as the MPI-2 standard and a facility
for answering putative queries (this need arises when
standard documents are impossibly difficult to manually
study in order to answer questions that are not explic-
itly addressed in the standard), (iv) formal modeling of
new (and hence relatively less well understood) features
of communication libraries, such as the one-sided com-
munication facility of MPI-2, and (v) formal modeling
of intricate control algorithms in these libraries such as
the progress engine for TCP and/or shared memory in
MPICH2 (a formal model can explicate commonalities,
help formally verify, as well as help create better future
implementations). Our research gains focus through

∗Supported in part by NSF award CNS-0509379

numerous collaborations.

1. Introduction

Progress in scientific high-performance computing
(HPC) is fundamental to scientific discovery in virtu-
ally all walks of life. The quest for high performance
drives parallel scientific computing software design. A
programmer developing such software considers several
factors ranging from algorithm selection, communica-
tion mechanisms, all the way down to the expected
performance of caches and network switches. There is
clearly tension between such performance-centric ap-
proaches and the quest to scale quickly towards peta-
flop computing regimes as, say, captured in HPC road
maps [1]. To scale up along the HPC path, some
of the approaches taken include virtualization as in
the Charm+ system [2], automatic techniques to map
graphical descriptions of the intended computation to
programs as in the Uintah system [3], and automatic
communication optimizations as in IBM’s BlueGene/L
system [4].

Despite this dichotomy of views, programmers in
both camps most often end up using the Message Pass-
ing Interface (MPI, [5, 6]) library. It is estimated
that well over 60% of the HPC community writes pro-
grams using the MPI library. In fact, MPI has steadily
evolved from MPI-1, which contained about 130 calls,
through intermediate versions to the present MPI-2
standard which contains over 190 calls. As Gropp ob-
serves [7], MPI’s popularity stems from several funda-
mental reasons:

− portability (also considering that applications can
outlive the hardware),

− smooth mapping of primitives to hardware archi-
tectures,
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− the variety of calls that allows each user to find
subsets that are well-matched to their needs, and
not suffer from a minimal but ‘one size fits all’
approach,

− and its orthogonality in terms of what combina-
tions of features are allowed.

However, MPI is a portable standard for overall be-
havior, and not performance. Therefore, hand-tuned
codes are sometimes manually re-tuned when ported
to another hardware platform or another implementa-
tion of the MPI standard. Even the proponents of the
high-level modeling approach who may automatically
generate MPI programs are known to manually exam-
ine the generated code and improve its performance
through manual code modifications. All these activ-
ities, coupled with the vastness and evolving nature
of the MPI standard, the fact that many implementa-
tions of MPI are at various stages of implementing the
standard, and the innate complexity of concurrent pro-
gramming itself result in costly bugs. These bugs are
found late, cost months of wasted programmer time, or
often produce inexplicable results.

Formal methods are enjoying an explosive growth
precisely to help eliminate these kinds of bugs, as evi-
denced by the abundance of papers on model-checking
and assertion-based verification in conferences such as
POPL, PLDI, and OSDI (e.g., [8, 9, 10, 11]) and also
in hardware verification (e.g., [12]). Formal methods
based on program logics and decision procedures are
being used to verifying optimizing compiler transfor-
mations [13], formally analyzing device driver codes
[14], and solidifying industrial standards [15]. The
HPC community is facing daunting challenges with re-
spect to large-scale concurrency, reliability, and stan-
dardization. Yet, from the relative lack of formal meth-
ods papers in HPC indicates that the use of mathemat-
ical logic, assertions, and model-checking is not widely
accepted or even known to be possible in this arena.

With the vast investments in MPI, it behooves the
scientific community to move towards formal methods,
bridge the cultural gap between the HPC and tra-
ditional Computer Science communities, and achieve
the dream of peta-flop computing through principled
approaches. Even though MPI is widely regarded
as a standard, it has had a healthy period of evolu-
tion where different interpretations and implementa-
tions did exist. Programming languages such as C also
went through periods where compilers produced dif-
ferent behaviors for code fragments such as a[i++] =

i++; with the ANSI-C standardization, things have be-
come uniform. We believe it is time now to solidify
the consensus among MPI users. One difference be-
tween C and MPI is that the latter is a concurrent

library, and humans are inherently deficient at antici-
pating the corner cases in concurrent executions. This
elevates the importance of a formal reference specifica-
tion for MPI. We do not intend this specification to dic-
tate how MPI should be viewed; it will be mainly used
to support formal reasoning, and the creation of MPI
library validation test suites that complement existing
suites. We will closely interact with MPI experts and
formalize their understanding as well as published de-
scriptions. We will also develop analysis tools that ex-
tract finite-state models from MPI programs (programs
that use MPI calls; we plan to use MPI C-programs).
We will build model-checking tools that analyze these
models and automatically detect deadlocks and race
conditions. We will take advantage of our MPI refer-
ence specification to enhance model-checking. Those
properties that cannot be established statically will
be done so at run-time through embedded assertions
within MPI C-programs.

Our work brings together the domain expertise of
a formal methods researcher (PI) and an active re-
searcher in parallel scientific computing who is also
coauthor of a recent book on parallel scientific com-
puting using C++ and MPI (Co-PI). Our research is
in the context of actual scientific computing applica-
tions. In particular, Kirby is associated with the Utah
Scientific Computing and Imaging (SCI) Institute that
has been involved in the development of HPC software
[3, 16, 17, 18, 19]. We also have numerous external
collaborations, the most notable being a collaboration
that has recently started with the principal develop-
ers of MPICH2 (ANL). The ANL collaboration has al-
ready given us two focused problems on which to work,
namely: (i) formally understanding MPI-2 constructs
that achieve one-sided communication, and (ii) for-
mally modeling some of the intricate algorithms used
in MPI progress engines. These problems directly stem
from the experience that the ANL group has gained in
the process of creating the widely deployed MPICH2
implementation of MPI-2.

In addition to publications (two to date that are di-
rectly attributable to our grant) and research software
(several in progress), the main outcomes will be stu-
dent dissertations and theses (three PhD dissertations,
one MS thesis, and one undergraduate research project
are supported in part by this award).

Section 2 details our preliminary work on model ex-
traction and verification applied to MPI [20]. Section 3
details work in progress and expected outcomes in the
area of level expression of the parallel algorithm and
compilation thereof into optimized MPI programs. Sec-
tion 4 describes optimizations of user-written detailed
MPI programs through localized transformations. Sec-



tion 5 describes our formal modeling of a widely used
subset of the MPI-2 standard and a facility for answer-
ing putative queries. Section 6 details what we plan
to achieve in modeling new features such as one-sided
communication. Section 7 details how we approach the
formal analysis of intricate algorithms such as used in
progress engines.

Case studies are going to be a central part of our
work; an important case study conducted to date is
the design and performance evaluation of a parallel
and distributed model checker written using MPI and
PThreads [21]. This model checker has been exten-
sively experimented on numerous clusters and, in fact,
released for general use on our website due to its im-
mediate applicability in modeling and model-checking
large cache coherence protocols (the domain in which
the sequential version of this model checker has, tra-
ditionally, been used). This case study gives us direct
experience with some advanced features of MPI and
PThreads and in a sense also represents how MPI might
be used in aggressive asynchronous styles in scientific
computing problems. A few details of this case study
are presented in Section 8. Numerous other case stud-
ies stemming from the Co-PI’s research projects will
also be employed as driving problems. Our research
gains focus through numerous collaborations, including
one with the Argonne group responsible for developing
MPICH2. Section 9 has concluding remarks.

2. Model Extraction and Verification

In [20], we report our first attempt at formal analysis
applied to MPI programs. Figure 1 shows the concep-
tual flow of a tool path that we set out to build. We
employed the Berkeley CIL tool suite and used it to ex-
tract finite state models of MPI C programs. The MPI
calls in these programs were modeled by finite state
machines that capture how MPI calls proceed through
various events, including those that mark when the
process of writing into the send buffer finishes, when
the message transfer begins and ends, and when the
send buffer may be overwritten again. While this
approach represents a “classic” approach to software
model checking, numerous problems prevent this ap-
proach from scaling: (i) model extraction may not work
smoothly when embedded programming pragmas or es-
oteric (non-MPI) constructs are employed, (i) model
extraction of large programs is hard, (iii) model check-
ing of large extracted models will suffer from state ex-
plosion, and (iv) since MPI programs will often be writ-
ten in C/C++ and at other times in FORTRAN, writ-
ing model extractors for all these languages will cause
us too much engineering work up-front without com-

mensurate rapid research benefits. These experiences
have turned our attention to high impact research av-
enues that promise better overall benefit on real-world
MPI programs and MPI libraries. The directions cho-
sen based on this experience constitute the rest of this
document.

3. High Level Transformations

Many MPI programs implement expressions involv-
ing simple higher order functions such as map, filter,
and fold. In these cases, it is attractive to allow a user
to express the intent in such high level terms and au-
tomatically generate MPI programs that employ com-
munications in lieu of function applications to “weave
values” across various functions. Thus, the overall net
effect would be achieved in a distributed computation
setting.

MPI programs are often written at a very low level
in the hope of achieving high performance when in fact
doing so increases the likelihood of producing buggy
and unmaintainable code. To avoid this danger, expe-
rienced MPI programmers get the code working with
a semi-conservative communications pattern, and then
to try to relax the pattern. Examples would be using
Send/Recvs first (to get a code working) and then to
transition to ISend/Recvs (or ISend/IRecvs). We are
working on such an approach to semi-automated (au-
tomation, coupled with expert designer guidance) code
optimization. We already have numerous examples of
manually optimized MPI programs, and plan to ap-
ply our techniques to show how these examples can be
re-derived using our transformation system. Our past
experience in cache coherence protocol synthesis [22]
has given us some background experience.

In embarking on this project, we also realize that
having a formal semantics for MPI is essential in order
to justify the transformations. This is addressed in
Section 5.

4. Local Transformations

As opposed to transformations that affect an entire
MPI process, local transformations attempt to relax
the rigid synchrony and/or inefficient implementation
caused by a few localized constructs. The main opti-
mization to be researched is the removal of redundant
barrier constructs. Many barrier calls are inserted
by programmers to assist their own mental vision of
the computation. We will research correctness criteria
for justifying barrier removal. We plan to symbolically
execute the unoptimized and optimized versions and
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Figure 1. Conceptual Flow Diagram of Proposed Framework

develop suitable criteria for comparing the symbolic
execution results. In other cases, utilizing existing op-
timized constructs (e.g., broadcasts using MPI Bcast
instead of send-receives) allows the applications pro-
grammer to attain more transparent coding, and also
allows the MPI version to optimize the program for the
particular architecture.

5. Formal Modeling of MPI

A formal semantics for MPI has not been written
by any group - at least at a sufficient degree of detail
that permits formal analysis and transformation. Our
attempt in this area will result in a formal semantic
description that assists in many ways, including these
ways: (i) help understand the standards document as
an augment to the already existing English descrip-
tions, (ii) help justify the correctness of transforma-
tions done at the MPI program level, (iii) allow users to
conclude facts about MPI that are not explicitly stated
in the standards document, and (iv) help develop MPI
validation suites that can stress test corner-cases and
also allow one to test formal properties with respect to
implementations.

In our work, the formal semantics will be captured in
a formal state transition notation similar to TLA+ [23]
or B [24]. Queries will be specified in a notation similar
to test automata [25] which are finite state observers of
computations. We will generate Boolean satisfiability
instances out of putative queries, and using Boolean
satisfiability tools [26] arrive at either an answer in the
affirmative (“SAT”) or explain why certain scenarios
are impossible using unsatisfiability cores [27].

We have recently finished such a formal specifica-
tion for the Intel Itanium shared memory and built a
tool that helps users query the specification using spe-
cific (short) shared memory concurrent assembly pro-
grams that have embedded assertions [25]. If these as-
sertions can be satisfied, our tool emits an interleaving

of the concurrent assembly language instructions that
can satisfy the assertions. If the assertions cannot be
satisfied, our tool emits a precedence graph of shared
memory events that cannot be simultaneously satisfied.
This effort gives us valuable background experience.

6. Modeling Relatively Less-Understood

MPI calls

MPI-2 has a one-sided communication construct
that helps enhance the efficiency of many MPI pro-
grams - the price paid being the proclivity to bugs both
due to the intricate shared memory nature of the con-
struct as well as the potential to misread its documen-
tation (which is also sketchy). R. Thakur of ANL has
offered a mini-challenge to us by the way of requesting
(i) a formal modeling approach to one-sided commu-
nication, and (ii) formally verifying a distributed lock-
ing algorithm implemented using one-sided communi-
cation. This focused project will allow us to develop
formal solutions that have the potential to readily tran-
sition into practice.

7. Modeling Intricate Control Protocols

In terms of the complexity, the progress engine of
MPI is one of the complex reactive pieces of software
that exists within MPI. This complexity arises due to
multiple reasons: (i) not all connections are opened
statically, as the cluster may be extremely large. Thus,
dynamically setting up connections, and responding to
failures becomes an issue, (ii) progress engines that em-
ploy TCP sockets and shared memory are apparently
ridden with complex corner cases. It is not easy to tell,
for instance, whether these codes are thread-safe. One
of our PhD students has chosen this problem to be his
main focus.

We propose to formalize the progress subsystem and
apply model checking methods as well as other program



analysis methods to find bugs within it. Such formal
models can also help future implementors of progress
engines avoid redundant work and learn from past im-
plementations. Again, with R. Thakur’s involvement
we will put some of our PhD students to work on these
problems.

As background experience, one of our students has,
through a very ambitious class project, created a for-
mal model for the progress engine of the MPI LAM
implementation in Promela [28, 29]. We will continue
this line of work by generating tests for the MPI LAM
system based on this formal model.

8. Case Study: a Parallel and Dis-

tributed Model Checker

Model checking of safety properties [30] can be
scaled up by pooling the CPU and memory resources
of multiple computers. As compute clusters contain-
ing 100s of nodes, with each node realized using multi-
core (e.g., 2) CPUs will be widespread, a model checker
based on the parallel (shared memory) and distributed
(message passing) paradigms will more efficiently use
the hardware resources. Such a model checker can be
designed by having each node employ two shared mem-
ory threads that run on the (typically) two CPUs of a
node, with one thread responsible for state generation,
and the other for efficient communication, including
(i) performing overlapped asynchronous message pass-
ing, and (ii) aggregating the states to be sent into larger
chunks in order to improve communication network uti-
lization. We have designed and implemented such a
model checking architecture called Eddy. In [21], we
describe the design rationale, details of how the threads
interact and yield control, exchange messages, as well
as detect termination. We have realized an instance
of this architecture for the Murphi modeling language.
Called Eddy Murphi, we report its performance over
the number of nodes as well as communication parame-
ters such as those controlling state aggregation. Nearly
linear reduction of compute time with increasing num-
ber of nodes is observed. Our thread task partition is
done in such a way that it is modular, easy to port
across different modeling languages, and easy to tune
across a variety of platforms.

Figure 2 shows the speedup obtained by

Eddy Murphi w.r.t. Murphi (i.e. Eddy Murphi time
Murphi time

)

as a function of the number of compute nodes. This
figure shows that we obtain a nearly linear speedup on
almost all the examples, and that on all examples we
are considerably faster than standalone Murphi.

We also ran a very large protocol whose verification
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Figure 2. Eddy Murphi linear speedup curves

is not feasible on a standalone machine. This is the
case of the FLASH protocol [31] with 5 processors and
2 data values as parameters. This protocol has more
than 3 × 109 states, and its verification with standard
Murphi would require a huge amount of RAM memory
(assuming 40 bits for each state in hash compaction, we
would need 15 GB of RAM for the hash table only),
as well as an unacceptable computational time. On
the other hand, by using a disk version of Murphi [32],
the computation lasts more than 1 week (we do not
know the exact amount of time, but a projection based
on the first part of the verification leads to a proba-
ble execution time of 3 weeks). However, we success-
fully completed the verification of this protocol with
Eddy Murphi on 60 nodes in approximately 9 hours.

9. Concluding Remarks

To summarize, within the past six months of our
NSF project, we have assembled a team of capa-
ble graduate and undergraduate students, and have
started working on (i) model extraction and verifica-
tion, (ii) high level transformations for MPI program
optimization, (iii) local transformations, and (iv) cre-
ating an executable formal semantics for MPI. In ad-
dition, we are working on two focused aspects of the
MPICH2 implementation, namely (i) one-sided com-
munication, and (ii) some progress engines employed
within MPICH2. In terms of code and publications, we
have published two papers, namely [20] and [21]. The



former paper involved prototype code while the latter
paper developed code that has been released for general
use. Considerable progress along the above lines is ex-
pected during the remaining years of our project. Our
publication venues will include HPC-oriented confer-
ences as well as formal verification and program anal-
ysis oriented conferences.
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