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Abstract

In recent years, several approaches have been proposed
to use profile information in compiler optimization. This
profile information can be used at the source level to guide
loop transformations as well as in the backend to guide low
level optimizations. At the same time, profile guided library
generators have been proposed also, like Atlas, Spiral, or
FFTW, that tune their routines for the underlying hardware.
These approaches have led to excellent performance im-
provements. However, a possible drawback of these ap-
proaches is that applications are optimized using a single or
a limited set of data inputs. It is well known that programs
can exhibit vastly differing behaviors for different inputs.
Therefore, it is not clear whether the performance numbers
reported are still valid for other input than the input used to
optimize the program. In this paper, we address this prob-
lem for a specific statistical compiler tuning method. We use
three different platforms and several SPECint2000 bench-
marks. We show that when we tune the compiler using train
data, we obtain a compiler setting that still performs well
for reference data. These results suggest that profile guided
optimization may be more stable than is sometimes believed
and that a limited number of train data sets is sufficient to
obtain a well optimized program for all inputs.

1 Introduction

Code optimization at compile time has been a main focus
of compiler research since the advent of the first compiler.
Many optimizations have been proposed, both in the back-
end such as common subexpression elimination or strength
reduction [1], as well as in the front-end where code re-
structuring can be performed, such as loop unrolling, loop
tiling, or loop interchange [16]. It is well known that the
best optimization sequence depends on both the application
as well as the target architecture. Therefore, application de-
velopers usually spend much time to carefully hand tune an

application.
In recent years, several approaches have been proposed

to automatically find optimizations that are beneficial for an
application by exploiting profile information [3, 13, 6, 17,
15, 5, 14, 18, 10]. At the same time, several library gener-
ators have been developed, like Atlas [23], Spiral [19], and
FFTW [7]. These generators use small kernels to probe the
underlying hardware and profile information to highly tune
BLAS and DSP routines. All these efforts report perfor-
mance of applications and routines that are better than the
performance obtained from standard compilers and hand-
optimized, vendor supplied library routines. Therefore, the
incorporation of profile and feedback directed optimization
engines in a compiler seems to be a promising direction to
obtain highly optimized codes.
However, a possible drawback of all profile based ap-

proaches to program optimization is that only a single or at
most a limited number of data input sets are used to obtain
runtime information about the application to be optimized.
Moreover, performance numbers reported in published pa-
pers usually come from the same inputs as used in the op-
timization search. However, it is well-known that an appli-
cation can exhibit widely different behavior for different in-
puts. Therefore, it is not immediately clear that a sequence
of optimizations found for a particular input is still a good
one for a different input. Different dynamic execution paths
may well require different optimizations. However, the con-
verse may also be true: for a given application, most execu-
tion paths benefit from more or less the same optimizations.
For example, in mpeg2enc, a heavily used routine is the
motion compensated prediction routine. This routine has
eight different loops, one of which is selected depending on
the value of the addflag variable and other parameters.
However, all these loops have the same structure and they
will therefore benefit from the same optimizations.
In this paper, we have experimented with a statistical

compiler tuning methodology, described earlier in [10]. We
have optimized several SPECint2000 programs using their
train data sets. Next, we have ran the optimized programs
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on their reference data. We show that the performance they
obtain is in line with their performance on train data for all
programs on three different platforms. These results sug-
gest that the optimization obtained from using profiles from
one data input set is actually more stable across inputs than
is sometimes feared.
This paper is structured as follows. Section 2 explains

inferential statistics and the Mann-Whitney test briefly. Our
iterative algorithm is given in Section 2.4. Section 3 de-
scribes our experimental environment and we discuss our
results in Section 4. Related work is discussed in Section 5
and we summarize the paper in Section 6.

2 Background: Statistical Compiler Tuning

In this section, we briefly discuss our statistical compiler
tuning methodology, first proposed in [10].

2.1 Inferential Statistics

Most experiments in the scientific field aim to support a
prediction or an estimation of a phenomenon. The predic-
tion or estimation is called an experimental hypothesis, and
the study of inferential statistics aims to predict whether an
experimental hypothesis is likely to be true. In the present
paper, the experimental hypothesis reads

Experimental Hypothesis Compiler option A is
effective to optimize application B.

The following three steps describe the basic idea of infer-
ential statistics. First, we define a null hypothesis which
negates the experimental hypothesis. When we want to
know about the effectiveness of compiler option A for ap-
plication B, the null hypothesis is

Null Hypothesis Compiler option A is not effec-
tive to optimize application B.

Second, we conduct an experiment which contains two
groups which are called the control group and the experi-
mental group, respectively. The control group consists of
the experimental runs that do not use compiler option A.
The experimental group consists of the experimental runs
which use compiler option A. The null hypothesis implies
that the execution times from these two groups are the same.
Hence, if we can conclude that the execution times from
these two groups are significantly different, then we may re-
ject the null hypothesis and accept the experimental hypoth-
esis. We discuss our experimental groups is Section 2.2.
Hence, thirdly, we need a method to assess the differ-

ence between two groups. Inferential statistics provides a
so-called test statistic to evaluate this difference. The test
statistic enables us to assess a confidence rate to support an
experimental hypothesis. We discuss our test in Section 2.3.

2.2 Experimental groups

In order to test a hypothesis, we need to define a control
group and an experimental group. We could define these
groups for each option to be tested. However, this would
entail very many experiments we would need to perform.
Therefore, we would like to create one experimental group
and one control group that can be used to test all options.
This means we would need to construct a collection of more
or less random settings. For each option, we take for the
experimental group those settings that turn the option on
and for the control group those settings that turn it off. In
this way, the profile information obtained for one particular
setting will be used to test each option, either as part of
the experimental group or of the control group. In order to
achieve this, we use a so called Orthogonal Array [11].
Briefly, an Orthogonal Array (OA) is a matrix of zeroes

and ones. The rows of an orthogonal array represent exper-
iments to be performed and the columns of the orthogonal
array correspond to the different factors whose effects are
being analyzed. For the purposes of this paper, an OA has
the property that for two arbitrary columns, the patterns

0 0 0 1 1 0 1 1

occur equally often. For example, the left part of Table 1
shows an Orthogonal Array.
An OA has the property that any option is turned on and

off equally often in the experiments defined by the rows of
the OA. Moreover, for the rows that turn a certain option
on, any other option is turned on and off equally often as
well. This means that for each factor, there exist 1

2N rows
that turn this factor on, and 1

2N rows that turn this factor
off, when N is the total number of rows. Hence, by using
one Orthogonal Array, we can perform measurements that
can be used in the Mann-Whitney test for every option. At
the same time, the other factors have values that cover the
entire space reasonably. Thus, we can measure the impact
of an option in an arbitrary context. The Orthogonal Arrays
used in the present paper are taken from [20].

2.3 The Mann-Whitney Test

In this section, we discuss the statistical test we employ.
Since both experimental and control group consist of ex-
periments where many different options are turned on, the
execution times of the members of each group can differ
considerably. Therefore, it is not valid to just take the av-
erage execution times for each group and compare these
averages. Because of the large variation in each group, a
difference between these averages could well be by pure
chance. Non-parametric statistics are designed to deal with
this situation [12]. It is capable of analyzing data without



O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 Time Rank
0 0 0 0 0 0 0 0 0 0 20 8
1 0 1 0 0 0 1 1 1 0 25 12
1 1 0 1 0 0 0 1 1 1 15 3
0 1 1 0 1 0 0 0 1 1 17 5
1 0 1 1 0 1 0 0 0 1 18 6
1 1 0 1 1 0 1 0 0 0 14 2
1 1 1 0 1 1 0 1 0 0 23 11
0 1 1 1 0 1 1 0 1 0 13 1
0 0 1 1 1 0 1 1 0 1 19 7
0 0 0 1 1 1 0 1 1 0 22 10
1 0 0 0 1 1 1 0 1 1 21 9
0 1 0 0 0 1 1 1 0 1 16 4

Table 1. Example of Experimental Settings for
10 Compiler Options

Experimental group Control group
(O2 = 1) (O2 = 0)
3 8
5 12
2 6
11 7
1 10
4 9

Total T1 = 26 T2 = 52

Table 2. The Effect of Compiler Option O2

an underlying distribution by ranking the raw data first and
analyzing the rankings.
The Mann-Whitney test is a well known test in inferen-

tial non-parametric statistics [12]. We explain the Mann-
Whitney test using an example. Table 1 shows an experi-
mental design and the resulting execution times for a com-
piler with ten options. The first ten columns correspond
to the ten compiler options and each row expresses a to-
tal compiler setting. The 11th column shows the execution
times using these settings. The last column shows the ranks
of the execution times in ascending order. That is, the fastest
setting is assigned rank 1, the second fastest setting rank 2,
etc.
Suppose we want to decide whether compiler option O2

affects the optimization process or not. The experimental
data is separated into the experimental and control group.
The ranks for these groups are shown in Table 2. The last
row of the table is the sum of the ranks for each group, de-
noted by T1 and T2, respectively. We see that T1 and T2

are different, but are they different enough to conclude that
option O2 has a significant effect?
The Mann-Whitney test is based on the value of T1. In

order to discuss how the test works, assume for simplic-
ity that the two groups both contain N members and that
the option to be analyzed is the only difference between

the groups. Suppose further that option O2 is not effective,
that is, that the null hypothesis is true. Then the assign-
ment of ranks is basically random, resulting from experi-
mental errors in the measurements. Looking at which val-
ues T1 can have, T1 is at least 1 + 2 + · · · + N and at most
(N +1)+ · · ·+(2N). The first value occurs when all mea-
surements in the experimental group happen to be slightly
smaller than the measurements from the control group. The
second value occurs in the opposite case. For an intermedi-
ate value, there are more possibilities to rank the measure-
ments and obtain this value. Hence, the chance that T1 has
such an intermediate value is larger. It has been shown [12]
that if the null hypothesis is true, then T1 has a normal dis-
tribution with mean

µ =
N(2N + 1)

2
(1)

and standard deviation

σ =

√
N2(2N + 1)

12
(2)

Since T1 is normally distributed, we can apply ‘ordinary’
statistics on it.
TheMann-Whitney test does not considerT1 directly but

considers the test statistic z instead, which is given by

z =
T1 − µ

σ
(3)

That is, z measures how far T1 lies from the mean expressed
in units of standard deviation. Then z is normally dis-
tributed also (with mean zero) and this distribution is given
by

Y (z) =
1

σ
√

2π
e−

1

2
z
2

(4)

The normal distribution expresses the chance to measure a
certain value for z. Hence,

∫ ∞

−∞
Y (z)dz = 1

If the measured value of T1 is significantly different from
µ, then we may conclude that the null hypothesis is false
because it is highly unlikely that we measure such a value
by chance. In order to decide whether T1 is significantly
different from µ or, equivalently, whether its corresponding
value z is significantly different from zero, we proceed as
follows. Consider the function P (t) given by

P (t) =

(
1 − 2 ·

∫ t

0

Y (z)dz

)
· 100% (5)

Then P (t) expresses the chance to measure a value for z
such that either z ≥ t or z ≤ −t. A standard criterion [12]



for “significant difference” is when the chance to measure
a certain value of z is less than 5%. This threshold of 5%
is called the critical value of the test. The corresponding
value for t is 1.96, as indicated in the figure. This means
that the chance of measuring a value for z that is larger than
1.96 or smaller than−1.96when the null hypothesis is true,
is less than 5%. This essentially means that the probability
to reject the null hypothesis when it is in fact true, is less
than 5%.
To sum up, the Mann-Whitney test calculates the rank

sum of the experimental group and the corresponding value
for z. Then it calculates the value P (|z|) and checks
whether this is smaller than 5%1. If this is the case, we con-
clude that the experimental group is significantly different
from the control group and the null hypothesis is rejected.
Note that in this test, the control group is only used to derive
ranks for the experimental group.
In the current example,N = 6 and T1 = 26. Hence, the

z value for O2 is computed as follows:

σ =
√

6·6·(12+1)
12 =

√
39

µ = 6·(1+12)
2 = 39

z = (26−39)√
39

= −2.08

By using Equation (5), we determine whether the ob-
served data satisfies the criterion P (|z|) < 5%. Since
z = −2.08, this yields P (| − 2.08|) = 3.75%. Hence O2

satisfies P (|z|) < 5%, and we can conclude that compiler
option O2 has a significant effect. The obtained z value is
negative so that the observed data in group 1 implies shorter
execution times than group 2. This means that the effect of
O2 is positive. This procedure can be applied to each opti-
mization in Table 1. Therefore, we can determine the im-
portant options among the 10 options with 12 experimental
runs.

2.4 Statistical compiler tuning

This section describes our algorithm to determine a com-
piler setting for an application based on the statistical theory
discussed in the previous section.
The algorithm tries to detect compiler options with a sig-

nificant effect. It starts with a factor list which includes all
compiler options, and produces a compiler setting using an
appropriate Orthogonal Array. We use execution times to
obtain the test statistic for each compiler option, and this
tells us which options have a significant effect, and whether
they should be turned on or off. The compiler optionswhose
settings are determined are removed from the factor list, and
the reduced factor list is used to design the next experiment
1Equivalently, we can check whether |z| > 1.96 but the above formu-

lation is more intuitive. There exists a simple algorithm to compute P (|z|)
from z given in [12].

in which a smaller Orthogonal Array can be used. The al-
gorithm starts to explore a large search space in which there
is much variation, and it cuts down the search space every
iteration, obtaining new search spaces with less variation.

• Choose an orthogonal array A with as many columns
as there are options.

• Repeat
– Compile the application with each row fromA as
compiler setting and execute the optimized appli-
cation.

– Compute test statistic z for each compiler option
with equation (3).

– If the test statistic meets P (|z|) < 5%,
∗ If z is negative then the compiler option has
a positive effect, and the option is turned on.

∗ If z is positive then the compiler option has a
negative effect, and the option is turned off.

– Remove the compiler options that have been se-
lected from the factor list and drop the corre-
sponding columns from A.

• Until
– All options are set, or
– No option with a significant effect is detected
anymore, or

– The experimental data has not enough varia-
tion (low standard deviation) to apply the Mann-
Whitney test meaningfully.

• The resulting compiler setting is the setting obtained
by setting all remaining options that have not been se-
lected yet to off.

Please note that the final setting obtained by this algo-
rithm differs slightly from the one described in [10]: in that
paper we take the setting that produces the best result in the
last iteration instead of setting remaining options to off. Al-
though [10] obtains slightly better results than the present
method, we feel that our present choice is more focused on
the power of our statistical selection method, without intro-
ducing option settings which ‘accidentally’ happen to occur
in the last iteration.

3 Experimental Environment

We use the gcc compiler version 3.3.1, and we
use 42 options for our factor list [8], shown in Ta-
ble 3(a). We did not employ a number of options that
optimize floating point operations, like fast-math or



1 defer-pop 2 force-mem
3 force-addr 4 inline-functions
5 optimize-sibling-calls 6 merge-constants
7 strength-reduce 8 thread-jumps
9 cse-follow-jumps 10 cse-skip-blocks
11 rerun-cse-after-loop 12 rerun-loop-opt
13 gcse 14 loop-optimize
15 crossjumping 16 if-conversion
17 if-conversion2 18 delete-null-pointer-checks
19 expensive-optimizations 20 optimize-register-move
21 schedule-insns 22 sched-interblock
23 sched-spec 24 schedule-insns2
25 sched-spec-load 26 sched-spec-load-dangerous
27 caller-saves 28 move-all-movables
29 reduce-all-givs 30 peephole
31 reorder-blocks 32 reorder-functions
33 strict-aliasing 34 align-functions
35 align-labels 36 align-loops
37 align-jumps 38 rename-registers
39 cprop-registers 40 function-sections
41 data-sections 42 unroll-loops

(a) Compiler options

Name Description
(#lines)
164.gzip gzip (GNU zip) is a data compression program.
(4333) gzip uses Lempel-Ziv coding (LZ77) as its compression algorithm.
175.vpr VPR is a placement and routing program for technology-mapped circuit.
(8899)
181.mcf The program is designed for the solution of single-depot vehicle
(1120) scheduling problems occurring in the planning process of public

transportation companies.
197.parser The Link Grammar Parser is a syntactic parser of English.
(6839)
254.gap It implements a language and library designed mostly for
(27523) computing in groups (GAP is an acronym for Groups, Algorithms and

Programming).
255.vortex Vortex is a single-user object-oriented database transaction benchmark.
(31128)
256.bzip2 256.bzip2 is a data compression program.
(2955)

(b) Benchmarks

Table 3. Experimental Framework: Option List and Benchmark Programs

unsafe-math-optimizations since these options
violate IEEE and ISO specifications for mathematical func-
tions. The option delayed-branch is neither present
since one of our target architectures, the P4, does not sup-
port delayed branching. Neither did we include several op-
tions that are marked as ‘experimental’ in the manual.
We use 7 benchmarks from the SPECint2000 benchmark

suite, shown in Table 3(b). We used the train data set as the
input for the benchmarks in order to reduce profiling time.
We use the following target architectures for our experi-

ments: a Pentium 4 2.8 GHz processor, a SPARC Sun Fire
V25 server dual 1.28 GHz processor and a IA64 dual Ita-
nium2 1.296 GHz processor.
We have used the time command to measure execu-

tion times. Execution time can be different when we run
the same executable several times. To smooth out this ex-
perimental fluctuation, we run the same executable code 10
times, and take the average value of these runs. However, if
a run causes the standard deviation of all 10 runs to change
by more than 0.5% of the average value, then this run is
deleted from the experiments, and the overall average is
taken from the remaining runs.
Below, improvements are calculated as follows. First,

any -Ox switch also ‘silently’ turns on some other opti-
mizations than listed in the manual, in particular, register
allocation. We define the Obase setting as the setting re-
sulting from switching on -O and explicitly turning off all
options. Then only the hidden options are active. The im-
provement IP of our new setting Onew42 for an application
P is given by

IP =
TP (Obase) − TP (Onew42)

TP (Obase)
· 100%

where TP (Ox) denotes the execution time of application P

when compiled with compiler setting Ox.
We have used an Orthogonal Array with 42 columns

(corresponding to the 42 compiler options) and 48 rows
(giving us a power of 80%, as discussed in [10]), which
is borrowed from [20].

4 Results

In this section, we show the results we obtained using our
methodology on three platforms when we select compiler
options using train data. Next, we show the improvements
we obtain when we run the resulting optimized program on
reference data.
In Figures 1 through 3 we show the improvements for

-O3 and the setting obtained from the Mann-Whithney test,
denoted by Onew42, for three different platforms. We have
used 7 SPEC2000 benchmarks for the P4 and 5 for the IA64
and SPARC since the two other benchmarks did not com-
pile correctly on these platforms. We have used the train
data to run our methodology and we show improvements
when using train data again. The numbers in brackets af-
ter the benchmark name denote the number of iterations re-
quired to fully run the selection method. In this paper, we
have let the method run until no more option could be se-
lected, usually due to the fact that the measured execution
times from one iteration did not have sufficient variation
to apply the Mann-Whitney test meaningfully. Please note
that this number of iterations can be reduced significantly
by setting the threshold value for this variation higher, as
we have shown in [10], without reducing the improvements
obtained.
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We immediately observe that for the P4 and the SPARC,
significantly better improvements are obtained than -O3.
The situation is different for the IA64 where our method ac-
tually reduces the improvements for bzip2. For the other
benchmarks, the improvements that we found are almost
equal to the improvements obtained by -O3. A possible
explanation for this last observation is that almost all im-
provement comes from correct instruction scheduling for
this EPIC architecture and that little extra improvement can
be found using other options.
In Figures 4 through 6 we show the improvements when

we run our optimized program on the reference data. Since
the benchmarks have several distinct reference data sets,
that should be used together, we show the results when run-
ning the optimized programs on all reference data sets. We
observe that for the P4 and the SPARC, generally better per-
formance is obtained using our new setting. For the IA64,
the improvements we obtain are more or less equal to the
improvements of -O3, much in line with the previous re-
sults. Comparing these figures with the previous ones, we
immediately observe that the performance improvements
are much in par. In fact, for the P4, the improvements for
mcf and parser are actually better than for the train data.
However, for vortex, the situation is reverse. For the
IA64, the improvements for bzip2 for the train data are
also less than for the reference data. Finally, on the SPARC,
bzip2 improvements are slightly better for train data than
for reference data. However, for the vast majority of our
benchmarks, performance improvements for the train data
(which is used to select the compiler options) is more or
less the same as for the reference data.
We conclude that the dependence of the SPECint2000

benchmarks on data input is not as strong as is sometimes
believed. Profile guided compiler tuning using one (rep-
resentative) data input set produces compiler settings that
work well for other data input sets. This result is of im-
portance to other approaches that use profile guided search
to optimize programs or library routines. However, a more
thorough investigation of this dependence is in place, in par-
ticular for high level loop transformations that may exhibit
a stronger dependence. Nevertheless, the results in this pa-
per show that we may be optimistic and that profile guided
compiler searches may need only a limited set of represen-
tative inputs to produce good results for many or even all
inputs.

5 Related Work

Traditional compiler texts [1] do not address the prob-
lem of which optimizations to use. [16] presents a static
list based on his experience. A number of approaches to se-
lect best optimizations have been proposed by searching the
optimization space. Iterative compilation [3, 13] searches

for source level transformations. [17] uses genetic algo-
rithms to find optimal source level transformations. These
approaches, however, seem to require many thousands of
program runs. [15] and [21] use machine learning tech-
niques to find compiler heuristics. [22] discusses an imple-
mentation of iterative compilation in the Intel IA-64 pro-
duction compiler. In contrast to these efforts, our approach
uses statistical analysis to systematically prune the search
space and is focused on compiler switches.
Granston and Holler [9] propose a tool for automatic se-

lection of compiler options, called Dr. Options. This tool
uses information about the application supplied by the user
and a set of tuning rules that have been created by interview-
ing tuning experts and analyzing optimization experiments.
VISTA [26] is an interactive tool to assist the application
programmer in finding optimizations and their phase or-
der. [25] provides a framework for predicting the impact of
loop transformations to assist in selecting the optimal one.
Whitfield and Soffa [24] propose a framework for specify-
ing transformations and an automatic optimizer generator
in order to experiment with transformations. However, this
approach requires much knowledge about the compiler and
does not solve the problem of which transformations to en-
able automatically.
Cooper et. al. [6] propose to use genetic algorithms to

select options using a research compiler paying attention to
both code size and speed. However, they only employ 10
options, in contrast to the present approach which uses 23
factors. It is not immediately clear that a large number of
options will not lead to combinatorial explosion in their ap-
proach. Moreover, their compiler allows them to specify the
order in which these optimizations are applied and the same
optimization may occur several times in an optimization se-
quence. In contrast, we use an existing production compiler
in which this order is fixed as is generally the case for pro-
duction compilers. Hence, the technique from [6] is not
immediately applicable to production compilers. In [2], it
has been shown that the number of profiles required can be
reduced significantly when the structure of the search space
is taken into consideration. The related VISTA system [14]
uses GAs to find sequences of backend transformations us-
ing far less profiles than the original system.
Chow and Wu [5] determine which option to set using

a linear regression model, based on a fractional factorial
design using aliasing [4]. This approach has a number of
drawbacks compared to the present work. First, it is well
known that many aspects of program execution are non-
linear. Hence, it is not clear that such a linear model may
be used and the authors do not give an argument for us-
ing it. First, to define the aliasing structure requires an ini-
tial selection of options which requires knowledge about the
compiler. Second, [5] requires many new experiments to re-
solve ambiguities. In contrast, we propose a simple analysis



to iteratively switch on more and more options, zooming in
from options having a large effect to options having less ef-
fect.
Pinkers et al. [18] use Orthogonal Arrays to calculate the

main effect of a compiler option. Options with a large pos-
itive main effect are switched on and those with a large
negative effect are switched off. There are a number of
drawbacks compared to the present approach. First, the
method in [18] has several parameters that are dependent
on the compiler used. In contrast, our method only uses
well established statistical theory and is therefore indepen-
dent of the compiler. Next, in [18] it is remarked that op-
tions should not interfere and having interfering option as
separate factors yields lower performance. In contrast, our
method seems to be able to cope with this situation. Finally,
our method is robust for small bugs in the compiler: if one
setting to be tested fails to produce executable code, we can
simply adjust the sizes of the populations. In contrast, the
method in [18] collapses in this situation.

6 Conclusion

In this paper, we have used an approach to the problem of
selecting a compiler optimization setting using inferential
non-parametric statistics, in particular, the Mann-Whitney
test first described in [10]. The present paper focuses on
the dependence of the options selected on the input data
used in the iterative search. We have shown that for com-
piler tuning this dependence is weak: settings found using
train data work well for reference data also on three dif-
ferent platforms and seven SPECint2000 benchmarks. This
result suggests that profile guided optimization may use a
limited set of data inputs to produce results that are good
for many other inputs.
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