
Execution and Composition of E-Science Applications
using the WS-Resource Construct

Evangelos Floros and Yannis Cotronis

National and Kapodistrian University of Athens
Dept. of Informatics and Telecommunications
Panepistimiopolis, Athens 15784, GREECE

{floros, cotronis}@di.uoa.gr

Abstract

Service Oriented Architectures are emerging as the
recommended paradigm for developing dispersed e-
science environments. In this paper we analyze the
characteristics and requirements of a common class
of scientific applications, namely Computational Sim-
ulation Models, and define a generic service-oriented
framework for their execution and composition. Finally
we present the work done so far towards the implemen-
tation of such framework based on the WSRF set of
specifications and the Globus Toolkit.

1. Introduction

The current trend in Grid computing is to archi-
tect the basic infrastructure using a Service Oriented
approach [8, 1]. The term Service Oriented Architec-
ture (SOA) refers to systems structured as networks
of loosely coupled services, which communicate asyn-
chronously by exchanging messages [2]. Respectively
Service Oriented Science is the term coined to describe
scientific research enabled by distributed networks of
disparate interoperating services [7]. SOAs appear to
be the natural choice for developing interoperable open
Grid environments. Web Services, the most popular
implementation of SOA architecture, provide a wealth
of standard protocols and tools for building loosely cou-
pled, distributed, cross-domain applications.

The Grid Computing community, having early re-
alized the potential of Web Services, shifted its focus
towards the exploitation of SOA technologies. There-
after, the Web Services Resource Framework (WSRF)
[21] has been introduced with the intention to sup-
port common characteristics of Grid applications. Such

characteristics are the explicit representation and han-
dling of a resource’s state, the explicit manipulation of
resource lifecycle, the support for pull and push event
notification models, and the grouping of resources.
WSRF comprises five specifications which coupled with
WS-Notification [20] and WS-Addressing [19] specifica-
tions render these basic required capabilities. Hence,
WSRF is broadly considered an important step towards
the adoption of Web Services in Grid computing.

By exploiting WSRF’s fundamental capabilities we
can build higher level domain specific frameworks that
will satisfy relevant application requirements. In this
paper we outline such framework in the domain of high-
performance scientific applications, mainly simulation
models, that have specific patterns of execution and
interaction. Our goals are manifold:

• The exploitation of e-science (potentially paral-
lel high-performance) applications within Service
Oriented Architectures (Web Services) using the
capabilities provided by the Web Services Re-
source Framework.

• To enable the composition of applications into
data-based workflows.

• To define a domain-specific Web Services internal
architecture which facilitates the execution, mon-
itoring and life-cycle management of legacy High
Performance Applications (e.g. MPI parallel ap-
plications).

• To provide support for dynamic driven applica-
tions e.g. by facilitating the dynamic evolution of
application workflows based on real-time data.

• To facilitate the sharing of legacy scientific appli-
cations among different, possibly interdisciplinary,

1-4244-0054-6/06/$20.00 ©2006 IEEE

teams and across organizational boundaries. To
facilitate the collaboration of these teams and pro-
mote the establishment of Virtual Labs.

In our previous work [6] we have focused on Web Ser-
vice based solutions for the execution and composition
of Simulation Models following a Provides/Uses Quan-
tities approach. In this former work we utilized the now
obsolete Open Grid Services Infrastructure (OGSI) [17]
specification to describe open interfaces for mesh-based
parallel MPI [14] applications. Grid Services wrapped
around legacy MPI applications and using Service Data
Elements, programmers declared Data Quantities that
the application provided and required for execution.
Meanwhile, OGSI was criticized by the Web Service
purists as being too object-oriented, overloaded and
incompatible with rest Web Services tooling [4]. This
criticism led to the re-factoring of OGSI and the intro-
duction of WSRF. In this paper we have accordingly
redesigned our framework, to be inline with the recent
developments, and we have also further abstracted the
target application model in order to support a poten-
tially broader class of applications.

The rest of the paper is organized as follows: Setting
out with Section 2 we outline the class of applications
that our framework aims to support. The details of the
framework are presented in Section 3 and an implemen-
tation strategy is analyzed in Section 4. In Section 5 we
present related work in the area of Web Service-enabled
e-Science. The paper is summarized in Section 6 where
we also present our plans for future work.

2. Defining the Application Domain

In this section we identify the basic characteristics
of the target application domain, and derive a primary
list of requirements that we want to satisfy. Based on
this requirements we will move on to the architectural
design of the framework.

2.1. Application Characteristics

Our primary goal is to expose Computational Sim-
ulation Models through Web Services. Such models
(e.g Meteorological, Hydrological, Pollution, Fire Prop-
agation) are usually developed as isolated MPI appli-
cations, typically applying the SPMD programming
paradigm. These applications exhibit specific patterns
of execution with the following characteristics:

1. They read a set of input data, perform some com-
putation and produce a set of output data.

2. Data have the form of persistent ”flat” files. By
flat we don’t imply lack of structure. On the con-
trary this files have well known standard format
which can be made publicly available in the form
of meta-information (e.g MPI Derived Datatypes).

3. Computation is performed in discrete time steps.
In each timestep a new set of output files is pro-
duced.

4. Applications are developed as autonomous, self-
contained programs. They comprise the legacy
applications of a research team, which they use
as stand-alone programs and also want to expose
through open Web Service interfaces.

5. They are executed as long lived jobs. Their exe-
cution may take arbitrary amount time. Typically
such applications may run for days or even weeks.

6. They don’t require any interactivity with the users.
In most cases users start the applications and wait
for the results to be produced.

Apparently, the described application model is gen-
eral enough to incorporate also other type of applica-
tions that display similar execution patterns. Typi-
cally, these applications consume data from an initial
set of input files, execute and produce simulation re-
sults in the form of output flat-files.

2.2. Workflow Composition

Simulation models most of the times can benefit
from their interoperation (for instance a Hydrologi-
cal model can interact with a Meteorological model)
to produce more accurate results. The composition of
these applications is not a straightforward process since
source codes are developed by separate teams which are
difficult or unwilling to cooperate. In principle work-
flows can be constructed by connecting the output files
of one application with the input files of the other appli-
cation. The application composition semantics define
how applications are composed and orchestrated into
data workflows, and how the workflows are executed.

Our framework adopts a straightforward
Application-Data-Application (ADA) pattern. Con-
sider for example the simple workflow in Fig. 1.
Application A executes and produces output file D.
D has been declared to be input for application B,
thus when it becomes available application B can
start executing. As mentioned the execution of A is
not one-shot but typically A produces output D in
continuous time steps. Thus application B has to be
aware of the availability of Dt where 0≤t≤T and T

Figure 1. The ADA Composition Pattern

being the time that application A terminates. Obvi-
ously this scheme can be further extended for more
than two applications and for 1-to-many or many-to-1
dependencies between files and applications, giving
the ability to compose arbitrary graphs.

3. Framework Design

One of the fundamental ideas introduced by WSRF
is the notion of the WS-Resource. A WS-Resource is
the implicit coupling (usually referenced as implied re-
source pattern) of a Web Service with a Grid Resource
[16]. Technically it defines the binding of a Web Ser-
vice portType with a specific XML document (Resource
Properties document), which contains state informa-
tion for the resource managed by this service. Each
WS-Resource exposes a set of operations (comprising
the portType of WS-Resource) and state information
(known as Resource Properties of the WS-Resource).
In practice by utilizing the WS-Resource approach one
can expose Resource state from Web Services in a stan-
dard way and clients can retrieve and optionally set
state information through standard interfaces. Every
WS-Resource is identified by an End-point Reference
(EPR) defined by the WS-Addressing specification.

Our proposed framework is built around WS-
Resource constructs. WS-Resources are used to wrap
around the two basic components of our architecture,
namely Applications and Files. Thus we define two
respective classes of WS-Resources: Application WS-
Resources and File WS-Resources.

3.1. Application WS-Resources

An Application WS-Resource abstracts a specific ap-
plication, exposing its state and implementing basic
functionality for the execution and handling of the ap-
plication. In principle, we acknowledge that a service
implements a single core operation: the execution of
the application. This simplifies significantly the way a
given service is perceived and handled by a client. In

Figure 2. Logical view of Application and File
WS-Resources

practice we define that the interface of the Application
WS-Resource exposes the following operations:

run() Executes the application

kill() Causes the application to terminate prema-
turely

pause() Causes the application to pause execution.
The semantics of this operation are application de-
pendent. Usually an application that executes in a
separate process cannot be suspended by another
application. In this case pause() would mean that
the application will complete its current step of
execution and should not proceed to the next step
before the service explicitly orders to do so.

continue() Resumes the execution of an application
that is in the READY state (see below). Typically
the operation will be invoked in order to start the
next processing step after all input data have been
prepared for the application.

And the following Resource Properties:

AppID A (potentially Globally Unique) Identifier of
the Application.

Name Abstract name of the application.

RunningState Execution state of the application
(see below).

ExecutionParameters A set of name/value pairs de-
noting the optional and mandatory parameters
that are passed to the application upon execution.

InputData List of files (EPRs to File WS-Resources)
required for input.

Figure 3. Running states of an Application
WS-Resource

OutputData List of files (EPRs to File WS Re-
sources) produced as output.

Description Informal/freetext description of the ap-
plication

CurrentStep Current timestep of execution.

Within our framework an application may exist in
one of the following states (see state transition diagram
in Fig. 3):

INIT - The service is initializing (e.g. preparing the
initial set of input files) and the application is not
yet available to execute

READY - The service completed initialization and
the applications is ready for execution or, the ap-
plication has finished the execution of the current
step and is ready to proceed with the next step by
consuming the next set of input files.

RUNNING - The application is being executed

DONESTEP - The application has completed the
current step of execution and the service is initial-
izing the next step of processing (e.g. preparing
the next set of input data)

ABORTED - The application was terminated prema-
turely either by the client or because of an internal
runtime error

COMPLETED - The application has successfully
completed all the timesteps of computation and
has terminated.

As it can be seen the Application WS-Resource ex-
poses virtually only one operation, namely run(). For-
mally this operation takes the application from the
READY state, executes it (conveys it into RUNNING
state) and implicitly guides it into the COMPLETED
state when the computation finishes. Other operations
are defined to provide elementary lifecycle management
functionality (like kill() or pause() operations). Moni-
toring and remote administration capabilities are pro-
vided through the Resource Properties.

3.2. File WS-Resources and Data Transfor-
mation Services

A File WS-Resource is an abstraction of a flat file
that has a well known publicly described structure, is
addressed by a URL, can be accessed by a well known
protocol (e.g. GridFTP) and is embedded with a set of
meta-information. The interface of a File WS-Resource
comprises the following operations:

get() Transfer a copy of all or part of the file, from
one network location to another.

delete() Delete the file and discard the WS-Resource

We also define the following Resource Properties:

FileID A (potentially Globally Unique) Identifier of
the File.

Name Abstract, human-readable, name of the file

URL Network wide pointer to the location of the file.
The URL also declares the protocol that can be
used to access the file. Typically for Grid envi-
ronments this protocol is GridFTP (denoted as
gsiftp:// at the beginning of the URL string), but
other protocols can also be used (e.g. http, ftp
etc)

Format Class of files that this file belongs to (e.g.
HDF-EOS, Grib, DES etc)

Description Freetext description of the file contents.

fStruct Formal description of the file structure. XML
Schema can be used for this reason.

File WS-Resources have been deliberately designed
simple in terms of provided functionality. For advanced
data handling capabilities we introduce the notion of
Data Transformation Services (DTS). Data Transfor-
mation Services are framework-defined and possibly
user-extended portTypes, that implement enhanced file
handling capabilities. Example of such capability is

the transformation of one file type to another or the
remeshing of a file in order to compose two different
mesh-based simulation models. Using DTS we can also
implement the Quantify logic that we have presented
in our previous work. GetQuantity and SetQuantity
operations can be implemented in a DTS to facilitate
access to derived data of a File WS-Resource.

3.3. Notifications and Workflow Composi-
tion

Notifications are an integral part of the framework.
They provide the basic mechanism that enables appli-
cations to coordinate and workflows to execute. We fol-
low the topic-based publish/subscribe pattern defined
by the WS-Notification [20] family of standards, to im-
plement the dispatching of notifications regarding the
changes in the execution state of an application and
the availability of input data.

Consider for example the simple workflow of Fig. 1;
application B is interested to know when Dt is avail-
able, so it registers its interest for this event. Whenever
Dt becomes available a notification is sent to B trig-
gering the execution of this application with input file
Dt.

We identify three application composition schemes
we may follow, based on the notification and service
instantiation strategies that can be applied:

• All notifications are handled via a central
coordinator (Fig. 4a). The coordinator is re-
sponsible for instantiating all services in the work-
flow. Upon instantiation of WS-Resource A the
coordinator registers its interest to receive notifi-
cations about the availability of Dt. Application A
sends a notification to the coordinator announcing
that it just finished the current step of execution
and that Dt is available. The Coordinator notifies
B about the event in order to retrieve the file and
execute its step.

• Application-to-application notifications
(Fig. 4b). WS-Resource B registers to WS-
Resource A its interest to receive notifications
about the availability of Dt in every time step
t. When A finishes the current step of execution
it checks who is interested about the results and
sends notifications to service B.

• File-to-application notifications (Fig. 4c).
WS-Resource B contacts File WS-Resource D re-
questing to be notified whenever a new snapshot of
Dt is available. Whenever a new file in the series
of Dt is available, D sends a notification to B.

Figure 4. The three application composition
schemes

We believe that all of the above approaches are of
value and should be supported in an integrated frame-
work, providing the required versatility and flexibility
to the programmer.

3.4. Other Services

As part of our architecture, albeit not in the form of
WS-Resources but rather as regular Web Services, we
identify the following base services, which are essential
for the development of a sound Grid infrastructure:

Information Services. Programmers can utilize
UDDI [15] compliant registries, to store and
discover information about WS-Resources, either
Applications or Files, as they would do for any
regular Web Service. Moreover, being in the
WSRF context, we have the ability to index
services according to their Resource Properties.
Within our framework, clients can search for ser-
vices that expose particular RPs or for RPs with

specific value, obtain the EPRs to the relevant
WS-Resources and use their functionality.

Dynamic binding can also be supported. Clients
can search for models that are already executing,
bind and retrieve current or past results. Files can
also be queried and retrieved to be used either for
initial input data or in order to reconstruct the
time line of the simulation execution. File WS-
Resources give also the ability to build libraries of
simulation results. In many situations a user may
not need to execute a new simulation rather search
the registry for the desired data and retrieve them.

Security Services. As with any other Grid frame-
work, security is essential for the establishment of
a trusted execution environment. Standard Grid
security mechanisms (like X.509v3 digital certifi-
cates) are needed to protect the integrity of com-
munication and data. Access control has also to
be enforced in terms of who owns a WS-Resource
and who can exploit it.

4. Implementation Details

In this section we provide a brief insight to the im-
plementation details of the framework starting with the
target Web Services platform.

4.1. Web Services Platform

The dilemma for choosing a target platform for de-
veloping the framework is actually non-existent, since
currently there are only a few implementations of the
WSRF specifications. Thus the Globus Toolkit 4 [12] is
the natural choice, since not only it is the de-facto plat-
form for developing Grid infrastructures, but also is one
of the few software stacks that provide a Web Services
container and APIs (comprising the WS-Core compo-
nent of GT4) that support WSRF, WS-Notification
and WS-Addressing. Moreover GT4 renders the re-
quired infrastructure services like Meta Directory Ser-
vices (MDS4) for indexing WS-Resources, Security and
Data Management Services (GridFTP, Data Replica-
tion etc).

4.2. Internal Architecture

Although much time and effort has been invested
in defining standards for the External Architecture of
Web Services, namely the protocols and vocabulary
for service-to-service interactions, little has been done
regarding the important issue of the Internal Archi-
tecture, that is, how the service interacts with the

wrapped application. One reason is that such internal
architectures are application specific and no universal
solution can be applied. Global Grid Forum (GGF),
the leading organization for Grid standardization, does
not currently have any initiative working towards this
direction [13]. Since the process of defining the Open
Grid Services Architecture (OGSA) [9] is progressing,
we believe that among the future goals of the standard-
ization process should be the study of such domain-
specific internal architectures in Grid SOA-based envi-
ronments.

In the context of our framework we need a standard
way to facilitate the interaction between the Web Ser-
vice and the simulation model that it executes. We
have decided to follow the paradigm of Common Gate-
way Interface (CGI) [3] standard since it provides a
solution to a similar problem. CGI defines how ex-
ternal gateway programs can interface with informa-
tion servers such as HTTP servers. Similarly, we exe-
cute standard pre-compiled, binary applications, that
interact with their environment through the three stan-
dard streams (stdin, stdout and stderr), and also have
access to the operating system environment variables.
Applications are deployed and executed from a spe-
cific directory known to the respective Application WS-
Resource, and run as regular OS processes printing
their output to the stdout stream.

The application-to-service interaction is achieved us-
ing a predefined set of short XML formatted messages.
The service constantly scans the messages printed by
the application to the stdout and stderr stream, looking
for encoded XML output. When it finds such output
it parses the contents to extract the relevant informa-
tion sent by the application. Reversely, the service-
to-application interaction is accomplished through the
stdin stream of the application. The service instructs
the application to terminate, pause or continue execu-
tion, using a simple vocabulary.

We are implementing such an internal architecture
for MPI Simulation Models using the MPI Profiling In-
terface and Error Handlers [14]. More specifically we
are developing an MPI library which intercepts signifi-
cant function calls in order to convey important events
to the service (e.g. errors, barriers that denote check-
points etc).

4.3. Sample Workflow Execution

Below we describe a typical scenario for executing
a workflow of two simulation models, following the
ADA composition pattern and the central coordina-
tor scheme. According to the example, there are two
Application WS-Resources, namely ModA and ModB,

Figure 5. Workflow Execution Example

which expose two respective simulation models. ModB
requires as input for execution the results of ModA.
A coordinator application is responsible for the execu-
tion of the two models and to handle the details of their
interaction. We assume that the EPRs for the input
File WS-Resources of ModA are prior known to the
coordinator and that we apply a Factory pattern for
the instantiation of all new WS-Resources. The whole
process comprises roughly the following steps:

1. The coordinator contacts the Factory services for
Models A and B to create an instance of the re-
spective WS-Resources. The coordinator regis-
ters its interest to be notified whenever there is a
change in the execution state of ModA or ModB.

2. The coordinator instantiates the InputFiles RP
of Application A. ModA moves to READY state.
ModB remains in INIT state since it has to wait
for the results from AppA.

3. ModA is executed (the run() operation is invoked
by the coordinator) and the value of the Run-
ningState RP is set to RUNNING.

4. ModA completes a step and contacts the File Fac-
tory to create the File WS-Resources that corre-
spond to the output files of the simulation. The
EPRs of the File WS-Resources are stored in
ModA’s OutputFile list. Then ModA moves to
DONESTEP state which triggers the sending of a
notification to the coordinator.

5. The coordinator retrieves the EPR of the output
files, by accessing the OutputFiles RP of ModA,
and uses them to populate the InputFiles RP of
ModB. Then it invokes the run() operation since
ModB has now moved into READY state.

6. ModB resolves the WS-Resource listed in the In-
putFiles RP and calls the get() operation of the
File WS-Resources. The operation transfers the
files in the execution context of ModB.

7. ModB runs and consumes the latest results of
ModA. When it finishes, ModB moves to DON-
ESTEP state.

The execution circle can be repeated arbitrarily with
the coordinator refreshing the input files of ModA. In
every step of the execution a client may invoke the
operations of the services, or investigate the Resource-
Properties of the resources to acquire insight about the
state of the workflow execution or the execution of a
specific application.

5. Related Work

The field of Service-Oriented Grids in general, and
the exploitation of Web Services in e-Science applica-
tions in particular, are attracting enormous interest
[10]. GGF has various Working Groups working on the
areas of architectures and standards. Among them,
work done by the Basic Execution Services (OGSA-
BES-WG) and Application Content Services (ACS-
WG) focus on the packaging and execution of arbi-
trary applications. The Globus Toolkit and the OMII
Software distributions [18] provide general purpose, in-
frastructure web services, which can be used to build
SOA Grids.

Numerous R&D projects are building SOA Grid en-
vironments and tools. Among the most influential is
gLite [11] which is developed in the context of EGEE
(Enabling Grids for E-sciencE) and LCG (LHC Com-
puting Grid). gLite is a rich-featured software bundle,
that exploits Web Services to provide Grid Services for
Job Execution, Data management etc. Notable also
is the NSF funded LEAD project [5], which focuses
on tools for execution of scientific workflows, the de-
velopment of scientific portals and web service-based
e-science environments in general.

The above efforts are focused on the development
of general-purpose Service-Oriented standards, infras-
tructure and platforms that can handle the execution
and monitoring of arbitrary types of applications. Our
work builds upon these general-purpose infrastructure
tools and proposes a 1-1 mapping of customized WSRF
Web Services that explicitly manage specific applica-
tions. This way we believe that we can better expose
the particular semantics of an application and thus fa-
cilitate its exploitation by third users as self-contained
Grid resources. Inline with this we advocate the devel-
opment of relevant domain-specific standards that will

standardize the interfaces and the expected semantics
of such Web Services.

6. Conclusions and Future Work

In this paper, we have used the WS-Resource notion
of WSRF to outline an e-Science Grid framework, that
facilitates the execution and composition of Computa-
tional Simulation Models. We identified two basic WS-
Resources, namely Applications and Files, which are
used respectively to abstract legacy simulation models
and flat files with simulation results. Finally, we have
demonstrated how WS-Resources can be composed in
arbitrary scientific workflows.

We have followed a different approach than that
for instance of the Job Submission services of gLite or
OMII. In our framework the owner of the application is
responsible for the details of the execution environment
and the computing resources that will be dedicated to
run the application. The service is provided as an ac-
cess point to the application itself and not to the ap-
plication execution environment (e.g. Condor, Globus,
MPI etc), although we can apply such extensions to
the architecture.

Our basic philosophy is that Web Services provide
only one fundamental operation, namely run(), which
initiates the execution of the model. We also advocate
the significance of data, promoting them as first order
Services.

We are currently progressing with the implementa-
tion of the framework. We have worked on a proof of
concept that has helped us in the fine tuning of the
theoretical base of the framework. In the imminent fu-
ture we will continue with the development, focusing
on the domain specific Data Transformation Services,
the details of security and information services, as well
as on issues like WS-Resource persistency and frame-
work administration. One of our first priorities also is
to finalize the Internal Web Services Architecture in the
domain of MPI Simulation Models, and the formaliza-
tion of an XML syntax for service-to-application and
application-to-service interactions. Finally, since we fo-
cus on Simulation Model composition, we are currently
extending the Data Services in order to support mesh
quantities, mesh data conversions etc, aiming to pro-
vide a comprehensive Service-Oriented programming
framework for simulation models coupling.

References

[1] M. Atkinson,et al. Web service grids: An evolutionary
approach. Concurrency and Computation: Practice

and Experience, Wiley, Volume 17, Issue 2-4:377 – 389,
Feb 2005.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard. Web
Services Architecture. Working draft, W3C,
http://www.w3.org/TR/ws-arch, 2004.

[3] The Common Gateway Interface (CGI). [Online].
http://hoohoo.ncsa.uiuc.edu/cgi/.

[4] K. Czajkowski, D. Ferguson, I. Foster, J. Frey,
S. Graham, T. Maguire, D. Snelling, and S. Tuecke.
From open grid services infrastructure to WSResource
framework: Refactoring & evolution. Technical report,
Global Grid Forum, February 2004.

[5] K. Droegemeier,et al. Linked environments for at-
mospheric discovery (LEAD): A cyberinfrastructure
for mesoscale meteorology research and education. In
Info. Processing Systems for Meteorology, Oceanogra-
phy, and Hydrology. Amer. Meteorol. Soc., 2004.

[6] E. Floros and Y. Cotronis. Towards a grid services
based framework for the virtualization, execution and
composition of MPI applications. Parallel Processing
Letters, World Scientific, Vol. 15(1&2), March/June
2005.

[7] I. Foster. Service-oriented science. Science, vol 308,
May 2005.

[8] I. Foster, C. Kesselman, M. Nick, and S. Tuecke. The
physiology of the grid: An open grid services archi-
tecture for distributed systems integration. Technical
report, Open Grid Service Infrastructure WG, Global
Grid Forum, June 2002.

[9] I. Foster, et al. The Open Grid Service Architec-
ture v1.0. GGF Document Series, GGF, July 2004.
GFD.30.

[10] D. Gannon, et al. Building grid portal applications
from a web service component architecture. In Proc.
of the IEEE, volume Vol. 93, No. 3, March 2005.

[11] gLite: Lightweight Middleware for Grid Computing.
http://glite.web.cern.ch/glite/.

[12] Globus Toolkit 4. http://www.globus.org/toolkit.
[13] H. Kishimoto and J. Treadwell. Defining the grid: A

roadmap for ogsa standards. GGF Document Series
GFD-I.053, GGF, September 2005.

[14] MPI: A Message Passing Interface Standard. Tech-
nical report, Message Passing Interface Forum, June
1995.

[15] OASIS. Universal Description Discovery and Integra-
tion (UDDI). [Online]. http://www.uddi.org/.

[16] OASIS. Web services resource specification (ws-
resource), October 2005.

[17] Open Grid Service Infrastructure Primer. GGF Doc-
ument Series GFD-I.031, GGF, August 2004.

[18] Open Middleware Infrastructure Institute (OMII).
[Online]. http://www.omii.ac.uk.

[19] WS-Addressing. [Online]. http://www-106.ibm.com/
developerworks/library/specification/ws-add.

[20] WS-Notification. [Online]. http://www-106.ibm.com/
developerworks/library/specification/ws-notification.

[21] Web Services Resource Framework (WSRF). [On-
line]. http://www.oasis-open.org/committees/
tc home.php?wgabbrev=wsrf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

