
Effecting Parallel Graph Eigensolvers Through
Library Composition

Alex Breuer, Peter Gottschling, Douglas Gregor, Andrew Lumsdaine
Open Systems Laboratory

Indiana University
Bloomington, IN 47405

{abreuer,pgottsch,dgregor,lums}@osl.iu.edu

Abstract— Many interesting problems in graph theory
can be reduced to solving an eigenproblem of the adjacency
matrix or Laplacian of a graph. Given the availability of
high-quality linear algebra and graph libraries, one might
expect that one could merely use a graph data structure
within a eigensolver. However, conventional libraries are
rigidly constructed, requiring conversion to library-specific
data structures or using heavyweight abstraction methods
that prevent efficient composition.

The Generic Programming methodology addresses the
problems of reusability and composability by careful fac-
torization of a domain into efficient library abstractions.
We describe the composition process that makes the data
structures from a library supporting one domain usable
with the algorithms of another library for a disjoint
domain without conversion or heavyweight abstractions. To
illustrate the process, we compose two separately-developed
libraries, one for solving eigenproblems sequentially and
the other for solving graph problems in parallel, effecting
an efficient, scalable parallel graph eigensolver.

Keywords: Eigenvalues, Parallel Graph Libraries,
Generic Programming

I. INTRODUCTION

Many problems in graph theory can be reduced to
solving an eigenproblem of the adjacency matrix or
the Laplacian of a graph. These features are useful in
applications from information retrieval to engineering
analysis. For example, eigenvalues and eigenvectors can
be used to detect disconnected or nearly disconnected
components in a graph [3], and for vertex clustering [9],
[12]. Eigenvalues also have applications in estimating
solutions to intractable problems, such as max-cut [10]
and detecting large cliques in graphs [1].

Ideally, we would simply compute the eigenvalues of
a graph using a container from a graph library and an
algorithm from an eigensolver library. In this way, we
would sacrifice nothing; we would have both the eigen-
solver and graph routines available for use on the same
container. Unfortunately, this solution is not possible
with conventional libraries: though there exist efficient
algorithms for solving sparse eigenproblems for matrices
and there exist scalable distributed graph libraries, com-

posing a linear algebra eigensolver with graph containers
is not possible in general. Conventional linear algebra
libraries cannot operate on graph data types. Likewise,
data stored in a linear algebra matrix container cannot
be manipulated by graph library routines. There is no
inherent reason why we cannot “have it all,” that is,
use both linear algebra library routines and graph library
routines efficiently on the same container. In fact, sparse
matrix representations from linear algebra and sparse
graph representations are similar, but implementation
details prevent ready exploitation of this duality. Graph
libraries and matrix libraries use different data types, and
despite structural similarities which may exist, explicit
conversion and copying between graph containers and
matrix containers becomes necessary. Such conversion
introduces performance penalties and storage problems;
some graphs are sufficiently large that the requirements
of two simultaneous copies of data will exceed memory
resources. Conversion and copying is even more difficult
if the data is distributed throughout a cluster. These
additional costs may be prohibitive when industrial-
strength computation is required.

The Generic Programming paradigm provides a so-
lution to this problem, allowing graph containers to be
treated as a matrix within a linear algebra library. At
the heart of the Generic Programming paradigm is the
separation of data structures (containers) and algorithms.
Algorithms assume a certain interface with a data struc-
ture, which specifies syntactic and semantic conditions.
The set of these requirements is called a concept. An
algorithm requiring concept C can be freely associated
with any container implementing C. Figure 1 illustrates
the way in which generic libraries interface with different
kinds of containers, and contrasts that interface with
conventional libraries. We can use a graph container in a
generic linear algebra routine by providing a mapping to
the concepts required by the linear algebra routine. Since
sparse graph and sparse matrix representations have sim-
ilar structure, it is possible to perform matrix operations
on a graph container with the same complexity.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Conventional
Eigensolver
Library

Linear
Algebra
Container

Generic
Eigensolver
Library

Concept Adapters

Graph
Container Data

DataGraph
Container

Data
Conversion

Fig. 1. Conventional libraries are hard-wired to a specific container,
but generic libraries can interface with different kinds of containers
through concepts.

Generic solutions need not be costly; if data structures
are carefully matched with algorithms which exploit their
complexity guarantees, the resulting implementation will
not add any complexity to the algorithm. For example, an
algorithm which performs n2 random-accesses on a data
structure will not have any additional complexity added
when paired with any data structure which provides
random access in constant time. Furthermore, when all
genericity is evaluated at compile time, then there is no
run-time overhead from our generic approach [8], [15].

Many generic libraries are available today, in partic-
ular we are concerned with the Parallel Boost Graph
Library (Parallel BGL) [4], and the Iterative Eigensolver
Template Library (IETL) [17], both implemented in C++
with templates. The IETL has several generic implemen-
tations of eigenvalue/eigenvector algorithms for sparse
matrices, including the Lanczos method [2]. The Parallel
BGL has distributed graph containers and tools for
developing distributed graph applications. Though IETL
and the Parallel BGL both are written in the generic style
with templates, they were developed independently and
with no collaboration. The Parallel BGL stores graphs
distributed among processors, but the IETL contains
sequential algorithms. Despite this, the generic style
makes the task of composing the two libraries a matter of
implementing matrix operators on graphs, and providing
the syntactic adapters. No alteration of either library is
necessary. And, since the Parallel BGL is a distributed
graph library, the resulting eigensolver is distributed.

To this end, we introduce the reader to concepts,
the means for reasoning about syntactic and semantic
requirements of algorithms, and the methodology of
Generic Programming. We discuss the concepts required
by the IETL. We introduce containers from the Parallel

double sum(double ∗array, int n) {
double s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}
float sum(node ∗first, node ∗last) {

float s = 0;
while (first != last) {

s = s + first → data;
first = first → next;

}
return s;

}
Fig. 2. Two concrete implementations of the abstract sum() algorithm,
which sum double values in an array or float values in a linked list,
respectively.

BGL to model IETL concepts, and formulate linear
algebra equivalent operations using those containers.
Finally, we present performance results to illustrate the
efficiency and scalability of our solution.

II. GENERIC PROGRAMMING

Generic Programming is a methodology for develop-
ing highly reusable, efficient software libraries. [11] At
its core is a form of Platonic idealism, wherein the ab-
stract form of an algorithm is held distinct from the many
concrete implementations of that algorithm that appear as
subroutines written in various programming languages.
Generic programming seeks to discover the most abstract
implementation of a given algorithm that is free from
dependencies on particular data structures but can be
translated into an efficient, concrete implementation.

A. Lifting
The Generic Programming process involves examin-

ing several concrete implementations of an algorithm,
determining where similarities in the implementations
exist, and then lifting the implementations to a more ab-
stract formulation. Figure 2 illustrates two C++ functions
that sum the values in a double array and a linked list
storing floats, respectively. Although the two functions
are rather different, the core algorithm is the same: they
step through the sequence and accumulate a result by
applying the + operator to each value in the sequence.

We can lift the implementations of Figure 2 into a
single, more abstract implementation by introducing an
abstraction for the underlying sequence. As in the C++
Standard Template Library [16], we adopt the iterator
abstraction to permit enumeration of the elements in a se-
quence without knowing how those elements are stored.
The resulting generic implementation, written as a C++
function template, is shown in Figure 3. This generic

template<typename Iterator, typename T>
T sum(Iterator first, Iterator last, T s) {

while (first != last) {
s = s + ∗first;
++first;

}
return s;

}
Fig. 3. A generic implementation of the sum() algorithm.

implementation can be automatically instantiated by the
C++ compiler to produce efficient sum() implementations
for arrays of doubles, linked lists of floats, or any other
data structure that can be traversed with an iterator.

B. Concepts

Generic algorithms such as sum() in Figure 3 are
defined in terms of properties of types, not in terms of
any particular type. The sum() algorithm can be applied
to all types that meet certain requirements. For instance,
a type used as the Iterator in sum() must support the
operations ++, ∗, and !=.

We collect all of the requirements placed on a
type—including syntactic, semantic, and complexity
requirements—into a concept. For instance, the InputIter-
ator concept [16] requires the aforementioned operations
++, ∗, != and specifies both their semantics (e.g., ++ steps
to the next element) and their complexity (e.g., ++ must
require only amortized constant time).

Concepts are used to express the requirements of a
generic implementation. For instance, we say that any
type used as the Iterator type parameter of sum() must
meet the requirements of the InputIterator concept.

C. Models

When a type T meets the requirements of a concept C,
we say that the type T is a model of C or, equivalently,
T models C. Thus, a C++ pointer into an array of double
values is a model of the InputIterator concept. Similarly,
one can create a type list iterator that iterates through the
elements in a linked list and models InputIterator.

Generic implementations are reusable when the con-
cepts they require are modeled by types unknown when
the generic implementation was written. For instance,
the Boost Graph Library (BGL) [14] contains a generic
algorithm dijkstra shortest paths() that can be used with
any model of the IncidenceGraph concept. The graph types
from the LEDA graph library [6] can model the Incidence-
Graph concept using a set of lightweight, non-intrusive
adapters, allowing LEDA graph types to be used with
BGL algorithms without any syntactic or performance
overhead. Attempting to compose the libraries in the
opposite direction, e.g., to use a BGL data structure with

Expression Meaning
ietl::generate(x,g) fills the vector x with numbers

from the generator g
std::swap(x,y) swaps the two vectors x and y
ietl::dot(x,y) calculates the scalar product of

x and y
ietl::two norm(x) Euclidean norm of x
ietl::copy(x,y) a deep copy y = x
y = x a (possibly shallow) copy
x ∗= t in-place scalar-vector

multiplication
x /= t in-place scalar-vector division
x += y in-place vector-vector addition
x += t∗y in-place scaled vector-vector

addition
x −= t∗y in-place scaled vector-vector

subtraction
x = t∗y scalar-vector multiplication

Fig. 4. The IETL Vector concept

a LEDA algorithm, would require one to copy the BGL
graph into a LEDA graph.

III. THE ITERATIVE EIGENSOLVER TEMPLATE
LIBRARY

The IETL is a C++ library of algorithms for comput-
ing eigenvalues and eigenvectors of matrices. Therefore,
IETL expects the containers on which it operates to
behave like matrices. The IETL is written in a generic
style; it is not bound to operating on only one kind of
matrix container. IETL only requires that data containers
model its necessary concepts.

Each generic algorithm has its own set of required
concepts; since we are working with IETL, we are
concerned with particular concepts it specifies. These
concepts allow us to determine what additional adapters,
if any, are needed to use Parallel BGL containers directly
in IETL algorithms.

A. Vector
The IETL Vector concept, shown in Figure 4, repre-

sents a vector in linear algebra and contains primarily
vector-vector operations, such as vector addition and
the dot product. This concept captures all of the vector
functionality required by IETL algorithms; any vector
which implements this required functionality models the
IETL Vector concept, and may be used in any IETL
algorithm. The IETL Vector concept also contains an
associated type describing the scalar type over which
the vector is defined.

B. Matrix

The IETL Matrix concept, described in Figure 5, re-
quires only a single operation: matrix-vector multipli-
cation. Other operations common to matrix containers,

Expression Meaning
ietl::mult(a,x,y) calculates the matrix-vector

product y=a∗x

Fig. 5. The IETL Matrix concept

such as mutation and transformation of the matrix itself,
are not provided for two reasons. Eigenvalue compu-
tations which transform the input matrix tend to make
sparse matrices dense. Additionally, matrix mutation
is prohibitively expensive on many compressed sparse
matrix formats, which would not be able to model the
Matrix concept if it included mutation. Since it requires
only matrix-vector multiplication, any matrix-like type
with a corresponding vector-like type can model the
IETL Matrix concept. Typically it is assumed that all
results of matrix vector products lie in the same space
as the multiplied vector. Some IETL algorithm allow to
operate on a subspace of the vector space representable
by vector data type. To assure that no vector lies outside
the considered vector space, the matrix-vector product is
projected into the vector space with project.

C. VectorSpace

The IETL VectorSpace concept, shown in Figure 6, ties
together vectors and matrices that may be combined,
e.g., through matrix-vector multiplication. A model of
the VectorSpace concept also serves as a factory for
vectors contained in its vector space. With the Vec-
torSpace serving as a factory, algorithms do not need any
information about how to create a vector: the VectorSpace
can synthesize new vectors within the same vector space
as the Matrix on which it operates. IETL VectorSpace
objects must have a scalar type associated with them, and
can only produce vectors capable of storing values of that
scalar type. It is necessary to choose a VectorSpace whose
scalar type space properly contains all possible scalar
types which may be generated in one’s calculations.

D. The Generic Power Method in IETL
For IETL, the Matrix, Vector and VectorSpace concepts

allow for eigensolvers which are not bound to any
specific representations; any input containers may be
used so long as they model the IETL concepts. Thus,
IETL algorithms never require alteration to allow a new
container. To illustrate the use of concepts, consider
Figure 7, the power method for calculating the principle
eigenvector of a matrix m given a random start vector
vec1. The iter object controls the iteration.

There is no type associated with the vectors used in the
IETL power method. They could lie in a real or complex
vector space, but the algorithm does not depend on the
vector spaces which contain the vectors and matrix. They
could be represented in a C array, a linked list, an STL
vector or a FORTRAN array, provided that the IETL

Expression Meaning
vector type the type of vectors in the

vector space
scalar type the type of scalars in the

vector space
magnitude type scalar type for storing norms
size type integral type to store the

dimension of the vector
space

new vector(vs) creates a new vector in the
vector space

vec dimension(vs) dimension of the vector
space

project(x,vs) projects x into the vector
space.

Fig. 6. The IETL VectorSpace concept

do {
mult(m,vec1,vec2);
lambda = dot(vec1,vec2);
vec1 ∗= −lambda;
vec1+=vec2;
residual = ietl::two norm(vec1);
vec1=(1./ietl::two norm(vec2))∗vec2;
++iter;

} while(!iter.finished(residual,lambda));

Fig. 7. The power method as implemented in IETL.

concept is modeled for the container type. The algorithm
will work with vectors and matrices from any vector
space, as long as there are implementations of vector
dot product, vector-scalar product, vector subtraction,
Euclidean norm, and vector-scalar division. Likewise, the
algorithm will work with any matrix type, as long as a
matrix-vector product is implemented for the matrix and
vector type. In other words, this version of the power
method requires its vectors vec1, vec2 and matrix m to
model concepts; its requirements would be satisfied by
vectors modeling the IETL vector concept and a matrix
modeling the IETL matrix concept.

IV. THE PARALLEL BOOST GRAPH LIBRARY

Recall that our purpose is to compute eigenvalues of a
graph stored in a graph container. We have introduced the
IETL as our eigensolver library, and now we introduce
the distributed graph containers on which we will run
IETL algorithms. The Parallel BGL provides distributed
containers which are similar to the containers in the
(sequential) Boost Graph Library (BGL) [14]. The ver-
tices in a Parallel BGL graph are distributed among the
various processes, with each process additionally owning
all edges originating at each of its local vertices, and
each process owning all properties of all local vertices or
edges. Additionally, the Parallel BGL provides auxiliary

a b

c

h

g
i

d
f

e

(a) Distributed graph

a

b

c

d

e

f

h

g

i

b d

c h

h

c e

f

c

g i

g

f

(b) Distributed adjacency list representation

Fig. 8. A distributed directed graph represented as an adjacency list across three processors.

data structures which map vertices to values, and a set
of tools for writing distributed applications. We use the
distributed adjacency list data type possibly enriched with
numerical data associated with its edges to model the
IETL Matrix concept, and use a iterator property map to
model the Vector concept. We provide an entirely new
data type to model the VectorSpace concept.

A. The Distributed Adjacency List
The distributed adjacency list from the Parallel BGL

is based on the adjacency list from the Boost Graph
Library. Its underlying storage arrangement is that of an
adjacency list, which is similar to a sparse matrix; for
each vertex v there is a list of all vertices u where there
is an edge v, u in the graph.

The distributed adjacency list is automatically dis-
tributed among processors by vertices. The graph is
divided into subgraphs, with each subgraph belonging
to a single processor. Each processor owns all the
vertices and edges in its subgraph, as well as all edges
originating at local vertices, but terminating possibly at
remote vertices. Adjacency list types are associated with
a distribution type which provides information to resolve
local vertex descriptors to global vertex descriptors.

There are three kinds of graph storage schemes; undi-
rected, directed and bidirectional. Directed graphs only
store outgoing edges, bidirectional graphs are directed
graphs which store both in- and out-edges. Undirected
graphs make no distinction between in- and out-edges. In
a matrix context, this means graphs may be stored row-
wise (for directed graphs) or both row-wise and column-
wise. For bidirectional graphs, the transpose of the graph
is available by reversing the graph, although this does not
change the underlying storage scheme.

The distributed adjacency list can be augmented with
built-in property maps, which associate extra values with
the vertices or edges of a graph. Of particular interest is
the edge weight property map, which associated scalar
weights with each edge in the graph. We use the edge
weight property map for storing non-zero entries in the

adjacency matrix of the graph.

B. The Distributed Iterator Property Map
Conceptually, a property map associates values with

the vertices or edges of a graph, but the underlying
storage mechanism is left unspecified. Both the sequen-
tial and Parallel BGL provide various property map
implementations. Of these, the iterator property maps
are specially tuned to provide an efficient, random-access
mapping of vertices or edges to values, and are therefore
the primary mechanism for storing per-edge or per-vertex
information external to the graph.

Distributed iterator property maps are iterator property
maps that are distributed across several processes. Dis-
tributed iterator property maps use the same distribution
scheme as the graph with which they are associated; a
process owns all values which map to local vertices or
edges. Values associated with remote vertices or edges
are available through ghost cells, which are automatically
generated as needed.

V. COMPOSING THE IETL AND THE PARALLEL BGL
To use IETL eigensolver routines directly on Parallel

BGL containers, the Parallel BGL containers must model
the IETL concepts. Thus, we determine how to perform
graph operations equivalent to the linear algebra opera-
tions required by in IETL concepts. We then implement
these operations via a set of adapters. Figure 9 illustrates
the mapping from concepts in the IETL to Parallel
BGL data types and concepts. This section describes the
adapters needed to compose these two libraries.

A. Viewing Property Maps as Vectors
Any vector can be represented as a linear combination

of base vectors v =
∑n

i=1 xiei, where the base vectors
can be chosen orthonormal eT

i ei = δij ∀i, j. For a
given basis, a vector can be uniquely represented by
its coefficients v ≡ [x1, x2, . . . , xn]T omitting the base
vectors. This numerical representation can be considered
as a mapping from base vectors to values. For example,
in two-dimensional space with Cartesian coordinates, the

IETL Parallel BGL

Matrix

Vector

Vector

Space

Graph

Property

Map

Custom

adapter

Fig. 9. Mapping between concepts in the IETL and the Parallel BGL

vector v = [1, 3]T maps the x direction to 1 and the y
direction to 3.

In a graph context, vertices index the space’s base
vectors so that a vector representation with graph data
types is a mapping of vertices to values, which can be
directly implemented with vertex property maps. As a
property map maps vertices to values, in a sense, it
already is a vector. All that is required to extend it to
model the IETL Vector concept are the vector operations,
which are not defined in the Parallel BGL.

B. Viewing Adjacency Lists as Matrices
The adaptations needed for a Parallel BGL adjacency

list type to model the IETL Matrix concept are light-
weight and do not require significant implementation
effort. As mentioned above, the only operation which
the IETL Matrix concept requires is a matrix-vector
product; now we consider how this may be implemented
with a Parallel BGL distributed adjacency list. The graph
analogue of a vector space is the set of vertices in
the graph, and a vector is a mapping from vertices to
scalar values; the definition of the graph analogue to
a matrix-vector product is similar. We will adhere to
the convention that if, in the A represented by graph
G, there is a nonzero entry x in row i, column j, then
there is an edge e in G from vertex i to vertex j with
weight x. With this definition, we can easily extend any
graph which models a concept similar to the Boost Graph
Library’s AdjacencyGraph to model its adjacency matrix.
The result y of a graph adjacency enriched with weights
A multiplied with a vector x is simply

yv =
∑

(v,w)∈E

weight(v, w)xw

for each vertex v in E. As special case, the Laplacian of
a graph is defined as all weights being -1 for v �= w and
deg(v) for edges (v, v). The weights do not need to be
stored and the matrix vector product can be computed
with implicit weights on the edges

yv = deg(v)xv +
∑

(v,w)∈E
v �=w

−xw

We use the Parallel BGL adjacency list container to
model a IETL Matrix. The Lanczos algorithm imple-

template<typename Graph, typename EdgeMap,
template<typename VMap1, typename VMap2>
inline void gMult(Graph& g, EdgeMap& em,
inline void gMult(VMap1& vin, VMap2& vout) {

using namespace boost;
synchronize(vin);
BGL FORALL VERTICES T(u, g, Graph) {

typename property traits<VMap2>::value type
tmp = 0;

BGL FORALL OUTEDGES T(u, e, g, Graph)
tmp += em[e] ∗ vin[target(e, g)];

vout[u] = tmp;
}

}
Fig. 10. Our adjacency list matrix multiplication routine

mented in IETL requires Hermitian matrices, which is
in case of real values identical with symmetric matrices.
This means that the graph must be symmetric ∀v, w ∈
V : (v, w) ∈ E ⇔ (w, v) ∈ E and the weights
must be also symmetric ∀(v, w) ∈ E : weight(v, w) =
weight(w, v). Naturally, for undirected graphs this prop-
erty is always fulfilled.

Adjacency lists that contain an internal edge weight
property map are weighted graphs, whose edge weights
correspond to the non-zero elements in the matrix.
Unweighted graphs correspond to 1-0 matrices.

The only requirement from IETL is that a matrix-
vector multiplication must be defined, Figure 10 contains
the adjacency list matrix multiplication routine. The
EdgeMap type contains edge weights, vin and vout are
vectors in the same vector space as the graph. The
synchronize() is a Parallel BGL- specific interprocessor
synchronization routine to guarantee data integrity.

C. A Graph Vector Space
In a graph analogue, a vector space is simply the set

of weights associated with the vertices of the graph.
Therefore, the dimensionality of the vector space is the
size of the graph. Recall that IETL uses objects modeling
the VectorSpace concept as factories for vectors, so we
hard-wire our VectorSpace model to generate instances of
the property map type, which models the IETL Vector
concept. We also store a reference to the graph which
defines the vector space. Finally, we provide a vector
for scratch storage for intermediate results of vector
operations. Figure 11 shows our vector space class.

VI. EVALUATION

To illustrate the efficiency and scalability of our so-
lution, we tested our adapters on two classes of random
graphs: small world graphs, which exhibit good locality
and a somewhat regular ring-like structure, and Erdös-
Renyi graphs, which typically distribute poorly and have

template<typename T, typename Graph>
class g vectorspace {
public:

typedef iterator property map wrapper<T, Graph,
g vectorspace<T, Graph> > vector type;

typedef T scalar type;
typedef typename std::vector<T>::size type size type;
g vectorspace(size type n, Graph& g);
size type vec dimension() const;
vector type new vector() const;
void project(vector type&) const;
vector type ∗ scratch;

};

Fig. 11. A model of the IETL VectorSpace concept for Parallel
BGL graphs and property maps

no internal structure. For scalability evaluations, we
generated undirected graphs from both models with 106

vertices and an average vertex degree of 12. We ran the
Lanczos method on these graphs for 100 iterations to
illustrate scalability objectively between the two graph
types, irrespective of their convergence properties in the
algorithm. The Lanczos method was included as it is
the most powerful method for calculating eigenvalues
in IETL. Figure 12 and 13 give parallel speedup and
wall clock times, respectively, of our tests. For both
random graph models, scalability and performance is
quite good, and we achieve near-linear scalability with
small-world graphs. The poorer scalability of the Erdös-
Renyi graphs is due to the greater number of edges which
span processors in the graph distribution; this indicates
that graph structure is an important determining factor
in the scalability of this eigensolver.

All performance results were collected on a Linux
cluster, which consists of 128 compute nodes connected
with gigabit ethernet. Each node has two 2GHz AMD
Opteron processors, with 4GB RAM, but for our tests
we only used one processor per node. The Parallel BGL
tests were compiled with Boost 1.33.0 (for the sequential
BGL) and the current version of the Parallel BGL.
All programs were compiled with version 3.4.4 of the
GNU C++ compiler, using optimization level −O3 and
LAM/MPI 7.1.1.

For means of comparison with non-generic eigen-
solvers, we ran tests against SLEPc [18]. These prelim-
inary results are not conclusive in regards to overall su-
periority; for small world graphs, our solution performed
much faster than SLEPc but for typical FEM problems,
SLEPc was more efficient. On 16 processors, 200 Lanc-
zos iterations on a Laplacian matrix associated with a
500×500 grid required 2.5s with SLEPc, while the same
computation with IETL/Parallel BGL took 23.8s. A case

10
0

10
1

10
2

10
1

10
2

10
3

number of processors

w
al

l c
lo

ck
 ti

m
e

(s
)

Performance

erdos renyi graph
small world graph

Fig. 12. Parallel Speedup of Lanczos Method using Parallel BGL
containers. Graphs are on 106 vertices and have 12 × 106 edges

10
0

10
1

10
2

10
0

10
1

10
2

number of processors

sp
ee

du
p

ov
er

 1
 p

ro
ce

ss
or

Parallel Speedup

erdos renyi graph
small world graph
ideal

Fig. 13. Execution times of Lanczos Method using Parallel BGL
containers. Graphs are on 106 vertices and have 12 × 106 edges

study more interesting for our investigation was a small
world graph with 2 × 105 vertices and 2.4 × 106 edges
where the configuration was the same as the scaling tests
above. For the small world graph, 100 Lanczos iterations
with SLEPc ran in 65s; with IETL/Parallel BGL the same
number of iterations required 9.65s.

As mentioned above, these run time behaviors are
subject to further investigations. In any case, our exper-
iments have shown that it is more efficient to use the
generic version if only few iterations are desired. This
is a result of the expensive copy operations for large
distributed data sets, especially in C implementations of
matrix assemblies involving many function calls without
inlining. In addition, we are working on graph formats
with more compression, so that our future implementa-
tions will be significantly faster.

VII. RELATED WORK

ARPACK [13] is an iterative eigensolver library for
both symmetric and non-symmetric matrices; it contains

implementations of the Lanczos tridiagonalization and its
generalization for non-symmetric matrices. It is written
in FORTRAN77, and offers reverse communication,
which allows some choice of user defined containers.
This solution differs from ours in that the user must
dispatch method calls on user defined containers, and
this dispatch happens at run-time. Our solution has the
compiler perform all method dispatch, and the dispatch
happens at compile time. SLEPc [18] is another parallel
library which extends PETSc [5] with eigensolvers.

Lee and Lumsdaine [7] have explored similar tech-
niques for composition of generic iterative solvers writ-
ten in C++ and various array libraries. They demon-
strated how a simple layer of adapters is sufficient to
compose a generic iterative solver library with a third-
party array library, and study the efficiency of this
solution relative to equivalent implementations using
conventional libraries.

VIII. CONCLUSIONS

There are strong theoretical ties between linear algebra
and graph theory that allow algorithms discovered in
one domain to be reused in the other. In particular
the solution of eigenproblems on graphs has many in-
teresting applications for clustering and connectedness
computations. Unfortunately, conventional libraries from
these domains cannot be readily composed, even though
the structure of the core data types in each domain—
adjacency lists and sparse matrices—is quite similar.

The generic programming methodology addresses the
problem of intra-domain and cross-domain reusability
and library composability by implementing algorithms
against concepts. Library composition then reduces to
mapping from a domain-specific data structure or con-
cept to the concept of yet another domain. We have
illustrated this principle by mapping the graphs and prop-
erty maps of the Parallel Boost Graph Library into the
concepts of the Iterative Eigensolver Template Library,
effecting an efficient parallel graph eigensolver. With
this mapping the whole is far more than the sum of its
parts: we have built an efficient graph eigensolver and
parallelized it, without the need to explicitly introduce
parallelism into the eigensolver.

Although the IETL and Parallel BGL are generic
libraries, we have only truly exploited the genericity of
the IETL. We could have composed any graph library
with the IETL—sequential or parallel—to effect a graph
eigensolver. However, the genericity of the Parallel BGL
allows further composition: any data structure that can
model the Parallel BGL concepts will then model the
IETL concepts, thus expanding the capabilities of each
library and promoting sharing of ideas and implementa-
tions across once-disparate domains.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant EIA-
0131354 and a grant from the Lilly Endowment.

REFERENCES

[1] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a
large hidden clique in a random graph. In SODA ’98: Proceedings
of the ninth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 594–598, Philadelphia, PA, USA, 1998. Society
for Industrial and Applied Mathematics.

[2] J.K. Cullum and R.A. Willoughby. Lanczos algorithms for
Large Symmetric Eigenvalue Computations. Volume 1, Theory.
Birkhäuser, 1985.

[3] Chris H. Q. Ding, Xiaofeng He, and Hongyuan Zha. A spectral
method to separate disconnected and nearly-disconnected web
graph components. In KDD ’01: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 275–280, New York, NY, USA, 2001. ACM
Press.

[4] Douglas Gregor, Nick Edmonds, Brian Barrett, and An-
drew Lumsdaine. The Parallel Boost Graph Library.
http://www.osl.iu.edu/research/pbgl, 2005.

[5] W. D. Gropp and B. Smith. PETSc: Portable extensible tools
for scientific computation. Technical report, Argonne National
Laboratory, Argonne, IL, 1994.

[6] C. Uhrig K. Mehlhorn, S. Näher. Leda: Library of efficient
datatype and algorithms. http://www.mpi-sb.mpg.de/LEDA/,
1998.

[7] Lie-Quan Lee and Andrew Lumsdaine. Generic programming
for high performance scientific applications. In Proceedings of
the 2002 Joint ACM Java Grande – ISCOPE Conference, pages
112–121. ACM Press, 2002.

[8] Lie-Quan Lee, Jeremy Siek, and Andrew Lumsdaine. Generic
graph algorithms for sparse matrix ordering. In ISCOPE’99,
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[9] Bin Luo, Richard C. Wilson, and Edwin R. Hancock. Spectral
feature vectors for graph clustering. In Proceedings of the
Joint IAPR International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, pages 83–93, London, UK, 2002.
Springer-Verlag.

[10] B. Mohár. Some applications of Laplace eigenvalues of graphs.
1997.

[11] David R. Musser and Alexander A. Stepanov. Generic program-
ming. In P. (Patrizia) Gianni, editor, Symbolic and algebraic
computation: ISSAC ’88, Rome, Italy, July 4–8, 1988: Proceed-
ings, volume 358 of Lecture Notes in Computer Science, pages
13–25, Berlin, 1989. Springer Verlag.

[12] Saeko Nomura, Satoshi Oyama, Tetsuo Hayamizu, and Toru
Ishida. Analysis and improvement of hits algorithm for detecting
web communities. In SAINT ’02: Proceedings of the 2002
Symposium on Applications and the Internet, pages 132–140,
Washington, DC, USA, 2002. IEEE Computer Society.

[13] C. Yang R. B. Lehoucq, D. C. Sorensen. Arnoldi package.
http://www.caam.rice.edu/software/ARPACK/.

[14] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[15] Jeremy G. Siek and Andrew Lumsdaine. The matrix template
library: Generic components for high-performance scientific com-
puting. Computing in Science and Engineering, 1(6):70–78,
Nov/Dec 1999.

[16] Alexander A. Stepanov and Meng Lee. The Standard Template
Library. Technical Report X3J16/94-0095, WG21/N0482, ISO
Programming Language C++ Project, May 1994.

[17] Mathias Troyer and Prakash Dayal. The
Iterative Eigensolver Template Library.
http://www.comp-phys.org:16080/software/ietl/.

[18] Andrés Tomás Vincent Vidal Vincente Hernández, José E. Ro-
man. Scalable library for eigenvalue problem computations.
http://www.grycap.upv.es/slepc/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

