
Annotating User-Defined Abstractions for Optimization

Dan Quinlan1, Markus Schordan2, Richard Vuduc1, Qing Yi3

1Center for Applied Scientific Computing 2Institute of Computer Languages

Lawrence Livermore National Laboratory Vienna University of Technology

Livermore, CA 94550 USA Vienna, Austria

{dquinlan,richie}@llnl.gov markus@complang.tuwien.ac.at

3Dept. of Computer Science

University of Texas at San Antonio

San Antonio, TX 78249 USA

qingyi@cs.utsa.edu

Abstract

Although conventional compilers implement a wide
range of optimization techniques, they frequently miss
opportunities to optimize the use of abstractions,
largely because they are not designed to recognize and
use the relevant semantic information about such ab-
stractions. In this position paper, we propose a set of
annotations to help communicate high-level semantic
information about abstractions to the compiler, thereby
enabling the large body of traditional compiler optimiza-
tions to be applied to the use of those abstractions.
Our annotations explicitly describe properties of ab-
stractions that are needed to guarantee the applicability
and profitability of a broad variety of such optimiza-
tions, including memoization, reordering, data layout
transformations, and inlining and specialization.

1 Introduction

We consider the problem of improving the perfor-
mance of scientific computing applications that rely on
user-defined high-level abstractions. Although conven-
tional compilers implement a wide range of optimiza-
tion techniques, they may miss opportunities to opti-
mize the use of abstractions because they are not de-
signed to recognize and use semantic information about
such abstractions. Thus, developers today either ac-
cept the idea of an “abstraction penalty” and live with
relatively poor performance, or manually rewrite code
to use lower-level constructs, obtaining better perfor-

mance at the cost of maintainability and portability.

In this paper, we propose a set of annotations to help
communicate high-level semantic information about
abstractions to the compiler, thereby enabling the large
body of traditional compiler optimizations (Section 2)
to be applied to the use of those abstractions. These
annotations explicitly describe properties of the ab-
straction needed to guarantee the applicability and
profitability of particular optimizing transformations.

Our annotations are influenced by our practical
experience with optimizations that have had an im-
pact on applications used throughout the U.S. De-
partment of Energy (DOE) research laboratories (Sec-
tion 3). Though not all-inclusive, these annotations
permit a broad variety of classical optimizations, in-
cluding memoization, reordering, data layout transfor-
mations, and inlining and specialization, to be applied
to the use of abstractions. This paper generalizes our
earlier research on the optimization of array abstrac-
tions [17] to arbitrary user-defined abstractions.

Figure 1 shows an example of a user-defined abstrac-
tion that exhibits many features of typical unstruc-
tured mesh computations. Specifically, the Mesh class
is a user-defined abstraction, and the compute() pro-
cedure is a user’s algorithm that operates on a Mesh
object. The Mesh class is a container of nodes and
edges, where an edge connects two nodes, and Mesh
provides a means to iterate over either nodes or edges.
An important property of Mesh is its many-to-one and
onto mapping (surjection) of edges to nodes. The pro-
cedure compute() implements some algorithm that is
most naturally expressed as iteration over edges, but

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. User-defined abstraction example.

1 class Node { // ...
public : int id (); double eval(double a);

3 };
class Edge { // ...

5 public : Node ∗node1(); Node ∗node2();
};

7 class Mesh { // ...
public :

9 Edge∗ get edge(int i);
Node∗ get node(int i);

11 int node size (); int edge size ();
};

13

void compute(Mesh& m, double a) {
15 for (int i = 0; i < m.edge size(); ++i) {

Edge∗ e = m.get edge(i);
17 // ...

double x = e−>node1()−>eval(a);
19 double y = e−>node2()−>eval(a);

bar (x, y);
21 // ...

}
23 }

Figure 2. compute() memoized.

1 void compute optimized(Mesh& m, double a) {
vector<double> eval precomp (m.node size ());

3 for (int i = 0; i < m.node size(); ++i) {
Node ∗n = m.get node(i);

5 eval precomp[n−>id()] = n−>eval(a);
}

7

for (int i = 0; i < m.edge size(); ++i) {
9 Edge ∗e = m.get edge(i);

// ...
11 double x = eval precomp[e−>node1()−>id()];

double y = eval precomp[e−>node2()−>id()];
13 bar (x, y);

// ...
15 }
}

repeatedly calls an expensive and side-effect free func-
tion eval on each node. Due to the surjection, we can
optimize compute() by precomputing (memoizing) eval
on all nodes, yielding the optimized code of Figure 2.
White, et al., showed a 2× speedup by applying this
specific memoization to a realistic benchmark that was
extracted from a DOE code [14].

Figure 3. Annotations for Mesh.

class Node : has value { id = this. id (); }
2 class Edge : has value {

n1 = this.node1(); n2 = this.node2();
4 };
operator Node::eval(double a) :

6 read {this ,a}; modify none; alias none;
class Mesh : has value{

8 nsize = this.node size (); esize = this. edge size ();
nodes(i :0: nsize)= this .get node(i);

10 edges(i :0: esize) = this.get edge(i);
};

12 restrict value { nodes(i). id �=nodes(j). id ; }
never alias (edges(i).n1) = edges(i).n2;

14 never alias (edges(i)) = edges(j) : j �= i ;
never alias (nodes(i)) = nodes(j) : j �= i ;

16 must alias(nodes(j)) = edges(i).n1 or edges(i).n2;
restrict value {esize ≥ nsize ∗ k1; esize ≤nsize ∗ k2}

Figure 3 specifies the properties of Mesh as anno-
tations, to enable the translation of Figure 1 into Fig-
ure 2. The annotations describe aliasing properties of
the data abstractions, and side-effect properties of the
function abstraction eval(). Moreover, we can specify
properties of the data structure (such as lower and up-
per bounds on the ratio of edges to nodes) that could
influence subsequent profitability analysis.

The optimized code in Figure 2 is more complex and
difficult to debug than Figure 1, and so the transforma-
tion may be undesirable to apply by hand everywhere.
Whether the optimization is even profitable will vary
by computer architecture. Though automatable, the
transformation relies on the semantics of the abstrac-
tion, so that a conventional compiler is unlikely to dis-
cover such an optimization opportunity or even know
whether the additional storage can be tolerated. In the
following sections, we use this example to motivate the
need for annotations to support the difficult program
analysis required to know when such optimizations may
be used profitably.

Our annotations, presented in Section 4, provide an
open interface for developers to communicate the se-
mantics of their abstractions to the compiler. These
annotations complement program analysis when com-
piler analysis is insufficient to enable optimizations.
Whether an abstraction is annotated automatically or
specified by the developer, traditional optimizations
can be naturally extended to use the annotations and
then applied to uses of the abstraction. We are im-
plementing these ideas in the ROSE source-to-source
compiler infrastructure (Section 5) [10, 11].

2 Analysis for Traditional Optimiza-

tions

We wish to express, through annotations, the re-
sults of the analysis needed to apply traditional com-
piler optimizations to the use of user-defined abstrac-
tions. A compiler may readily apply such optimiza-
tions to the use of built-in types whose semantics are
known. However, it might not do so for abstractions
whose semantics must be inferred from an implemen-
tation (even if available) using necessarily conservative
or limited analysis techniques. Below, we review four
broad classes of traditional optimizations, the analysis
each requires, and highlight some problems in analyz-
ing user-defined abstractions.

• Memoization optimizations. Memoization uses
data-flow analysis to determine results of compu-
tations that can be saved (memoized) for later
reuse, thereby avoiding redundant computation.
Examples include common subexpression elimina-
tion, loop invariant code motion, strength reduc-
tion, and dead code elimination. These optimiza-
tions usually require precise information about
side-effects of function calls that may affect the
expressions being saved, but such side-effects are
often non-trivial to identify, even if the implemen-
tation is available.

• Reordering optimizations. Reordering optimiza-
tions requires dependence analysis to determine
ordering constraints between each pair of state-
ment (or instruction) instances. Examples in-
clude instruction scheduling for better CPU uti-
lization, loop transformations such as loop fusion
and blocking for better memory hierarchy perfor-
mance, and automatic parallelization and com-
munication optimizations for better utilization of
multiprocessors.

• Data layout optimizations. These optimizations
rearrange the layout of data structures to accom-
modate resource constraints of computers. Ex-
amples include register allocation, scalar replace-
ment, and array padding. These optimizations
require precise knowledge of the data structures,
which may be obscured by abstraction.

• Abstraction inlining and specialization. These op-
timizations reduce the overhead of user-defined ab-
stractions in programs. Such overheads include
the cost of making function calls, missed optimiza-
tion opportunities due to abstraction boundaries,
as well as inefficient data grouping and additional

indirections due to the necessity of data abstrac-
tion. Optimizations in this category include pro-
cedure inlining and specialization, data structure
splitting, and elimination of indirection.

In addition to data-flow and dependence analysis,
pointer analysis is critical to performing all the above
optimizations effectively. Polymorphism and dynamic
functions complicate the problem of pointer analysis
in object-oriented languages, and unconstrained uses
of pointers in C and C++ make the problem worse
still. Although good linear algorithms exist for pointer
analysis of stack-allocated variables, the modeling of
the heap remains a challenge, with algorithms ranging
from linear to double exponential time. These prob-
lems can be alleviated or even solved by using abstrac-
tions with user-defined annotations.

For interprocedural analysis (whole-program analy-
sis), we must consider all effects on function param-
eters, return values, and global variables. When an-
alyzing function calls, different levels of precision can
be accomplished with call-strings or assumption sets.
For object-oriented programs, the modeling of the heap
and the states of objects becomes increasingly impor-
tant. Data hiding and the encapsulation of object
states allows modular program analysis, but in general,
the scalability of an analysis for real-world applications
must be addressed by storing results of previous anal-
ysis passes, especially when libraries are used.

3 Extending Traditional Optimizations

via Abstraction-Aware Analysis

Given a mechanism to express or compute ab-
straction semantics (e.g., annotations), an abstraction-
aware analysis (A3) combines the semantics of built-
in types with the properties of user-defined abstrac-
tions to compute more precise information regarding
program behavior, thereby facilitating more advanced
traditional optimizations. When program analysis be-
comes abstraction-aware, traditional optimizations are
naturally extended to apply to the use of abstractions.

For example, in our running example in Figure 3,
the function eval is annotated to indicate that it does
not modify the variables a and this and that it creates
no aliasing. Thus, calling this function does not change
the object’s state. This information is crucial for tradi-
tional analysis such as available expressions analysis or
very busy expression analysis. In our approach, we ex-
tend the analysis to include such function calls that do
not change the object’s state in the collection of avail-
able expressions. Based on the results of available ex-
pressions analysis, redundant expressions can be elim-

Optimization A1 A2 A3 A4

Common subexpression elim. no no no no
Loop transformations no no no no
Procedure inlining no yes yes no
Structure splitting no yes no yes
AA Scalar replacement yes no yes yes
AA Loop transformations yes no yes yes
AA Common subexpr. elim. yes no yes no
OpenMP parallelization of yes no yes yes

container iteration
Iteration-space narrowing yes no yes no
Iteration-space partitioning yes no yes no

and loop specialization
Iteration-space tiling yes no yes yes
Precomputation yes yes yes no
Array abstraction translation yes yes no yes
Elimination of indirection yes yes yes yes

Table 1. Optimizations classified in four dif-
ferent aspects

inated. Hence, we can perform library-aware redun-
dancy elimination on applications that use libraries.

Table 1 lists optimizations that we have identified as
crucial for improving the performance of scientific ap-
plications used within the DOE laboratories, several of
which are applied by White, et al., to DOE codes [14].
This table classifies the optimizations according to the
following four properties:

A1. Does the optimization require high-level semantics
of the user’s abstraction?

A2. Does the optimization eliminate abstraction layers
or boundaries?

A3. Does the optimization apply to function abstrac-
tions? For example, procedure inlining eliminates
a function abstraction. Note that this optimiza-
tion applies to the application code, not the library
(the function remains in the library).

A4. Does the optimization apply to data abstractions
or use semantics of data abstractions? For exam-
ple, when applying structure splitting, the data
abstraction of the original structure is eliminated
and replaced by new data structures.

A special category in Table 1 neither requires high-
level abstraction semantics, nor eliminates abstrac-
tion layers. This category includes most of the op-
timizations in conventional compilers, such as com-
mon subexpression elimination, scalar replacement,
and loop transformations.

Three optimizations are explicitly denoted
as abstraction-aware (AA) optimizations. For
these optimizations, the corresponding traditional
optimizations—scalar replacement, loop transforma-
tions, and common subexpression elimination without
annotations—are essential as well in improving the
performance of our applications. Other optimizations
use high-level semantics in various ways; for instance,
OpenMP parallelization uses the high-level semantics
of STL containers and their iterators [9].

Most conventional compilers implement optimiza-
tions that do not require elimination of any abstrac-
tions. Some also implement non-trivial optimizations
that do not require high-level semantics of abstrac-
tions but do eliminate user-defined abstractions, such
as structure splitting. In contrast, all the abstraction-
aware optimizations require annotations, especially
when the required properties cannot be established by
a conventional analysis. More advanced transforma-
tion capabilities are required for a compiler infrastruc-
ture to permit optimizations, such as array abstraction
translation as we have demonstrated using ROSE [10].

We have also identified optimizations for which we
did find useful abstraction-aware extensions, but which
mostly applied in the back-ends of compilers. For ex-
ample, code selection, which can be performed by Bot-
tom Up Rewrite Systems (BURS) like burg or iburg,
may apply to abstraction use but is not useful at the
AST level in our experience due to the need for abso-
lute values as weights for the selectable instructions.

4 Annotating Abstractions

Annotations enable abstraction-aware analysis.
They may be specified explicitly by the programmer
when they cannot be generated automatically. Sep-
arate annotations may be generated for each library
used by a program, and saved as external descriptions
for use during optimization (whether or not the source
is available). In this section, we develop a framework of
annotations informed by the discussion of abstraction-
aware analysis and optimization from Section 3.

In most languages that support abstractions in user-
defined types, the abstractions can be separated into
two categories: function abstractions and data abstrac-
tions. Additionally, languages such as C++ support
object-oriented abstractions, where different function
and data abstractions can relate to each other through
subtype relations and through inheritance.

Function (or procedure) abstractions represent al-
gorithms that operate on data. The operations might
be as simple as returning the value of a field within
a compound data structure, or as complex as sorting

elements in a container. Their semantics can be ex-
pressed in terms of what restrictions the input data
must satisfy before entering the operation, what data
are being modified by the operation, and what proper-
ties and relations the resulting data would satisfy after
the operation.

Data abstractions are encapsulated collections of
values that relate to each other. The semantics of
data abstractions are normally expressed in terms of
properties and invariants that must be satisfied by
the data stored in the abstraction. For example, in
a singly-linked list, pointers connecting elements must
be acyclic. Because implementation details of abstrac-
tions are not visible to the outside, such properties can
often be described in terms of abstract attributes of
the abstraction. These attributes are abstract in that
they do not necessarily have concrete storage in the
abstraction.

Figure 5 shows the grammar and examples of some
annotations that we developed for optimizing loops
that operate on user-defined array abstractions [17].
The annotations in Figure 5 are preliminary and need
to be extended in many ways. However, as shown in
the following, these annotations serve as informative
examples to illustrate what semantics need to be de-
scribed by a complete annotation language.

4.1 Function Annotations

In Figure 5(b), all annotations except (1) and (5)
are function annotations. These annotations describe
semantics of functions that operate on the floatArray

and Range data abstractions, which in turn are de-
scribed in (1) and (5). The semantics of these functions
can be separated into the following categories.

• Restrictions on the inputs of the operation. In
Figure 5(a), three annotations, read, allow-alias,
and restrict-value are used to describe input data
of a function abstraction. As shown in exam-
ples (2), (4), (6) and (8) in Figure 5(b), read

lists all the memory locations that are accessed by
the operation; allow-alias describes restrictions on
aliasing relations between locations of the input
data—everything not listed in allow-alias can-
not be aliased with other inputs; restrict-value

describes relations between values of input data.
Note that restrict-value can also be used to de-
scribe relations between input data and results, as
illustrated in examples (6) and (8).

• Modification side-effects. In Figure 5(a), the
modify annotation describes modification side ef-
fects, specifically, what data (variables) are modi-

fied by the operation. The items listed by modify

must include all memory storage reachable from
the function parameters and global variables.

• Relations between results and inputs. In Fig-
ure 5(a), the annotations new-array, modify-
array, restrict-value, and alias can all be used to
describe relations between the results and the in-
puts of an operation. The annotations new-array

and modify-array are specific to array abstrac-
tions. The restrict-value annotation describes re-
lations between values of inputs and results. The
alias annotation describes the aliasing relations
between inputs and results.

• Rewrite annotations. In Figure 5, the inline anno-
tation is essentially a transformation directive that
eliminates abstraction boundaries. It describes an
operation by replacing it with a collection of equiv-
alent operations. The inline annotation therefore
can be seen as a transformation specification for
rewriting function abstractions.

4.2 Data Annotations

In Figure 5(b), examples (1) and (5) describe the
semantics of user-defined data abstractions. Specifi-
cally, they describe properties of the floatArray and
Range classes. These properties can be separated into
the following categories.

• Data attributes. In Figure 5(b), example (1)
uses the is-array annotation to specify that the
floatArray class has three data attributes: dim,
len and elem, where dim is a single scalar value,
and len and elem are collections of values that
are indexed by a sequence of integer parameters.
Similarly, example (5) uses the has-value annota-
tion to specify that the Range class has three data
attributes: stride, base and len, where all the at-
tributes are scalar values. Data attributes concep-
tually model the values stored within a data ab-
straction. However, internally the values may be
implicitly represented in various forms and con-
crete storage may not be found for the specified
attributes.

• Properties of attributes and relations among them.
In Figure 5(b), when example (1) uses is-array

to describe floatArray, it implicitly conveys that
floatArray has FORTRAN90 array semantics;
that is, the dim and len attributes describe the
shape of the array, the elem attribute returns the
elements within the array, and no elements of the

<annot> ::= <annot1> | <annot1>;<annot>
<annot1> ::= class <cls annot>

| operator <op annot>
<cls annot> ::= <clsname>:<cls annot1>;
<cls annot1>::=

<cls annot2> | <cls annot2> <cls annot1>

<cls annot2>::= <arr annot>
| inheritable <arr annot>
| has-value { <val def> }

<arr annot>::= is-array{ <arr def>}
| is-array{define{<stmts>}<arr def>}

<op annot> ::= <opdecl> : <op annot1> ;
<op annot1> ::=

<op annot2> | <op annot2> <op annot1>

<op annot2> ::= modify <namelist>
| new-array (<aliaslist>){<arr def>}
| modify-array (<name>) {<arr def>}
| restrict-value {<val def list>}
| read <namelist>
| alias <nameGrouplist>
| allow-alias <nameGrouplist>
| inline <expression>

<arr def> ::=
<arr attr def> | <arr attr def> <arr def>

<arr attr def> ::= <arr attr>=<expression>;
<arr attr> ::= dim | len (<param>)

| elem(<paramlist>)
| reshape(<paramlist>)

<val def> ::= <name>; | <name>;<val def>
| <name> = <expression> ;
| <name> = <expression> ; <val def>

(a) grammar

(1) class floatArray:
inheritable is-array { dim = 6;

len(i) = this.getLength(i);
elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x); };

(2) operator floatArray::operator =
(const floatArray& that):
modify-array (this) {

dim = that.dim; len(i) = that.len(i);
elem(i$x:1:dim) = that.elem(i$x); };

(3) operator +(const floatArray& a1,double a2):
new-array () { dim = a1.dim; len(i) = a1.len(i);

elem(i$x:1:dim) = a1.elem(i$x)+a2; };
(4) operator floatArray::operator ()
(const Range& I):
restrict-value { this = { dim = 1; } };

result = {dim = 1; len(0) = I.len;}; };
new-array (this) { dim = 1; len(0) = I.len;

elem(i) = this.elem(i∗I.stride + I.base); };
(5) class Range: has-value {stride; base; len; };
(6) operator Range::Range(int b,int l,int s):
modify none; read { b, l, s}; alias none;
restrict-value { this={base = b;len= l;stride= s;};};
(7) operator floatArray::operator() (int index) :
inline { this.elem(index) };
restrict-value { this = { dim = 1; };};
(8) operator + (const Range& lhs, int x) :
modify none; read {lhs,x}; alias none;
restrict-value { result={stride=lhs.stride;

len = lhs.len; base = lhs.base + x; };};

(b) example

Figure 5. Annotation language

array are aliased. Similarly, the attributes de-
scribed in example (5) for the Range class must
satisfy len ≥ 0. The allow-alias and restrict-
value annotations in Figure 5 need to be extended
to describe such properties. Figure 3 shows some
of the extensions to these annotations.

• Relation between attributes and functions. In Fig-
ure 5, each attribute declaration must be followed
by a definition, which includes function calls neces-
sary to extract the attribute values from the data
abstraction. Furthermore, functions that operate
on data abstractions are described in terms of their
effects on the attributes. Examples of such anno-
tations are discussed in more detail in Section 4.1.

• Rewrite annotations. In Figure 5, the is-array

annotation specifies a collection of definitions that
can be used to replace an array abstraction under
certain conditions. Specifically, we can replace the
array abstraction with a more efficient equivalent

implementation. Such annotations are very simi-
lar to the inline directive in example (7) and are
used solely for optimization purposes.

4.3 Object-oriented annotation

In object-oriented languages, user-defined abstrac-
tions can inherit from each other and have sub-type
relations among one another. For example, in C++,
a derived class can adapt the behavior of its super-
classes by re-implementing virtual functions. Thus, an
abstraction annotation language must model relation-
ships between different abstractions. In Figure 5(b),
the inheritable annotation in example (1) specifies that
the array semantics described by the is-array annota-
tion can be inherited by subclasses of floatArray. In
general, an annotation language needs not only to sup-
port the inheritance of semantic properties, but also
to provide mechanisms to specify how behaviors of ab-
stractions are adapted by inheritance.

4.4 Discussion

The annotations in Figure 5 are not a complete an-
notation language, which is the topic of our future re-
search. This section uses our prior experience to sum-
marize and to speculate on what properties of user-
defined abstractions need to be described by an an-
notation language in order to significantly extend the
applicability of compiler analysis and optimizations.

An annotation language is not complete unless we
can verify that the specified properties reflect the im-
plementations of abstractions. Otherwise, misinformed
annotations would lead compilers to generate incorrect
programs. We believe that identifying what proper-
ties need to be annotated is a significant step toward
verifying such properties, as program analysis often
needs external annotations from programmers to be
effective. Our future research includes both identify-
ing additional annotations that would benefit compiler
optimizations and developing program analysis tech-
niques to verify such annotations.

5 ROSE Infrastructure

We are implementing our work on optimizing user-
defined abstractions within ROSE, a U.S. Department
of Energy (DOE) project to develop an open-source
compiler infrastructure for optimizing large-scale (on
the order of a million lines or more) DOE applica-
tions [10, 11]. The ROSE framework enables tool
builders who do not necessarily have a compiler back-
ground to build their own source-to-source optimizers.
The current ROSE infrastructure can process C and
C++ applications, and we are extending it to support
FORTRAN90 as part of on-going work.

The ROSE infrastructure provides several compo-
nents to build a source-to-source optimizer. A com-
plete C++ front-end is available that generates an
object-oriented abstract syntax tree (AST) as an inter-
mediate representation. Optimizations are performed
on the AST. The AST preserves the high-level C++
language representation so that no information about
the structure of the original application, its abstrac-
tions in particular, is lost. A C++ back-end can be
used to unparse the AST and generate C++ code.
The user builds the “mid-end” to analyze or transform
the AST, and ROSE assists by providing a number of
mid-end components, including a predefined traversal
mechanism, an attribute evaluation mechanism, whole-
program analysis capabilities, transformation opera-
tors to restructure the AST, and predefined optimiza-
tions. ROSE also provides support for library anno-

tations whether they be contained in pragmas, com-
ments, or separate annotation files.

6 Related Work

Several projects address optimization of user-defined
abstractions, including our own prior work on loop
optimizations for array abstractions [10, 17]. Among
these, our goals are most similar in spirit to the Broad-
way compiler by Guyer and Lin [6]. Broadway con-
tains a specific annotation language suitable for op-
timizing the use of C libraries written in an object-
oriented style. We consider a broader set of possible
annotations that can directly express (a) relationships
between function and data abstractions, and (b) the
unique characteristics of object-oriented languages.

Other compiler projects can optimize library use,
especially in the context of Telescoping Languages [8].
The SUIF compiler [1], MAGIK compiler [5], and
MPC++ [7, 4] all provide a programmable level of con-
trol over the compilation, but require implementation
within the compiler itself. In contrast, Schupp, et al.,
develop for C++ an expression simplifier, which users
extend for optimizing their abstract data types through
annotations inserted into the code [12]. Similarly, users
of CodeBoost (for C++) tag variables in the source,
with tags interpretable by its rule-based rewrite sys-
tem [3]. We share the design goal of developing anno-
tations which may be provided by library developers
who do not have a compiler background.

Template Meta-Programming can also optimize
user-defined abstractions [13], but only when optimiza-
tions are isolated within a single statement. Loop
fusion across statements, which requires dependence
analysis, is beyond this technique.

Other approaches embed semantic knowledge within
the compiler. Wu, et al. [15], proposed semantic inlin-
ing, which allows their compiler to treat user-defined
abstractions as primitive types in Java. Artigas, et
al. [2], devised an alias versioning transformation that
creates alias-free regions in Java programs for optimiz-
ing loops over Java primitive arrays and array abstrac-
tions. Wu and Padua [16] investigated automatic par-
allelization of loops operating on user-defined contain-
ers, but require the compiler to know the semantics of
all operators. In contrast to these approaches, we tar-
get general abstractions by allowing the programmer
to communicate explicitly with the compiler.

7 Conclusions and Future Work

This paper discusses the features of an annotation
language that we believe to be essential for optimizing

user-defined abstractions. These features should cap-
ture semantics of function, data, and object-oriented
abstractions, express abstraction equivalence (e.g., a
class represents an array abstraction), and permit ex-
tension of traditional compiler optimizations to user-
defined abstractions. Our future work will include de-
veloping a comprehensive annotation language for de-
scribing the semantics of general object-oriented ab-
stractions, as well as automatically verifying and infer-
ring the annotated semantics.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. W. Tseng. The suif compiler for scalable paral-
lel machines. In in Proceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific Com-
puting, Feb 1995.

[2] P. V. Artigas, M. Gupta, S. Midkiff, and J. Mor-
eira. Automatic loop transformations and paralleliza-
tion for Java. In Proceedings of the 2000 International
Conference on Supercomputing, May 2000.

[3] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and
E. Visser. Design of the CodeBoost transforma-
tion system for domain-specific optimisation of C++
programs. In D. Binkley and P. Tonella, editors,
Proc. Workshop on Source Code Analysis and Ma-
nipulation (SCAM 2003), pages 65–75, Amsterdam,
The Netherlands, September 2003. IEEE Computer
Society Press.

[4] S. Chiba. Macro processing in object-oriented lan-
guages. In TOOLS Pacific ’98, Technology of Object-
Oriented Languages and Systems, 1998.

[5] D. R. Engler. Incorporating application semantics and
control into compilation. In Proc. USENIX Conference
on Domain-Specific Languages, Santa Barbara, CA,
USA, October 1997.

[6] S. Z. Guyer and C. Lin. An annotation language for
optimizing software libraries. In Proceedings of the 2nd
Conference on Domain-Specific Languages, pages 39–
52, Berkeley, CA, Oct. 3–5 1999. USENIX Association.

[7] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte,
H. Tezuka, H. Konaka, M. Maeda, and K. Kubota.
Design and implementation of metalevel architecture
in C++—MPC++ approach. In Proc. Reflection ’96
Conference, April 1996.

[8] K. Kennedy, B. Broom, K. Cooper, J. Dongarra,
R. Fowler, D. Gannon, L. Johnsson, J. Mellor-
Crummey, and L. Torczon. Telescoping languages:
A strategy for automatic generation of scientific
problem-solving systems from annotated libraries.
J. Parallel and Distributed Computing, 61(12):1803–
1826, December 2001.

[9] D. Quinlan, M. Schordan, Q. Yi, and B. de Supin-
ski. Semantic-driven parallelization of loops operating
on user-defined containers. In 16th Annual Workshop

on Languages and Compilers for Parallel Computing,
Lecture Notes in Computer Science, Oct. 2003.

[10] D. Quinlan, M. Schordan, Q. Yi, and A. Saebjornsen.
Classification and utilization of abstractions for opti-
mization. In Proc. 1st International Symposium on
Leveraging Applications of Formal Methods, Paphos,
Cyprus, October 2004.

[11] M. Schordan and D. Quinlan. A source-to-source
architecture for user-defined optimizations. In
Proc. Joint Modular Languages Conference, 2003.

[12] S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. User-
extensible simplification—type-based optimizer gener-
ators. In Proc. International Conference on Compiler
Construction, volume LNCS 2027, pages 86–101, Gen-
ova, Italy, April 2001. Springer-Verlag.

[13] T. L. Veldhuizen. Expression templates. C++ Report,
7(5):26–31, June 1995.

[14] B. S. White, S. A. McKee, B. R. de Supinski, B. Miller,
D. Quinlan, and M. Schulz. Improving the compu-
tational intensity of unstructured mesh applications.
In Proc. International Conference on Supercomputing,
Boston, MA, USA, June 2005.

[15] P. Wu, S. P. Midkiff, J. E. Moreira, and M. Gupta.
Improving Java performance through semantic inlin-
ing. In Proceedings of the Ninth SIAM Conference
on Parallel Processing for Scientific Computing, Mar
1999.

[16] P. Wu and D. Padua. Containers on the paralleliza-
tion of general-purpose Java programs. In Proceedings
of International Conference on Parallel Architectures
and Compilation Techniques, Oct 1999.

[17] Q. Yi and D. Quinlan. Applying loop optimizations to
object-oriented abstractions through general classifi-
cation of array semantics. In Proc. Workshop on Lan-
guages and Compilers for Parallel Computing, West
Lafayette, Indiana, USA, September 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

