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Abstract

Checkpoint and Recovery (CPR) systems have many uses
in high-performance computing. Because of this, many de-
velopers have implemented it, by hand, into their applica-
tions. One of the uses of checkpointing is to help mitigate
the effects of interruptions in computational service (both
planned and unplanned) In fact, some supercomputing cen-
ters expect their users to use checkpointing as a matter of
policy. And yet, few centers provide fully automatic check-
pointing systems for their high-end production machines.

The paper is a status report on our work on the fam-
ily of C3 systems for (almost) fully automatic checkpointing
for scientific applications. To date, we have shown that our
techniques can be used for checkpointing sequential, MPI
and OpenMP applications written in C, Fortran, and sev-
eral other languages. A novel aspect of our work is that
we have not built a single checkpointing system, rather, we
have developed a methodology and a set of techniques that
have enabled us to develop a number of systems, each meet-
ing different design goals and efficiency requirements.

1. Introduction

“Checkpointing” is the process of saving the state of a
running application to “stable storage”. At some later time,
this saved state can be used to “restart” the application at
the same point in the computation when the checkpoint was
taken. Perhaps the most common use of Checkpoint/Restart
(CPR) in high-performance computing (HPC) is to enable
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applications to continue executing in the presence of certain
types of failures. For example, if a machine crashes, then
the applications running at the time can be restarted from
checkpoints once the machine has been fixed and rebooted.

In addition to hardware failures, CPR can be used to han-
dle other kinds of anomalous events, such as a running ap-
plication exceeding its time limit or being preempted by
a new job with a higher priority. These failures are in-
stances of a class described in the literature as Fail-Stop
Faults. There are other, more general classes of faults, such
as Byzantine Faults [19]. CPR, by itself, does not provide
a complete solution for handling these more general faults,
but it is very often a building block that is incorporated into
more general solutions.

In addition to failure mitigation and fault tolerance, CPR
finds many other uses in HPC. Here are some examples,

Process Migration. For reasons of locality or resource
utilization, it is often advantageous to move a running appli-
cation from one processor to another. This is done by check-
pointing the application on the original processor, transmit-
ting the checkpoint to the new processor, and using it to
restart the application.

Post-processing. For some applications, particularly
those involves time-stepping, the state of the simulated
physical system can be deduced from the state at particu-
lar execution points in. In this case, a series of checkpoints
taken during the execution can be used to visualize the evo-
lution of the physical system over simulated time.

Debugging. CPR can be used to replay a particular pro-
gram execution. This has been used for isolating race con-
ditions in parallel programs [11]. It has also be used to al-
low the developer to run the program “backwards”, using a
technique called reverse debugging [23].

Because it is so useful, it is perhaps not surprising the
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CPR is found frequently in HPC applications and systems.
In fact, the Pittsburgh Supercomputer Center (PSC), which
provided some of the computational resources used to eval-
uate this work, expects their users to incorporate CPR func-
tionality as part of their applications. It is the Center’s pol-
icy [9] that, if a failure occurs during the execution of a
user’s program, the user will only be refunded for 3 hours
of the lost allocation time; users are expected to checkpoint
their applications accordingly. However, although there is
support for developers who hand-code checkpointing rou-
tines into their applications (e.g., [9]), to the best of our
knowledge, none of the members of the Teragrid, the Arctic
Region Supercomputing Center, or Cornell Theory Center
provide fully or semi-automatic CPR systems.

The focus of our research over the last several years has
been to develop semi- and fully automatic CPR systems that
work in practice. In order to accomplish this goal, we have
had to develop new approaches and techniques and evaluate
their effectiveness. This paper summaries our accomplish-
ments to date and discusses our ongoing work. In Section 2,
we will give a background on the conventional approaches
for CPR. In Section 3, we will describe two new approaches
for that we have developed or refined. In Section 4, we
will describe C3, our basic system for checkpointing se-
quential applications. In Section 5 and 6, we will describe
how we have extended C3 to checkpoint distributed mem-
ory and shared memory applications, respectively. In Sec-
tion 7, we will describe how we have extended C3 to gener-
ate transportable checkpoints for heterogeneous computing
environments. In Section 8, we will offer some conclusions
and discuss our future work. Throughout this paper, we will
discuss other work that is related to ours.

2. Approaches to checkpointing

There are two basic approaches to checkpointing:
System-Level Checkpointing and Application-Level
Checkpointing.

With System-Level Checkpointing (SLC), CPR is imple-
mented in a system that is external to the application. There
are many ways to do this. Systems like BLCR [13] and
MOSIX [1] are implemented within the operating system.
Condor [18] and Libckpt [24] are implemented as user-level
runtime systems that are linked, either statically or dynam-
ically, with the application. All of these SLC systems have
several features in common. First, they checkpoint and re-
store the application state by directly copying the raw bytes
of the application memory to stable storage and back. Sec-
ond, because they operate at a low-level and do not require
specific knowledge of the application, they provide CPR
without requiring any (or many) changes to the application.

With Application-Level Checkpointing (ALC), CPR is
implemented directly within the application’s source code.

That is, the application contains source code that saves and
restores critical program variable to and from stable storage.
This approach has two advantages for the developer. First,
because it works with the application variables and not with
a lower-level representation, the checkpointing code can be
made portable without too much difficulty. Furthermore,
with a little more effort, it is possible to make the check-
pointing data portable as well. This enabled CPR within
heterogeneous computing environments. Second, the devel-
oper is able to write CPR code that only saves the minimum
set of variables that are needed to restart the application. In
practice, this can result in tremendous reductions in check-
point sizes (anecdotally, we have found that the savings can
range from 90% on some DOE lab codes to million-fold
reductions on certain protein folding codes).

We can compare the relative merits of each approach by
considering several different characteristics.

Transparency - the degree to which CPR can be added to
an application without changing it. Generally, SLC is more
transparent than ALC. Systems such as MOSIX and Condor
are engineered so that no modifications have to be made to
the application in order to incorporate the CPR functional-
ity. On the other hand, a developer that wishes to incorpo-
rate ALC into their code must think carefully about what
points in the execution are appropriate for checkpointing
and which program variables must be saved in order to suc-
cessfully restart the application. This task can be very time
consuming; in fact, it was reported to us that for some of
the production applications at the DOE labs the work is the
equivalent of 1 FTE.

Portability - the ability to move the CPR system from one
platform to another. Portability is very important to most
application developers, who are reluctant to tie their appli-
cations too closely to a particular platform. Not only might
the developer wish to distribute their application to other
users at other institutions, but the developer can be certain
that their current favorite platform will be obsolete and re-
placed in several years. When a developer is choosing a
CPR solution, they will likely consider how portable the
CPR system is. It would not be prudent to choose a CPR
system that locks the developer into a particular platform1.

Another aspect of Portability is whether or not special
system administrator privileges are required in order to in-
stall and use a CPR system.

Because it does not work with low-level machine or op-
erating system representations of the application, and be-
cause it does not require special privileges to operate, ALC
is considerably more portable than SLC. Systems like Con-
dor and MOSIX will only run on certain operating system

1Recently, the system administrators in Cornell Computer Science had
to cancel an operating system upgrade on the department’s main Linux
cluster when it was discovered that the cluster’s production CPR system
(MOSIX) would not run on the new version of the operating system.



and compiler versions, while most developers can get their
application source code to run on a wide range of platforms
without too much difficulty.

Transportability - the ability to use checkpoint data pro-
duced on one platform to restart the application on another.
Depending upon the requirements, it may be necessary to
move checkpoint data between different platforms. This
might be necessary, for instance, in the case when an ap-
plication is migrated between idle workstations within an
organization. It might also be necessary in a Dynamic Data-
Driven Application System (DDDAS) [12] in which addi-
tional computation resources are brought on-line in order to
meet an application’s changing resource requirements.

Efficiency - the overhead added to the application’s exe-
cution by the CPR system. Performance is always an impor-
tant consideration. Although a developer may be willing to
tolerate substantial overhead when restarting an application
(assuming that this is an infrequent operation), they are un-
likely to tolerate a very high cost for periodic checkpoint-
ing. In practice, we have found two sources of overhead
to be important. The first overhead is incurred in order to
maintain information about the execution of the application
that would be used if a checkpoint were taken. This over-
head, which we call the checkpoint-free overhead, is paid
whether or not any checkpoints are taken during execution
and should be kept as small as possible. The second over-
head is the cost of writing checkpoint data to stable storage
whenever a checkpoint is taken, which we call the check-
pointing cost. We have observed that this overhead is pro-
portional to the size of the checkpoint datay.

As we will see, certain ALC techniques tend to incur a
checkpoint-free overhead, whereas the SLC techniques gen-
erally do not. The checkpointing cost can be reduced by
reducing the amount of data in each checkpoint. In ALC,
this is done by the developer deciding that certain applica-
tion variables do not need to be saved, because they are not
needed or can be recomputed upon restart. Since SLC sys-
tems do not have any knowledge of the application, they
rely upon observing low-level details of the application’s
execution in order to reduce the amount of state saved (e.g.,
incremental checkpointing [26] relies upon setting protec-
tion bits on memory page in order to observe which pages
are read and written consecutive checkpoints).

Correctness - the ability of a CPR system to ensure that
the application produces a correct result. Of all of the prop-
erties that we have listed here, correctness is arguable the
most difficult to ensure. To illustrate this point, we consider
two examples.

First, consider an application that uses the function,
rand(), from the C library. As part of the implementa-
tion of this function, there is a variable, seed, that is used
to record the seed of the sequence of pseudo random num-
ber generated by the function. An SLC system is likely to

save the value of the seed variable along with the rest of
the application state. On restart, the value of this variable
will be restored and the application will continue to run. In
this case, the developer can expect the function rand() to
return the same sequence of values, regardless of whether
or not the application is restarted between calls. A devel-
oper that is incorporating ALC into an application usually
does not have direct access to the seed variable (this is
true on all versions of Linux, Solaris and Windows that we
have used). The developer must rely upon other functions
to access and restore the seed value during checkpoint-
ing. Unfortunately, POSIX provides a function for restor-
ing the seed value, but not for accessing it. In this case,
the developer must decide whether or not their application
requires the sequence of pseudo-random values to be pre-
served across restarts. If so, then the developer will almost
certainly have to implement their own, checkpointable, ver-
sion of the rand() function.

The second example involves the MPI communication
library. This library maintains a map from virtual proces-
sor id’s to physical processor id’s (e.g., IP addresses). An
SLC system might treat this map as part of the application
state and save it in the checkpoint. This would be incorrect,
as on restart, the set of physical processors allocated to the
application might be different. In this situation, it is gener-
ally not necessary to save and restore the processor map; an
application that accesses only virtual processor id’s and not
physical processor id’s should still function properly even if
the mapping is changed on restart. A developer incorporat-
ing ALC into an application will be aware of this and will
not attempt to access or restore the map.

As these two examples illustrate, neither SLC nor ALC
is a clear winner with respect to correctness.

3. Our Approach to Checkpointing

As part of this project, we have used two novel ap-
proaches to checkpointing that build upon the basic SLC
and ALC approaches. The new approaches have enabled us
to develop entire new classes of checkpointing systems. In
this section, we discuss these two approaches and describe
the systems that we have built using these approaches in the
subsequent sections.

3.1. Mixed-Level Checkpointing

It should be clear from the preceding discussion that nei-
ther SLC nor ALC is always the better solution. On the one
hand, SLC is generally more transparent than ALC. On the
other, ALC can be made portable and transportable more
easily. Efficiency and correctness are difficult issues for
both approaches.



We have developed a new approach to checkpointing that
we call Mixed-Level Checkpointing (MLC). This approach
combines aspects of both SLC and ALC in order to develop
CPR systems that are able provide strength for each of the
five properties discussed above. Using this new approach,
we have built not a single CPR system, but a number of
CPR systems, each with different design goals and perfor-
mance characteristics. Although the idea of developing hy-
brid SLC/ALC systems may appear obvious, what is not at
all obvious is how to go about doing this. The great dif-
ficulty in building MLC systems is separating the state of
an application into logically consistent sets that can the be
checkpointed using either SLC or ALC approaches.

Let us consider the two examples that were used in the
discussion of correctness above. Suppose that we wished to
build an MLC system that used ALC for saving the global
variables of the application and SLC for saving the state of
the rand() library, including the seed variables. In order
to be able to do this, it is necessary to separate the applica-
tion state into two sets, the application global variables and
the variables used by the rand() library. Our solution to
this problem relies on the fact that the compiler and linker
on most systems ensure that program variables are laid out
in memory in a certain way. In this case, it is possible
to use a combination of special compiler-generated global
variables and special linker commands in order to isolate
the two sets of variables into two different and identifiable
regions of memory. Suppose that we wished to use SLC for
saving the application variables and we wished to never save
the internal state of the MPI library. In this case, the same
techniques can be also be used. A complete description of
the set of the MLC mechanisms that we have developed for
isolating various sets of state and for incorporating differ-
ent combinations of ALC and SLC techniques into a single
CPR system can be found in [20].

[20] also discusses how different combinations of ALC
and SLC techniques can be used to develop many different
CPR systems with varying feature and performance charac-
teristics. This is critical when we start to consider the cor-
rectness of a CPR system in a systematic manner. This is
because “correctness” is a concept that must be defined on
a per-application basis. Consider two different applications
that called the system’s time function during their execu-
tion. When checkpointing these applications, how should
the “state” of the time function be handled? The answer de-
pends upon the application. One application might gener-
ate log messages that contain the wall clock time, while the
other might use two clock readings to determine the perfor-
mance of a computational kernel. Different checkpointing
solutions are required to handle these two different applica-
tion correctly. The ability of our MLC techniques to gen-
erate, not a single CPR system, but a wide range of CPR
systems allows us to generate different CPR systems based

upon different correctness requirements and is one of this
projects greatest contributions to checkpointing.

3.2. Automatic Application-Level Check-
pointing

One of the disadvantages of ALC is that it requires the
developer to add the CPR functionality to their code by
hand. An obvious improvement would be to automate this
process, which we call Automatic Application-Level Check-
pointing (AALC). The basic idea is for a program trans-
formation tool or pre-compiler to analyze the application
source code and determine what program variables must be
saved at each checkpoint and to add the appropriate code
to the source code to write checkpoints and to restart the
application from these checkpoints.

We did not develop the basic idea or techniques for
AALC; our work builds upon systems such as Porch [27]
and APrIL [16]. Nevertheless, our works improves upon
these in a number of ways. Our techniques are described
briefly in [4] and in much greater detail in [20].

A novel aspect of our approach of combining MLC with
AALC is that we are able to develop new compiler analy-
ses and optimizations to reduce the amount of data being
saved at each checkpoint. In our approach, a static analysis
is done at compile time to compute information that can be
fed to the runtime system to reduce the checkpointing over-
head. In [21] we describe how we have added functions
to our heap implementation that allows heap objects to be
partitioned into “colors”. There are additional functions for
assigning checkpointing policies to each color (e.g., “Never
save this color” or “Save this color only once”). We are cur-
rently developing the compiler analyses that will use these
API. Other work that has been done on compiler-directed
memory exclusion can be found in [2] and [25].

4. Checkpointing sequential applications

The first CPR system that we developed based upon
on our new MLC and AALC techniques was C3, which
initially provided checkpointing for sequential applications
written in C. The first version, C3/LE used the AALC de-
scribed in [4] and [20] for checkpointing the global and lo-
cal variables of the application code and the execution con-
text. A custom memory manager was provided for check-
pointing heap objects using SLC techniques. The two sets
of techniques were combined using the MLC techniques
that we developed.

For most of the standard benchmark codes, we found the
overhead of using our system to be quite small (usually be-
tween 5% and 10%), but in a few cases we found the over-
head to be much larger. The reason turned out to be that
the AALC code that C3 inserted into the application was



preventing the native compiler from doing as good a job
at optimization. In addition, Prof. McKee’s group at Cor-
nell started using C3 to support their work in using CPR
for dramatically speeding up hardware simulation [31]. For
their application, changing the source code of the applica-
tions was deemed to be extremely undesirable, as it tended
to change the behavior being simulated.

For these reasons, we developed a second version of our
CPR system, C3/ME, that did not use AALC, but instead
relied upon a number of different SLC techniques com-
bined using MLC. In addition to avoiding the performance
anomalies that we observed with C3/LE, because it did not
require parsing source code, we were able to extend C3/ME
to handle languages other than C (e.g., FORTRAN 77 and
some parts of C++).

Because it requires making only minor changes to the
application (i.e., adding annotations to indicate program lo-
cations at which to checkpoint), C3 provides an almost com-
pletely transparent CPR solution. Furthermore, we have
demonstrated its correctness and efficiency on a number
of different computing platforms, including Linux, Solaris,
Windows, AIX and Tru64 UNIX. A detailed performance
evaluation of the two versions of C3 can be found in [20].

5. Checkpointing distributed-memory applica-
tions

Our next challenge was to extend our basic sequen-
tial checkpointing system to handle message-passing, dis-
tributed memory programs, such as those written using MPI
[17]. There are two key difficulties with checkpointing
MPI applications. The first is the presence of “hidden”
state within the MPI library, including such things as com-
municators, user-defined data-types, and handles for asyn-
chronous communication objects. The second difficulty is
the presence of in-flight messages when checkpoints are
taken. Hidden library objects and in-flight messages both
represent state that is inaccessible to the application but that
must be checkpointed and restored for correctness.

One approach that has been used in the past is to build
CPR functions directly into the MPI library. When it is
time to checkpoint, special functions are called to check-
point the hidden state and flush the in-flight messages. This
approach requires a tight integration between the CPR sys-
tem and the MPI implementation. An example of such a
system is CoCheck [30], which integrates the Condor CPR
system with the MPICH MPI library. Recently CPR hooks
have been added to LAM MPI [8, 29] in order to enable its
integration with CPR systems. The disadvantage of this ap-
proach is that there are many systems on which it is not pos-
sible to change the production MPI implementation. This
may be because the implementation is proprietary and its
source code is not available, or it could be because the sys-
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Figure 1. Architecture of C3 for MPI

tem administrators do not want users to deploy modified
versions of such a critical component on production sys-
tems. Because of these reasons, we were not in a position
to deploy modified versions of MPI on any of the large clus-
ters that we used for this project.

As a result of these limitations, we investigated tech-
niques that enable our C3 systems to work in conjunction
with whatever native implementation of MPI is found on a
machine. In particular, we have designed a thin coordina-
tion layer that sits between the application and the native
MPI implementations, as shown in Figure 1. This coordina-
tion layer intercepts all MPI calls made by the application
and performs certain tasks that enable the communication
portion of the application state to be checkpointed and re-
stored. Because of this design, our system is able to work
with any standard-compliant MPI implementation. To date,
we have demonstrated it using LAM, MPI/Pro, and several
variants of MPICH, on a wide range of machines.

To checkpoint the hidden state in the MPI library, the co-
ordination layer records information about the opaque com-
munication objects, such as communicators and data-types,
when they are created. This information is saved to sta-
ble storage along with the checkpoint. When an application
is restarted, the coordination layer uses this information to
recreate these objects within the MPI library.

Handling in-flight messages is more difficult. One ap-
proach is to ban them. That is, we could rely upon the appli-
cation developer to synchronize the checkpoints on differ-
ent processors using, for example, a barrier. The developer
must also ensure that when checkpoints are taken there are
no messages in-flight between processors. This approach,
which is called Blocking Coordinated Checkpointing [14],
is sufficient for many existing codes that have been written
in a bulk-synchronous, or BSP, manner.

However, there are emerging classes of parallel appli-
cations, such as the parallel mesh generators described in
[22], which askew the BSP model in favor of a more asyn-
chronous and self-synchronizing approach to communica-
tion. In these codes, there are few, if any, points in the
execution when the developer can be certain that there are
no messages in flight and require a different class of proto-
cols, called Non-blocking Coordinated Checkpointing [14].
Chandy-Lamport [10] is perhaps the most well known ex-
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ample of a non-blocking coordinated checkpointing proto-
col. Unfortunately, it requires the use of preemptive check-
pointing, which is not possible with our ALC techniques.

For these more general classes of applications, we have
developed novel non-blocking coordination protocols that
enable the C3 system to non-preemptively checkpoint vir-
tually any correct MPI application. Our protocol for han-
dling point-to-point communication is described in [3] and
illustrated using Figure 2. Our protocol works by dividing
the execution of the application into epochs. Epochs are
divided by recovery lines; a recovery line is a set of check-
points that can be used to restart the application. When one
processor takes a checkpoint, our protocol guarantees that it
will be matched with checkpoints from all other processors
to form a recovery line, or it is discarded.

As shown in Figure 2, messages can be classified de-
pending upon how they cross recovery lines. Figure 2 illus-
trates three kinds, early, late, and intra-epoch. By piggy-
backing certain information on each message, our protocol
is able to classify all messages, and to ensure that on re-
covery the appropriate actions are taken for each in-flight
message (e.g., late messages are read from a log by their
receiver, early message are suppressed by their senders).

In [5], we show how the basic concepts of the point-to-
point protocol can be extended to define protocols for han-
dling the collective communication constructs of MPI. In
[28], we present experimental results on up to 1024 pro-
cessors that show that our protocols deliver scalable perfor-
mance. The overhead that we observed was usually between
5% and 10%, which are acceptable overheads in practice.

6. Checkpointing shared-memory applications

Extending C3 for shared memory programs is more chal-
lenging. For MPI, the points at which communication and
synchronization occur are explicit; they only occurs through
calls to the MPI library. In the case of shared memory pro-
grams, these interactions can be implicit. In fact, without
extensive compiler or hardware support, it is not clear that it
is possible to develop a non-blocking coordination protocol
for shared memory programs. For the present, we have fo-
cused on developing blocking coordination protocols. Be-
cause our protocols are blocking, we are able to implement
them independently from the underlying shared memory
implementation. Furthermore, we believe that blocking pro-
tocols are less onerous for shared memory applications than
distributed memory because the largest shared memory ma-
chines have several orders of magnitude fewer processors
than the largest distributed memory machines. However,
we continue to investigate non-blocking solutions.

Our protocol [6, 7] for shared-memory applications is
illustrated in Figure 3. The first step is for all threads to
execute a barrier instruction. Once this has been done, then
all threads write their private data to the checkpoint file and
coordinate writing the global data as well. Next, all threads
execute a second barrier instruction. Once this is completed,
then all threads resume executing application instructions.

This protocol is extremely simple in principle, but can
be extremely difficult to implement in practice. We are cur-
rently working on describing how the basic protocol can
be implemented for OpenMP applications. This requires
addressing a number of interesting issues. First, suppose
that when the checkpoint protocol is initiated, some of the
threads were already blocked at a barrier. In [6], we de-
scribe a technique whereby a sequence of barrier instruc-
tions are executed both before and after the protocol in or-
der to ensure that blocked threads execute the checkpoint
protocol and then are returned to a blocked state.

OpenMP presents another challenge in that many of its
synchronization mechanisms are specified as programming
language constructs. This makes it necessary to incorporate
AALC techniques in order to checkpoint OpenMP codes.
For instance, if a thread is blocked at the start of a critical
section when a checkpoint is taken, then the only way to
release the thread to run the protocol is for the thread that is
currently executing the critical section to exit it.

7. Checkpointing in a heterogeneous comput-
ing environment

All of the C3 systems that we described above meet four
of the five criteria for checkpointing systems, namely Trans-
parency, Portability, Efficiency and Correctness. None of
them, however, provides Transportability, that is, the ability



to use checkpoint data generated on one platform to restart
an application on a different platform. For example, one
might wish to checkpoint an application on the Lemieux
cluster at PSC, which has over 3000 64-bit Alpha proces-
sors, Compaq compilers, a vendor-supplied MPI, and runs
Tru64 UNIX, transport the checkpoint to the Cornell The-
ory Center (CTC) and restart the application on one of the
CTC’s Velocity clusters, which has 256 32-bit Pentium pro-
cessors, Intel compilers, MPI/Pro, and run Windows Server
2000. In [15], we describes how our homogeneous check-
pointing techniques can be extended to provide heteroge-
neous checkpointing for this scenarios.

There are a number is problems that must be solved in or-
der to provide transportable checkpointing for this scenario.
Some are relatively simple to address. For instance, the fact
that the two clusters have different versions of MPI is of
no consequence, because our coordination layer is written
for a generic MPI implementation and does not exploit any
implementation specific properties.

The fact that both clusters use different processor archi-
tectures, compilers, and operating systems means that we
cannot naively save the application state as binary data on
one processor and expect to use it directly on their other.
The checkpoint data generated from Lemieux must be trans-
lated in order for it to be used on Velocity. In order to do
this translation, each object in the checkpoint data must be
assigned a unique type. Assuming that this assignment is
done, then translating objects between machine represen-
tations is possible. However, applications written in the C
programming language do not provide unique type assign-
ments to memory objects. Heap objects in C, for example,
are treated as untyped regions of memory that the devel-
oper is free to use in any way that they see fit. This means
that type information is not available when heap objects are
checkpointed. Furthermore, C provides syntactic constructs
that allow the developer to access objects with a different
type than their declared type. It is permissible, for instance
to treat objects as arrays of characters in order to access
their byte representations.

Our solution to this problem is to impose a stronger type
discipline on C applications. In [15], we describe a combi-
nation of static and dynamic type checking techniques that
our system uses to ensure that unique types are assigned to
each object that is checkpointed. We also describe how in-
formation is saved about how each type is represented on
the machine generating the checkpoint. This information,
along with the type assignments, is used to translate the ob-
jects to a new representation when the checkpoint is trans-
ported to a different machine.

Another problem we address in [15] is the fact that the
checkpointing and restoring machines may have a different
number of processors. For instance, if we checkpoint an
application running on 256 processors of Lemieux, how do

we restart it on 64 processors of Velocity? The technique
that we use is over-decomposition. When the application is
started on 256 processors of Lemieux, we start the appli-
cation running on, say, 512 virtual processors. In order to
do this, our system must map 2 virtual processors to each
physical processor of Lemieux. When checkpointing, the
state of the 512 virtual processors is saved. This check-
point data is transported to Velocity, translated, and used to
restart the application on 64 processors. In order to do this,
our system must map 8 virtual processors to each physical
processor of Velocity. Our system uses a combination of
program transformations and runtime support to map each
virtual processor onto a thread running on one of the physi-
cal processors. Our runtime system enables threads to com-
municate through MPI using their virtual processor ranks
instead of the physical processor ranks.

8. Conclusions

At present, we are currently working in two major direc-
tions. First, we are refining our current implementations so
that they can be released and used in production environ-
ments. As part of this effort, we are revisiting some of our
basic assumptions about CPR systems. For instance, in our
first implementation of C3, we placed a premium on porta-
bility. We are currently investigating whether or not, for
instance, there are certain ways that we can trade a certain
amount of portability for an even higher level of efficiency.

Second, we are continuing our research into compiler
analyses and optimizations for automatically reducing the
amount of state saved. We have conducted a careful analy-
sis of a number of application codes and we have been able
to establish reductions in checkpoint size of 50%-90%. Our
hope is that a program transformation system can achieve
most or all of these savings with as little help from the de-
veloper as possible.

In this paper, we have described the family of C3 systems
for (almost) fully automatic CPR for scientific applications.
To date, we have shown that our basic techniques can be
used to provide CPR for sequential, MPI and OpenMP ap-
plications written in C, Fortran, and several other languages.
One of the novel aspects of our work is that we have not
built a single checkpointing system, rather, we have devel-
oped a methodology and a set of techniques that have en-
abled us to develop a number of systems, each meeting dif-
ferent design goals and efficiency requirements. This is be-
cause, in contrast to previous work that uses either System-
Level Checkpointing (SLC) or Application-Level Check-
pointing techniques (ALC), ours is based upon Mixed-Level
Checkpointing (MLC), which is a new concept, and Auto-
matic Application-Level Checkpointing (AALC), to which
we have added many refinements.
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