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Abstract

Inference of phylogenetic trees using the maximum
likelihood (ML) method is NP-hard. Furthermore, the
computation of the likelihood function for huge trees of
more than 1,000 organisms is computationally inten-
sive due to a large amount of floating point operations
and high memory consumption. Within this context,
the present paper compares two competing mathemat-
ical models that account for evolutionary rate hetero-
geneity: the Γ and CAT models. The intention of this
paper is to show that—from a purely empirical point of
view—CAT can be used instead of Γ. The main ad-
vantage of CAT over Γ consists in significantly lower
memory consumption and faster inference times. An
experimental study using RAxML has been performed
on 19 real-world datasets comprising 73 up to 1,663
DNA sequences. Results show that CAT is on average
5.5 times faster than Γ and—surprisingly enough—also
yields trees with slightly superior Γ likelihood values.
The usage of the CAT model decreases the amount of
average L2 and L3 cache misses by factor 8.55.

1. Introduction

Phylogenetic trees are used to represent the evo-
lutionary history of a set of n organisms (also called
taxa). A multiple alignment of a small region of their
DNA or protein sequences can be used as input for the
computation of phylogenies. In a computational con-
text phylogenetic trees are usually strictly bifurcating
unrooted trees. The organisms of the alignment are lo-
cated at the tips and the inner nodes represent extinct
common ancestors. The branches of the tree repre-
sent the time which was required for the mutation of

one species into another—new—one. The inference of
phylogenies with computational methods has many im-
portant applications in medical and biological research,
such as e.g. drug discovery and conservation biology
(see [1] for a summary). Due to the rapid growth of
available sequence data and the constant improvement
of multiple alignment methods it has now become fea-
sible to compute large trees which comprise more than
1,000 organisms. The computation of the tree-of-life
containing representatives of all living beings on earth
is one of the grand challenges in Bioinformatics.

The fundamental algorithmic problem computa-
tional phylogeny faces consists in the immense amount
of potential tree topologies. This number grows ex-
ponentially with the number of sequences n, e.g. for
n = 50 organisms there already exist 2.84∗1076 alterna-
tive topologies; a number almost as large as the number
of atoms in the universe (≈ 1080). In fact, it has al-
ready been demonstrated that finding the optimal tree
under the maximum likelihood (ML) criterion is NP-
hard [4]. However, despite the algorithmic complexity
and the high computational cost of the ML function,
significant progress has been achieved with the release
of fast and accurate sequential and parallel programs
such as e.g. PHYML [8], IQPNNI [16], MetaPIGA [13],
TreeFinder [11], GAML [2], TREE-PUZZLE [22] and
RAxML [23]. Typically, these programs allow for infer-
ence of 1,000 taxon trees on a single CPU in reasonable
times. Since the main focus of program development
has rightfully been on search algorithms, technical is-
sues such as memory efficiency and manual optimiza-
tion of the source code have been neglected. Despite
the distinct statistical approach, programs for Bayesian
inference such as MrBayes [10] heavily rely on the fre-
quent evaluation of the likelihood function and there-
fore share the same technical problems.
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Therefore, a paradigm shift towards technical im-
plementation issues in ML program development is re-
quired to enable inference of larger phylogenetic trees
in the future. For example, a recent critical review
of the RAxML source code from a technical perspec-
tive lead to some simple technical optimizations which
yield run time improvements of factor 1.66 on 1,000
taxa up to 67 on 25,000 taxa. For the 25,000 taxon
case RAxML already required 2GB of main memory
under the simple HKY85 [9] model of nucleotide substi-
tution without rate heterogeneity. Thus, if the Γ model
with quadruple memory requirements was to be used
on this large alignment, such an analysis would not be
feasible. Within the context of continuous data accu-
mulation, increasing memory shortage and the growing
discrepancy between CPU and memory access speeds
the present paper intends to analyze whether the Γ
model of rate heterogeneity can be replaced by the sig-
nificantly faster and less memory-intensive CAT model
from a purely empirical perspective. The basic ob-
jective is to determine if comparable trees—with re-
spect to their Γ likelihood score and topological
similarity—can be obtained by using CAT on typical
real world biological data. It can not be emphasized
enough, that all final tree topologies in this pa-
per, whether inferred under Γ or CAT, are com-
pared on the basis of their Γ likelihood values
to ensure a fair comparison using the objective
function and to account for the preferred model
in the phylogenetics community which currently
is the Γ model. The basic question asked in this
paper is if a significantly faster search under the CAT
model can yield final tree topologies with similar Γ like-
lihood values as a search under Γ. This is then placed
into a high performance computing perspective, since
CAT appears to be the only technically feasible solu-
tion (duo to reduced memory requirements) to incor-
porate rate heterogeneity into analyses of huge trees.

The remainder of this paper is organized as follows:
In Section 2 the computationally relevant mathemati-
cal background of the Γ and CAT models for ML-based
tree inference is outlined. In addition, the relatively
few existing alternative implementations (except that
of RAxML) of the CAT model are mentioned. Sec-
tion 3 describes the algorithm which is used in RAxML
to optimize and categorize the per-site individual rates.
Furthermore, a dedicated algorithm for the refinement
under Γ (RΓ algorithm) is briefly described which al-
lows for additional refinement of final trees obtained
with the CAT model under the Γ model. The results
of the large experimental study on 19 real-world align-
ments and a performance comparison with the popu-
lar IQPNNI and PHYML programs is provided in Sec-

tion 4. Moreover, the memory efficiency of the com-
peting models is analyzed in terms of L2 and L3 cache
misses. Section 5 provides a conclusion and addresses
issues of current and future work.

2. Models of Rate Heterogeneity

As already mentioned there exist two basic methods
to account for rate heterogeneity among sites (align-
ment columns): individual per-site evolutionary rates
and the Γ model [26] of rate heterogeneity. The main
reason that the model of per-site evolutionary sites is
not often used, is based mainly on statistical concerns
that optimizing the evolutionary rate for each individ-
ual site might lead to over-parameterizing and thus
over-fitting the data [26]. However, the effect of over-
estimation can be alleviated by using a fixed number
c � m of rate categories (CAT model), where m is
the number of distinct patterns (columns) in the align-
ment. In this case every individually optimized evolu-
tionary rate ri where i = 1, ..., m has to be mapped to
one of the rate categories ρj where j = 0, ..., c − 1. In
addition, the individual values of the ρj have initially
to be determined by taking into account the distribu-
tion of ri values. This categorization—hence the name
CAT—of c rate categories also has a computational
advantage over using m individual rates: A relatively
large number of exponentials has to be computed per
individual rate in order to obtain the respective tran-
sition probability matrix. The number of invocations
of the compute-intensive exp() function is reduced to
a constant c which typically ranges between 25–100 in
comparison to the full alignment length m which typi-
cally ranges from 500–2,000 (see Table 1). To the best
of the author’s knowledge, models of per-site evolution-
ary rates are currently only implemented in RAxML,
IQPNNI, PHYLIP [7], and fastDNAml [17].

However, in IQPNNI the per-site rates are not cate-
gorized and only the likelihood of the intermediate and
final trees is evaluated using this model. This means
that the actual tree search is conducted using the plain
model without rate heterogeneity (B.Q. Minh, personal
communication). Therefore, IQPNNI has only been ex-
ecuted using the Γ model of rate heterogeneity for the
performance comparison in Table 2. It is worth noting
though, that individual rates ri in IQPNNI are opti-
mized using a different approach [15] than in RAxML.

The approach implemented in fastDNAml and
PHYLIP is very similar to the CAT model in RAxML.
The main difference is that in fastDNAml the num-
ber of individual rate categories is fixed to a maximum
of 36. and that a separate program (DNArates [18])
is required to compute and categorize the evolution-



ary rates based on a fixed tree. Thus, in contrast to
RAxML, fastDNAml does not offer the possibility to
re-adapt the parameters of the CAT model to a chang-
ing topology during the inference process. Unfortu-
nately, the process of rate optimization and categoriza-
tion in DNArates has never been published.

The need to account for rate heterogeneity in ML-
based analyses is broadly accepted in the community.
Moreover, Biologists often have to incorporate the Γ
model into their studies in order obtain publishable
results because there also exists strong biological ev-
idence for rate variation among sites. It has been
demonstrated [26], that ML inference under the as-
sumption of rate homogeneity can lead to erroneous
results if rates vary among sites. The intention of this
paper is not to argue against Γ in a statistical sense
but to empirically determine if CAT can be used as a
vehicle to circumvent the complexity of Γ.

CAT versus Γ: The HPC Perspective: The goal
of this paragraph is to provide a notion of the amount
of memory space and arithmetic operations required
to compute the ML score for a tree topology under
CAT and Γ. The seminal paper by Felsenstein [6] and
the chapter by Swofford et al. [24] provide detailed de-
scriptions of the mathematical background. Within the
HPC context the focus is on the memory space and
amount of floating point operations required by CAT
and Γ. In most ML implementations the execution
time is largely dominated by two basic operations: the
computation of the likelihood vectors (also called par-
tial likelihoods arrays) and the optimization of branch
lengths. Those operations typically require ≥ 90% of
execution time (e.g. for a dataset with 150 sequences:
92.72% of total execution time in PHYML and 92.89%
in RAxML-VI). Thus, an acceleration of these func-
tions on a technical level is crucial. The number n
(n: number of taxa) and the length of the likelihood
vectors m (m: number of distinct patterns/columns in
the alignment), dominate the memory consumption of
typical ML implementations. Thus, the overall mem-
ory consumption is of O(n ∗ m).

After a change of the tree topology the likelihood
of the tree is computed by filling in the likelihood vec-
tors affected by the change bottom-up. To understand
how the individual likelihood vectors are updated with
given branch lengths bq, br consider a subtree rooted
at node p with immediate descendants r and q and like-
lihood vectors p[], q[], and r[] respectively. When
the likelihood vectors q[] and r[] have been computed
the entries of p[] can be calculated—in an extremely
simplified manner—as outlined by the pseudo-code be-
low:

for(i = 0; i < m; i++)

p[i]=f(g(q[i],bq),g(r[i], br));

where f() is a simple function, i.e. requires just a
few FLOPs, to combine the values of g(q[i], bq) and
g(r[i], br). The g() function however is more com-
putationally intensive since it contains the evaluation
of the transition probabilities. The parameters bq and
br represent the branch lengths. The above pseudo-
code represents the main computational load of a typ-
ical ML implementation. Note that, the optimization
of branch lengths is very similar with respect to the
loop structure and therefore omitted at this point.

Accommodating CAT: Given the optimized rates
per site and given the rate categorization (see Sec-
tion 3) one can easily modify the basic for-loop to
accommodate the CAT model. At each iteration of
the loop the evolutionary rate r of the current posi-
tion i has to be determined. This is performed by
looking up the respective rate category of position i in
category[]. Note that, 0 ≤ cat < c where c is the
maximum number of rate categories specified by the
user (default in RAxML-VI is 50 rate categories). The
rate[] vector is pre-computed before the main for-
loop mainly in order to avoid redundant invocations
of the exp() function. In order to account for distinct
per-site rates the g() function now also depends on the
rate category of the site. The pseudocode for updating
the likelihood vectors with rate categories is indicated
below:

for(i = 0; i < m; i++)

{

cat = category[i];

r = rate[cat];

p[i] = f(g(q[i],bq,r), g(r[i],br,r));

}

As the above pseudo-code clearly shows, the ad-
ditional computational effort required by the CAT
model consists in the pre-computation of the rate[]
vector (which is not shown here) and accessing the
category[] and rate[] arrays in the main for-loop.
The additional memory required is an array of c double
values for rate[] and an array of m integer values for
category[].

Accommodating Γ: The computationally more
complex form of dealing with heterogeneous rates, due
to the fact that significantly more memory and floating
point operations are required (typically factor 4), con-
sists in using either discrete or continuous stochastic
models for the rate distribution at each site. In this
case every site has a certain probability of evolving at



any rate contained in a given probability distribution.
For example a concrete distribution of the likelihood
for one site is obtained by summing over all products
of likelihoods for the discrete rates times the probabil-
ity from the distribution. In the continuous case like-
lihoods must be integrated over the entire probability
distribution.

The most common and most broadly used distribu-
tion types are the continuous [25] and discrete [26] Γ
distribution. The actual form of the Γ function is de-
termined by the α shape parameter which is optimized
based on the likelihood. Small α values (α = 0.1) stand
for high rate heterogeneity and large values (α = 5.0)
for low rate heterogeneity. For computational reasons,
in most ML programs the default is to use a Γ dis-
tribution with 4 discrete rates. This represents an
acceptable trade–off between inference time, memory
consumption and accuracy. The implementation of the
Γ model in RAxML also uses 4 discrete rates which in
addition have been hard-coded in the main for-loops
and manually optimized to ensure a fair comparison
with the highly optimized implementation of the CAT
model.

Given the four individual rates from the discrete Γ
distribution r0,...,r3 now four individual likelihood
entries p[i].g0,...,p[i].g3 at each site i have to be
updated as indicated below:

for(i = 0; i < m; i++)

{

p[i].g0 = f(g(q[i], bq, r0), g(r[i], br, r0));

p[i].g1 = f(g(q[i], bq, r1), g(r[i], br, r1));

p[i].g2 = f(g(q[i], bq, r2), g(r[i], br, r2));

p[i].g3 = f(g(q[i], bq, r3), g(r[i], br, r3));

}

The above pseudocode clearly shows why using Γ is
almost prohibitive for computing huge trees: Per iter-
ation of the for-loop it requires almost the quadruple
number of floating point operations. Since memory
shortage currently represents one of the main obsta-
cles for inference of larger phylogenies the quadruple
memory space required by Γ is even more problematic.
Therefore, with respect to the HPC perspective and
inference of huge trees, the CAT model should, and in
the 25,000 taxon case must, be preferred over the Γ
model due to the significantly inferior inference times
and memory consumption.

3. Algorithms

Rate Category Optimization & Classification:
The per-site evolutionary rates of a tree in RAxML
are obtained by maximizing their individual per-site
likelihood values. The lowest possible rate has been

limited to 0.0001 to avoid numerical problems. The
largest possible rate is arbitrary. The per-site rates
are optimized using a Brent-like iterative method [19].
Provided the optimized individual rates ri, i = 1, ..., m
they have to be mapped to the respective rate cate-
gories ρj , j = 0, ..., c − 1. RAxML uses a very simple
procedure to categorize rates which is mainly based
on the per-site likelihood contributions l(ri). Initially,
all individual rates ri, rj ,i �= j for which abs(ri − rj) <
0.001 are stored in an intermediate set of rate categories
σk, k ≤ m and their partial likelihoods are summed
up and stored in l(σk), e.g. l(σk) := l(ri) + l(rj) if
abs(ri−rj) < 0.001. Thereafter, the list of σk is sorted
with respect to the partial likelihood values l(σk) in
descending order such that those rates σk which con-
tribute most the overall likelihood are at the front of
the sorted list. The first c entries of the sorted σk list
will become the rate categories ρj for the inference pro-
cess, i.e. ρ0 := σ0, ..., ρc−1 := σc−1. Finally, an individ-
ual site i is then assigned the rate category k ≤ c which
minimizes abs(ρk−ri). It is important to note, that the
ε parameter for the optimization of per-site evolution-
ary rates is lowered progressively. It is lowered at each
invocation of the rate category optimization function,
which is executed after each iteration of the RAxML
tree search algorithm.

The RΓ Algorithm: The RΓ (read Refinement un-
der Γ) optimization option is a modified version of the
standard hill-climbing search algorithm of RAxML as
described in [23]. RΓ optimization can be invoked by
specifying -f h in the command line of RAxML. The
purpose of this search algorithm is to further optimize
trees under Γ that have initially been computed un-
der CAT. For example, initial trees can be inferred
using CAT and then further be refined using Γ with
the RΓ search algorithm. One main difference with re-
spect to the standard search algorithm is that the max-
imum rearrangement setting is limited to a distance of
5. In addition, the analytical optimization of branch
lengths (for details see [23]) which is mainly intended
for the initial optimization phase where many improved
trees are encountered, is omitted. Thus, the lengths of
branches adjacent to the insertion points of subtrees
are optimized thoroughly during the entire optimiza-
tion process. The limitation of the rearrangement dis-
tance and the choice to optimize branches thoroughly
are due to the assumption that refinement under a dis-
tinct, though related, model of substitution will not
result in dramatic changes of the tree topology. This
is of course a very questionable and perhaps danger-
ous assumption, but works well in the concrete case:
a refinement of trees inferred with CAT under Γ (see



next Section). The combined inference process of trees
under CAT with a subsequent refinement using RΓ will
henceforth be called CAT+RΓ.

4. Experimental Setup & Results

Test Data: In order to conduct experiments, a
relatively large number of 19 real-world alignments
from various sources has been used. The align-
ments comprising 150, 200, 250, 500, 1,000, and
1,665 taxa (150 ARB,...,1663 ARB) have been ex-
tracted from the ARB small subunit ribosomal ribonu-
cleic acid (ssu rRNA) database [14]. Those align-
ments contain organisms from the domains Eukarya,
Bacteria and Archaea. In addition, the 101 and
150 sequence data sets (101 SC, 150 SC, available
at www.indiana.edu/˜rac/hpc/fastDNAml) are used.
Furthermore, two well-known real data sets comprising
218 and 500 sequences (218 RDPII, 500 ZILLA) were
included into the test set. In particular, the 500 ZILLA
alignment has been studied extensively under the par-
simony criterion [3]. A 193-taxon data set 193 VINH
is also included which has been used by Vinh et al. [12]
to assess performance of the PhyNav program. A
set of 7 alignments comprising 73, 74, 104, 128, 144,
178, and 180 mitochondrial DNA sequences of mam-
mals (73 Olaf,...,180 Olaf) have kindly been provided
by Olaf Bininda-Emonds from the Technische Univer-
sität München. Finally, an alignment of 715 archaeal
16s sequences (715 CHUCK) has been obtained from
the Pace Laboratory at the University of Colorado at
Boulder. It is important to note that, except for the
128 OLAF dataset, it was not possible to obtain real-
world alignments with a Γ shape parameter α ≤ 0.3 or
α ≥ 1.4. The general consensus of responses from Bi-
ologists was that the above range of α values is typical
for real alignment data (personal communications). In
a paper on bacterial phylogenies Dalevi et al. make the
same observation [5].

Test Platforms: PHYML (v2.4.4), RAxML (now
available as RAxML-VI (v1.0)), and IQPNNI (v3.0.b1)
have been compiled using gcc-3.3.3. All performance
tests where executed on the Infiniband-cluster at the
Technische Universität München, equipped with 36
2.4GHz Quad-Opteron nodes and 8GB of main mem-
ory per node. In order to measure the amount of cache
misses in RAxML an Intel 1.3GHz Itanium processor
was used, since hardware counters can easily be ob-
tained on this architecture using pfmon.

Experimental Setup: For each alignment, a set
of randomized parsimony starting trees was gener-

ated with RAxML (see [23]). For the smaller align-
ments (≤ 250 sequences) 10 distinct starting trees
per dataset were generated and for the larger ones
(> 250 sequences) 5 trees. In order to keep the
inference times within reasonable limits the HKY85
model of nucleotide substitution was used. On
each dataset/starting tree combination a RAxML
search was executed using the HKY85+Γ model, the
HKY85+CAT model with c = 25 rate categories
and the HKY85+CAT model with c = 50 rate cate-
gories. Moreover, the final HKY85+CAT trees were
refined using the RΓ algorithm. To ensure a fair
comparison the final Γ log likelihood values lΓ
were computed for all trees obtained under
HKY85+CAT. Therefore, all likelihood-based
comparisons in this study refer to Γ likelihood
values! This evaluation of final topologies was per-
formed using the RAxML model and branch length
optimization option -f e, i.e. the topology itself was
not altered. The topological Robinson-Foulds dis-
tances [21] were also computed using the respective
final trees of each individual run with Γ, CAT, and
CAT+RΓ. In order to determine the number of L2
and L3 cache misses RAxML was executed once per
datasets on 8 alignments (see Table 3) with one fixed
starting tree under the HKY85+Γ and HKY85+CAT
(c = 25) models.

PHYML and IQPNNI have been executed once on
each alignment under the HKY85+Γ model. The pro-
grams have only been executed once per dataset, since
they use a deterministic neighbor joining starting tree.
Note that, there exist subtle differences in the numeri-
cal implementation of the likelihood function between
PHYML and IQPNNI and RAxML, especially with re-
spect to scaling very small likelihood values. To this
end, the Γ likelihood values of all final tree topologies
have been computed with RAxML (-f e command line
option) to ensure a fair comparison of scores. PHYML
is a purely deterministic program and the inference pro-
cess terminated in all cases. In IQPNNI the number
of iterations of the search algorithm can be set to ar-
bitrary values. Therefore, the number of iterations of
the IQPNNI algorithm was set to approximately match
the inference times of RAxML (execution time ratios
between 0.7 and 1.5, see Table 2).

Results: As already mentioned the main argument
against using the Γ model is the high memory con-
sumption and the high computational cost. To empha-
size this point Figure 1 depicts the development of the
Γ likelihood values over time under the HKY85+CAT
model with c = 25 (RAxML-CAT) and under the
HKY85+Γ model (RAxML-CAT) for 715 CHUCK on
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Figure 1. Γ Log Likelihood development over
time under the CAT and Γ models

the same starting tree.
Since the Γ model represents the by far more es-

tablished method all trees obtained with CAT have
been re-evaluated under Γ in order to match the per-
spective of the prevailing opinion in the phylogenetics
community. Due to the fact that, on average the re-
sults under CAT with c = 50 were worse then under
c = 25, most probably due to a more prominent effect
of over-fitting the data, only results with c = 25 are
depicted. The results for c = 50 are available on-line
at www.ics.foth.gr/˜stamatak. Table 1 indicates the
average RAxML execution time improvements of CAT
over Γ (column: T(Γ)/T(CAT)). In addition, the av-
erage execution time improvements of CAT+RΓ com-
pared to inferences under Γ were determined (column:
T(Γ)/T(CAT+RΓ)). Furthermore, the ratios of the
final Γ likelihood values lΓ(Γ)/lΓ(CAT) obtained un-
der Γ and CAT were determined. Thus, if lΓ(Γ) /
lΓ(CAT) < 1.0 the inference under Γ yielded better
final Γ likelihood values and if lΓ(Γ) / lΓ(CAT) > 1.0
the inference under CAT yielded better final Γ likeli-
hood values. An analogous ratio has been computed to
compare CAT+RΓ with the “pure” Γ inference values
(column: lΓ(Γ)/lΓ(CAT+RΓ)). Columns RF(Γ,CAT)
and RF(Γ,CAT+RΓ) indicate the average Robinson-
Foulds distance between the final tree topologies ob-
tained under CAT and Γ as well as CAT+RΓ and Γ
respectively. Finally, column α indicates the values
of the Γ shape parameter per dataset and colum #
pat the number of distinct patterns in each alignment
which corresponds to m (length of the computationally
intensive for-loops). The average values for all param-
eters determined over all datasets and all starting trees
are provided in the bottom line of Table 1. Note that,
the apparently small likelihood differences in Table 2

are significant since they have been calculated based
on the log likelihood values and therefore indicate the
difference in log likelihood units.

Table 2 provides a performance comparison of
the averages obtained with RAxML under CAT
(c = 25) with IQPNNI and PHYML under Γ.
Columns T(P)/T(R) and T(I)/T(R) indicate the
execution time ratio of T(PHYML)/T(RAxML)
and T(IQPNNI)/T(RAxML) respectively. In
addition, columns lΓ(P)/lΓ(R) and lΓ(I)/lΓ(R)
depict the ratio of the Γ likelihood values
of the final trees lΓ(PHYML)/lΓ(RAxML)and
lΓ(IQPNNI)/lΓ(RAxML).

Dataset T(P)/T(R) lΓ(P)/lΓ(R) T(I)/T(R) lΓ(I)/lΓ(R)
73 OLAF 0.84 1.000097 1.07 1.000077
74 OLAF 1.25 0.999948 1.23 0.999948
104 OLAF 0.79 1.000235 1.44 1.000684
128 OLAF 0.99 1.000041 0.92 0.999752
144 OLAF 1.43 1.000435 1.03 1.000706
178 OLAF 0.77 0.999954 0.80 0.999797
180 OLAF 0.37 1.002741 1.10 1.001716

101 SC 1.03 1.002887 1.20 1.001444
150 SC 0.90 1.003077 1.03 1.002178

150 ARB 2.17 1.000338 1.59 1.000444
193 VINH 0.36 1.000965 0.91 1.000542
200 ARB 1.48 1.000601 0.96 1.000265

218 RDPII 0.72 1.001665 0.91 1.001024
250 ARB 1.01 1.000267 0.82 1.000250
500 ARB 0.35 1.003701 0.76 1.001822

500 ZILLA 0.31 1.001872 0.72 1.000869
715 CHUCK 0.57 1.006013 0.76 1.003195
1000 ARB 0.65 1.002969 1.22 1.002700
1663 ARB 0.23 1.003419 0.82 1.003063
Averages 0.85 1.001644 1.02 1.001078

Table 2. Performance comparison of RAxML-
CAT with IQPNNI and PHYML

Table 3 indicates the ratios L2(Γ)/L2(CAT) and
L3(Γ)/L3(CAT) of the number of L2 and L3 cache
misses RAxML produced under the CAT and Γ mod-
els for a representative subset of alignments. Column
T(Γ)/T(CAT) indicates the execution time ratios. It is
important to emphasize that these results deviate from
the results in Table 1 since they have been obtained on
a distinct CPU architecture and are not average values
over multiple starting trees.

Dataset L2(Γ)/L2(CAT) L3(Γ)/L3(CAT) T(Γ)/T(CAT)
150 SC 10.76 6.88 3.55

150 ARB 5.83 5.84 3.62
193 V 10.90 8.19 2.82

200 ARB 6.32 10.02 5.13
218 RDPII 5.57 6.98 3.31
250 ARB 7.12 10.37 4.94

500 ZILLA 6.83 4.30 2.94
715 V 6.33 4.26 2.73

Averages 7.46 7.11 3.63

Table 3. L2 and L3 Cache misses for Γ and
CAT

Discussion: Modeling processes we know little
about, such as evolution, can lead to controversial dis-



Dataset T(Γ)/T(CAT) T(Γ)/T(CAT+RΓ) lΓ(Γ)/lΓ(CAT) lΓ(Γ)/lΓ(CAT+RΓ) RF(Γ,CAT) RF(Γ,CAT+RΓ) α # pat
73 OLAF 4.177018 2.779953 0.999959 0.999997 0.008392 0.005594 1.180 1,196
74 OLAF 3.456038 2.429559 0.999963 0.999963 0.029371 0.029371 0.575 578
104 OLAF 2.971896 1.465592 0.999616 1.000293 0.113659 0.098049 0.329 581
128 OLAF 8.728934 4.362863 1.000026 1.000268 0.016996 0.016996 3.166 2,985
144 OLAF 4.353371 2.233404 0.999983 1.000107 0.055789 0.055088 0.825 1,254
178 OLAF 4.742052 2.397997 0.999998 1.000183 0.026346 0.026062 0.634 1,150
180 OLAF 3.261044 2.300603 0.999608 1.000112 0.048179 0.046499 0.454 924

101 SC 8.607863 4.081393 0.999791 0.999873 0.098492 0.084925 0.417 1,630
150 SC 4.212270 2.630621 0.999955 1.000037 0.040404 0.032323 0.433 1,130

150 ARB 6.935958 4.125580 1.000019 1.000032 0.013805 0.014478 0.562 2,137
193 VINH 2.541966 1.822700 0.999929 1.000007 0.117755 0.112272 1.313 459
200 ARB 7.359741 3.981281 1.000068 1.000089 0.036272 0.034257 0.534 2,253

218 RDPII 5.890610 2.320172 0.999824 1.000018 0.120092 0.103695 0.545 1,847
250 ARB 7.076141 3.817160 1.000027 1.000076 0.032394 0.028974 0.580 2,330
500 ARB 7.378079 3.243040 1.000112 1.000207 0.057573 0.050351 0.579 2,751

500 ZILLA 4.156063 3.014160 1.000160 1.000203 0.054162 0.048947 0.494 1,193
715 CHUCK 4.663363 2.297917 0.999991 1.000146 0.043868 0.039804 0.842 1,231
1000 ARB 8.151405 2.894259 1.001454 1.001549 0.051377 0.048072 0.552 3,364
1663 ARB 4.897310 1.827990 1.000221 1.000320 0.087571 0.084487 0.621 1,576
Averages 5.450585 2.843487 1.000037 1.000183 0.055395 0.050539 0.770 1,609

Table 1. Comparison of final Γ and CAT trees computed with RAxML

cussions and views. Thus, an empirical approach which
takes into account the biological and medical insights
which can be achieved using competing models should
be adopted. This also holds for modeling rate het-
erogeneity in ML programs. The general necessity
of incorporating rate heterogeneity has been empiri-
cally deduced and accepted. In order to account for
the prevailing views trees inferred via CAT have been
evaluated under Γ to demonstrate that CAT can find
topologies with equally good and even partially bet-
ter likelihood values than Γ under exactly the same
search algorithm. Thus, CAT can be used as a work-
around for the computationally intense Γ model in a
large number of practical cases. In addition, the RΓ

search option has been incorporated into RAxML to
offer a trade-off between the currently widely preferred
Γ model and the speed of CAT. The CAT+RΓ algo-
rithm still yields an average reduction in execution
times by a factor of 2.8. The maximum average devi-
ations in Γ likelihood scores range between −0.000392
and +0.001454 for CAT and −0.000127 and +0.001549
for CAT+RΓ respectively (see Table 1). The score-
differences in those cases where CAT yields inferior
average likelihoods than Γ are acceptable. Moreover,
on average over all datasets both CAT and CAT+RΓ

yield better Γ likelihood scores at significantly lower
inference times. Despite the relatively small average
deviations of likelihood scores the topological distance
between trees obtained by Γ and CAT is in some
cases relatively large (104 OLAF, 101 SC, 193 VINH,
218 RDPII, 1663 ARB). Due to the more exhaustive
search algorithm and the highly optimized implemen-
tation of the likelihood functions, both for Γ and CAT,
RAxML clearly out-competes other fast and popular
ML programs such as IQPNNI and PHYML within
the same amount of execution time. For PHYML
the maximum score deviations range from −0.000052
to +0.006013 and for IQPNNI from −0.000248 to

+0.003195. It is important to note, that IQPNNI
and PHYML only out-competed RAxML under CAT
without refinement on 3 of the smaller datasets where
considerations regarding inference times and memory
consumption are less important. Simulated data has
not been used in the present study because there is no
means to generate simulated alignment data with Seq-
Gen [20] under the CAT model as opposed to the Γ
model. Therefore, such an analysis would a priori be
biased in favor of Γ. From the HPC perspective, the
arguments in favor of CAT are evident: The inference
times are significantly better for CAT and CAT+RΓ

due to the lower number of L2 and L3 cache misses
(see Table 3) and the smaller number of floating point
operations. In addition, analyses of huge trees with
several thousands of taxa, can be conducted with a
quadruple (for the most common implementation of Γ
using 4 distinct rate categories) alignment size under
CAT.

5. Conclusion & Future Work

To the best of the author’s knowledge this paper
provides the first comparative study of the Γ and
CAT models of rate heterogeneity on typical real-world
alignment data under the same search algorithm. In
addition, the first detailed description of a simple rate
categorization algorithm is given. The current release
of RAxML-VI which is available as open source code
at www.ics.foth.gr/˜stamatak also incorporates the RΓ

algorithm. It is important to note that the results
in this paper have been obtained using the old and
significantly slower hill-climbing search algorithm of
RAxML-V. The final Γ likelihood values of trees in-
ferred under CAT and CAT+RΓ are in many cases
better than those computed under Γ and only slightly
worse in the remaining cases. Moreover, RAxML un-
der CAT (without RΓ) out-competes other popular and



fast ML programs under Γ on all large datasets where
HPC-related considerations are important. However, a
method to mathematically determine a “good” num-
ber of rate categories c for a specific alignment un-
der some statistical criterion is desirable. Nonethe-
less, based on the Γ likelihood scores, it has been
demonstrated, that CAT can be used as a replacement
for Γ. Moreover, CAT currently represents the only
computationally feasible solution to accommodate rate
heterogeneity in the analyses of huge trees, given that
an analysis of 25,000 taxa with RAxML-VI currently
requires 2GB of main memory.
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