
1

Program Phase Detection and Exploitation
Chen Ding, Sandhya Dwarkadas, Michael C. Huang, Kai Shen

Department of Computer Science
University of Rochester

Rochester, NY
{cding,sandhya,mihuang,kshen}@cs.rochester.edu

John B. Carter
Department of Computer Science

University of Utah
Salt Lake City, Utah

retrac@cs.utah.edu

Abstract— Studies of application behavior reveal
the nested repetition of large and small program
phases, with significant variation among phases in
such characteristics as memory reference patterns,
memory and energy usage, I/O activity, and oc-
cupancy of micro-architectural resources. In this
project, we study theories and techniques for reliably
predicting and exploiting phased behavior, so an ad-
vanced execution environment may allocate resources
in a way that better matches program needs, or to
transform programs so that their needs better match
the available resources. In this paper, we present
the basic components of the study and report the
progress in the past half year.

I. INTRODUCTION

Despite technology advances, applications such
as scientific simulation, weather forecasting, bioin-
formatics, and data mining continue to demand
more computational, memory, and I/O resources
than are currently available. The need for scal-
able and high-performance computing continues to
grow, requiring that applications, and correspond-
ingly, the underlying architecture, are finely tuned
to match each other’s needs.

During the course of execution, programs
demonstrate diverse behaviors, which can be char-
acterized as behavior phases. Detecting these
phases and anticipating the behaviors within them
is a crucial prerequisite for static and/or run-time
adaptations that improve performance or other as-

pects of execution. Adaptation techniques may in-
clude hardware reconfiguration, data reorganization
and redistribution, changes in scheduling and task
assignment, and modifications to I/O management.

We have used phases to predict [9] and evalu-
ate [15] performance, to drive the control of adap-
tive hardware (primarily at the micro-architectural
level) [3], [4], [5], [8], [11], [12], [16], and to
modify the strategies used for scheduling and load
balancing [14], [20], [21], I/O prefetching and
caching [18], [19], and data distribution and co-
herence [1], [2], [6], [24].

Based on our past experience, we envision an
advanced execution system along the lines of Fig-
ure 1. Applications are instrumented based on
static analysis and small-scale profiling, to include
“hooks” at likely phase boundaries, and to embody
initial estimates of phase behavior. Full-scale runs
then incorporate lightweight run-time monitoring
to collect statistics on input characteristics and
dynamic resource usage, under partial control of
the instrumentation hooks. Feedback from this run-
time monitoring is then used to refine the instru-
mentation and build an application profile, for use
in future runs. In steady state, the instrumentation
and run-time monitor together direct the application
of adaptation mechanisms that exploit application
phases.

The following sections describe in detail our
recent research in phase detection and exploitation
at different levels of an execution environment.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2

monitoring
Runtime

Phase
detection

Phase behavior
exploitation

Scheduling and
load balancing

I/O prefetching and
multitasking control

Array regrouping
and structure splitting

Scientific, commercial,
and general−purpose

applications

Source code−driven

Data−driven

phase dectection

phase dectection

Application profile

Fig. 1. Overview of research issues.

II. PHASE DETECTION

Informally, a phase is a period of execution
whose characteristics are qualitatively different
from those of the neighboring periods. A phase
detection algorithm must detect events in the ex-
ecution of an application that signal the transition
between phases and can accurately forecast behav-
ior in the upcoming phase. The events may be from
the instruction stream (e.g., a certain code section is
reached), the data stream (e.g., certain data elements
have been accessed, or the data access pattern has
changed), an asynchronous external event (e.g., the
arrival of an incoming message), or a combination
of these.

Unfortunately, phase boundaries are not always
clear and unambiguous. In particular, they may
depend on the behavior being measured, which in
turn depends on the optimization technique one
hopes to apply. Phases also tend to nest, reflecting
the hierarchical structure of many algorithms. At
higher levels of the hierarchy the behavior inside a
phase may not be uniform.

One can subdivide the design space of detection
algorithms based on whether a “top-down” or a
“bottom-up” approach is used, and whether the
detection is performed online or offline (Figure 2).
In a top-down approach, execution is divided into
candidate phases based on the high-level structure
of the source code: the beginnings of long-running
subroutines and loops mark the potential boundaries
between phases. In a bottom-up approach, one starts
with the behavior metrics observed during execu-
tion, and looks for recurring patterns and changes.

Both approaches can be carried out entirely
online, as the program is executing, or partially
offline, using feedback from prior executions or

from small-scale profiling or sampled simulation.
The top-down approach typically requires modest
compile-time instrumentation to insert instructions
at candidate phase boundaries. The bottom-up ap-
proach can be performed entirely on-line, with
unmodified program binaries, but is likely to be
strengthened considerably by going back to the
source code to correlate observed phase transitions
with one or a group of static instructions.

Offline phase analysis has two important advan-
tages. First, it inserts phase markers into a program.
At run time, a phase marker is “active” rather than
reactive. It allows immediate recognition of a phase
change and precise monitoring of phase behavior
at run time. In comparison, purely online detection
detects a phase change only after the change is
happened. Second, repetition patterns are usually
associated with repetition in the code [15]. The
static code associated with a phase also provides
a natural link between different executions of the
same program. Purely online phase detection mech-
anisms have no natural way to pass information
from one execution of a program to the next. Our
past work in architectural adaptation [17], [16]
suggests that information from prior executions can
help us make significantly better decisions. We thus
propose to focus on the profile-driven (partially
offline) half of the design space.

Next we describe two profile-driven strategies.
The first is bottom-up: it monitors a run-time metric
(data reference locality) and looks for patterns and
changes. The second is top-down: it identifies can-
didate phases (long-running subroutines and loop
nests) and looks for repetitions and consistency.
Both insert phase markers into the source or the
object code.

3

Top-down

Online

Offline

Bottom-up

Huang+, FDDO’01 and ISCA’03

Magklis+, ISCA’03

Balasubramonian+, MICRO’00

Balasubramonian+, ISCA’03

Duesterwald+, PACT’03

Shen+, ASPLOS’04

Balasubramonian+, MICRO’00

Huang+, ISCA’03

Fig. 2. Design space of phase detection and our recent papers in major conferences.

A. Data and Input-Driven Bottom-Up Analysis

Many programs have recurring locality phases.
For example, a simulation program may test the
dynamics of some complex physical system. The
computation sweeps through a mesh structure re-
peatedly in many time steps. The cache behavior
of each time step should be similar because the
majority of the data access is the same despite local
variations in control flow. Given a different input,
for example, another physical system, the previ-
ously identified phase of program execution will
again have similar locality in the new execution,
although the phase locality may be very different
from the previous one. Phase behavior of this sort is
common in structural, mechanical, molecular, and
other scientific and commercial simulations.

We have introduced a 3-step phase detection and
behavior prediction method based on reuse dis-
tance [23]. The first step uses small-scale profiling
runs to analyze data locality. By examining data
reuses of varying lengths, the analysis can “zoom
in” and “zoom out” over long execution traces. It
detects locality phases using a statistical method
variable-distance sampling, wavelet filtering, and
optimal phase partitioning. The second step then
analyzes the instruction trace and correlates the
phase boundaries with static instructions in the
application binary. The third step uses grammar
compression to identify phase hierarchies and then
inserts marker instructions into the application via
binary rewriting. (No access to source code is
required.) During execution, the interval between
marker instructions constitutes a dynamic phase
instance. The program monitors the behavior of the
first few dynamic instances and uses it to predict the
behavior of subsequent instances. Because analysis
is bottom up, it considers all instructions in the
program binary as potential phase-change points

and can handle programs where the loop and pro-
cedure structures are obfuscated by an optimizing
compiler.

GCC is the GNU C compiler included in
SPEC2K benchmark set. It represents a class of dy-
namic programs whose behavior depends strongly
on their input. The behavior varies not only from
one input to another but also across sections of the
same input. Other examples include interpreters,
compression and transcoding utilities, databases,
and web servers. These applications share the
common feature that they provide some sort of
service: they accept, or can be configured to ac-
cept, a sequence of requests, each of which is
processed more-or-less independently of the others.
Because they are so heavily dependent on their
input, service-oriented applications display much
less regular behavior than does the typical scientific
program.

We have developed a new technique called active
profiling, in which we provide a service-oriented
application with an artificially regular input and use
the bottom-up phase analysis to identify behavior
phases and mark them in the program executable.
Active profiling differs from traditional profiling in
that its input is specially designed to expose desired
behavior in the program. Our analysis finds the
compilation loop and its inner phases and inserts
eight markers in the program that includes 120 files
and 222182 lines of C code at the source level.
Given the complexity of the code, manual phase
marking would be extremely difficult for someone
who does not know the program well. Even for
an expert in GCC, it may not be easy to identify
sub-phases that occupies a significant portion of the
execution time.

Figure 3 shows the phase behavior of GCC.
The left-hand graph shows the IPC (instruction per

4

cycle) curve for the regular input. The IPC is mea-
sured on IBM using hardware counters. Each point
on the curve is the IPC of 10 ms of the execution.
Based on the regular behavior, our phase analysis
marks the phases in the program. The right-hand
graph shows the IPC curve for a reference input,
166.i. The phase and sub-phase instances are sep-
arated by solid and dotted lines respectively. The
presence of a regular pattern is not obvious from
visual inspection until it is divided into phases.
Although phase instances have different widths and
heights, they show a similar signal shape—with
two high peaks in the middle and a declining tail.
Testing on other inputs shows a similar result,
which means that GCC has a consistent program
pattern—the same complex compilation stages are
performed on each function in each input file. The
phase and sub-phase markers accurately capture the
variation and repetition of program behavior, even
when the shape of the curve is not exactly identical
from function to function or from input to input.
The phase marking is done off-line and requires no
on-line measurement.

Results indicate that data-driven locality phase
prediction can be very accurate, even when profiling
on very small inputs and then testing on much
longer runs. In addition to Tomcatv and GCC, our
tests were conducted on a wide range of appli-
cations [23], [22], including a fast Fourier trans-
formation (FFT); a finite-element solver (Swim);
a partial differential equation solver (AppLU); two
simulation programs, MolDyn and Mesh; and four
service-oriented programs, a UNIX compression
utility (Compress), a lisp interpreter LI, a natu-
ral language parser Parser, and a object-oriented
database Vortex.

In our experiments phase size ranged from 2.2
to 98 million instructions in the profiling runs, and
from 33 million to 1.7 billion in the production
runs. The production runs had up to 150 times
more phases and 1000 times longer execution than
the profiling runs. Across most test programs, the
prediction coverage and accuracy are over 90%.

We also compared locality phase prediction with
manual phase marking. We hand-analyzed each
program and inserted phase markers based on our
reading of the code and its documentation. When a
program executes, both automatically and manually

inserted markers give a sequence of phase predic-
tions. We measure the overlap between the two
sequences using the standard notions of precision
and recall. We omit per-application results due to
lack of space. Overall, the average recall is 96% for
profiling and 99% for production runs, showing that
automatic marker insertion catches all manually
marked phase transitions. Precision is also high for
the majority of the programs, but low in a few cases
because, as we found out through manual inspection
of the code, the automatic analysis is more thor-
ough, and catches cases that the programmer may
miss. Four of the test programs were grid, mesh, or
N-body simulations with time steps. In all cases, the
analysis identified the time step loop as the largest
composite phase.

We will extend this framework to more complex
and dynamic programs and to study phase detection
in parallel programs. The PSIMUL tool at IBM
showed recurring memory-access patterns among
processes of parallel scientific programs [7], indi-
cating that we may apply our bottom-up framework
to identify repeating locality patterns and mark
phases in the program.

B. Top-Down Phase Detection

In top-down phase detection, we begin by identi-
fying long-running subroutines and loop nests, each
of which is then tagged with marker instructions
in the program executable. At run time the marker
instructions trigger the execution of library code
that tracks the metrics of interest, identifying points
at which changes suggest the need for dynamic
adaptation.

We follow a systematic methodology to iden-
tify major code structures: long-running subrou-
tines and long-running loop nests within them. To
avoid instrumenting small subroutines and loops
(which could result in noticeable and unnecessary
overhead in production runs), we begin with a
profiling run that instruments all subroutines and
loops, constructs a dynamic call tree, and measures
the aggregate duration of each node in the tree [16].
We then traverse the tree from the leaves to the root,
identifying as “long-running” each node whose
aggregate duration, excluding that of long-running
children, exceeds a given threshold. For production
runs, we then instrument only the long-running

5

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

0 1 2 3 4 5 6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

Fig. 3. Phase behavior of GCC from SPEC2K. Instances of the outer phase are separated by solid (vertical) lines and inner
phases by dotted lines. The left-hand figure shows the training input with regular behavior. The right-hand figure shows a
reference input, 166.i. The phase markers accurately identify the phase behavior even though the length of the (sub)-phase
instances is input dependent.

nodes. This methodology ensures that, with high
probability, each instrumented code section (call
tree node) runs long enough to justify the overhead
of checking behavioral metrics, yet briefly enough
to capture every phase transition worth exploit-
ing. Moreover, every application phase, at every
hierarchical level of granularity, begins with an
instrumented code section. Experiments with a wide
range of applications indicate very high correlation
in coverage and accuracy between profiling and
production runs.

Phase behavior is often strongly tied to source
code structure, as evident from data in Figure 4,
drawn from our recent work [15]. This figure sum-
marizes the COV (coefficient of variation: standard
deviation divided by the mean) among all dynamic
instances of each code section (long-running sub-
routine or loop nest), for a variety of behavioral
metrics, on both integer and floating-point appli-
cations. In general the COV values are very low.
Most floating-point applications, in particular, have
an average COV of only a few percent, indicating
that the code sections have very small behavior
variations.

Each execution phase follows a unique marker
(or marker augmented with calling history) that
serves as an ID to the phase. At runtime, each
marker will transfer control to a library that
implements dynamic behavior monitoring mech-
anisms and phase-based exploitation algorithms.
This mechanism lends itself well to behavior pre-

diction based on history. Behavior of past instances
(in the same or an earlier program execution) of
the same code can be recorded and used to predict
its future behavior. Based on extra behavior char-
acterizations, each different exploitation technique
may choose to react to a different subset of the
phase markers as the behavior aspect of interest
differs from one optimization to another and not
every aspect will change significantly across these
markers.

To monitor execution behavior, we use com-
monly available hardware counters (for dispatched
and committed instructions, instruction mix, cache
misses, branch mis-predictions, queue and func-
tional unit occupancy rates, etc.), as well as soft-
ware instrumentation (for higher-level operations
like synchronization, loop counts, context switch-
ing, I/O operations, message delivery, etc.)

III. ON-GOING PROJECTS

We describe three current projects that improve
the execution environment at chip multi-processor,
program, virtual machine, and uni-processor levels.

A. Compatible Phase Co-Scheduling on Multi-
Threaded CMP

The industry is rapidly moving towards the adop-
tion of Chip Multi-Processors (CMPs) of Simul-
taneous Multi-Threaded (SMT) cores for general
purpose systems. The most prominent use of such
processors, at least in the near term, will be as

6

0%

10%

20%

30%

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n Cycles per instruction
Basic block size
Branch prediction rate
Memory instruction percentage
L1 data cache hit rate

bz
ip

2

eo
n

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
gr

id

sw
im

si
xt

ra
ck

w
up

w
is

e

Fig. 4. Average variability of different dynamic code section instances for SPEC 2000 applications.

job servers running multiple independent threads on
the different contexts of the various SMT cores. In
such an environment, the co-scheduling of phases
from different threads plays a significant role in
the overall throughput. Less throughput is achieved
when phases from different threads that conflict
for particular hardware resources are scheduled
together, compared with the situation where com-
patible phases are co-scheduled on the same SMT
core. Achieving the latter requires precise per-phase
hardware statistics that the scheduler can use to
rapidly identify possible incompatibilities among
phases of different threads, thereby avoiding the
potentially high performance cost of inter-phase
contention.

We have developed phase co-scheduling policies
for a dual-core CMP of dual-threaded SMT proces-
sors [10]. We explore a number of approaches and
find that the use of ready and in-flight instruction
metrics permits effective co-scheduling of compat-
ible phases among the four contexts. This approach
significantly outperforms the worst static grouping
of threads, and very closely matches the best static
grouping, even outperforming it by as much as 7%.

B. Adaptive Memory Management

With behavior phases, the adaptive heap sizing
becomes feasible for utility programs for three
reasons. First, a phase represents a memory usage
cycle. Garbage collection is best applied at the
phase boundaries, because all temporary objects
will be dead and ready for collection. Second, when
a utility program takes many independent requests,
the average execution time per phase instance tends
to be consistent because of the Law of Large
Numbers. By measuring the average speed at run

time, an adaptive method can estimate the effect
of different heap sizes on program performance.
Finally, the granularity of a phase is much larger
than the granularity of a statement or a procedure,
so an adaptive scheme can monitor execution at
the phase boundaries without minimal observable
overhead.

We have implemented and tested several
schemes. Figure 5 shows the performance compar-
ison for SPEC PseudoJBB, a e-commerce bench-
mark that constructs several databases and per-
forms a series of queries. We test three garbage
collectors—mark-sweep (MarkSweep), copy mark-
sweep (CopyMS), and generational copy mark-
sweep(GenCopy). We limit the physical memory
size to be 128MB.

The fixed schemes preset the heap size as shown
by x-axis as a parameter to the virtual machine
before the program runs. As shown by Figure 5,
the performance for most heap sizes is factor of
two to five worse than the performance for the
best heap size, which is the global minima of
the curve. The “sweep spot” differs for differ-
ent garbage collections—60MB for MarkSweep,
105MB for CopyMS, and 120MB for GenMS. The
goal of the adaptive schemes is to automatically
find the best heap size. As shown by dotted lines,
the program experiments with a range of heap sizes.
The performance is nearly optimal for CopyMS and
10% to 20% off for the other two garbage collectors
in part because of the overhead of monitoring and
the cost of trying different heap sizes.

This work is done in collaboration with
Chengliang Zhang, Kirk Kelsey, and Xipeng Shen
at Rochester and Matthew Hertz at Canisius Col-
lege.

7

0 50 100 150 200 250
100

200

300

400

500

600

Used heap size (M)

E
xe

cu
tio

n
tim

e
(s

)

GenCopy
CopyMS
MarkSweep
Adap GenCopy
Adap CopyMS
Adap MarkSweep

Fig. 5. The performance of SPEC Pseudo JBB using adaptive heap sizing (the leveled lines) and fixed heap sizes in the
Jike’s RVM using three of its garbage collectors, mark-sweep (MS), copy mark-sweep (CopyMS), and generational copy mark-
sweep(GenCopy)

C. Software-Hardware Cooperative Memory Dis-
ambiguation

We have examined several microarchitectural
performance bottlenecks, especially for high-
performance numerical applications. We found that
the memory disambiguation mechanism that tracks
the out-of-order execution of memory operations
is often limited in its capacity in handling a
large amount of in-flight operations. This in turn
limits the hardware’s capability of exploiting the
instruction-level parallelism of far-apart instruc-
tions. We are exploring a range of solutions to
anticipate and circumvent these performance bot-
tlenecks. One angle we looked at is to use binary
analysis to identify load instructions that under
the microarchitecture’s practical constraints will not
result in an execution order that violates program
semantics regardless of its execution timing. These
instructions are then handled specially to yield
precious microarchitectural tracking resources at
run-time to reduce stalling. Our findings show that
a significant amount of load instructions can bypass
the hardware, not only saving energy but also
relieving pressure on an important resource and
therefore improving performance [13].

Our simulation results suggest that programs are
often slowed down at critical junctions for extended

periods of time. These slowdowns are often trig-
gered by various long-latency stalls. Our goal is to
develop a systematic approach to accurately predict
these stalls and then address them either through
counter measures or by allowing the hardware
resources to be used in independent tasks. Our
near-term plan is to investigate a software-hardware
cooperative mechanism that allows a relatively in-
expensive diagnostic/scouting thread to be spawned
and executed ahead of the real computation.

IV. SUMMARY

In the paper, we have presented the design and
the basic research issues in phase detection and
exploitation in an advanced execution environment.
Significant empirical evidence show the effective-
ness of bottom-up and top-down phase detection
schemes. Based on these techniques, we have ob-
tained encouraging results on dynamic memory
management, co-scheduling on multi-threaded chip
multi-processors, and software-hardware coopera-
tive memory disambiguation. At least three pa-
pers [10], [13], [25] will appear in 2006 in par-
allel computing, computer architecture, and pro-
gramming language conferences and have explicitly
acknowledged the support from National Science
Foundation (Contract No. CNS-0509270). The sup-

8

port comes from a program directed by Frederica
Darema.

REFERENCES

[1] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel.
Software DSM protocols that adapt between single writer
and multiple writer. In Proc. of the 3rd Intl. Symp. on
High Performance Computer Architecture, pages 261–
271, San Antonio, TX, February 1997.

[2] C. Amza, A. L. Cox, S. Dwarkadas, L.-J. Jin, K. Ra-
jamani, and W. Zwaenepoel. Adaptive protocols for
software distributed shared memory. In Proc. of the IEEE,
March 1999.

[3] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas. Memory Hierarchy Reconfiguration
for Energy and Performance in General-Purpose Pro-
cessor Architectures. In International Symposium on
Microarchitecture, pages 245–257, Monterey, California,
Dec. 2000.

[4] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas. A Dynamically Tunable Memory Hi-
erarchy. IEEE Transactions on Computers, 52(10):1243–
1258, Oct. 2003.

[5] D. Chaver, L. Pinuel, M. Prieto, F. Tirado, and M. Huang.
Branch Prediction on Demand: an Energy-Efficient So-
lution. In International Symposium on Low-Power Elec-
tronics and Design, Seoul, Korea, Aug. 2003.

[6] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L.
Scott. Multi-level shared state for distributed systems.
In Proc. of the 2002 Intl. Conf. on Parallel Processing,
pages 131–140, Vancouver, BC, Canada, August 2002.

[7] F. Darema, G. F. Pfister, and K. So. Memory access
patterns of parallel scientific programs. In Proceedings
of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May 1987.

[8] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian,
D. Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis,
and M. Scott. Integrating Adaptive On-Chip Storage
Structures for Reduced Dynamic Power. In Interna-
tional Conference on Parallel Architectures and Compila-
tion Techniques, pages 141–152, Charlottesville, Virginia,
Sept. 2002.

[9] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Char-
acterizing and Predicting Program Behavior and its Vari-
ability. In International Conference on Parallel Architec-
tures and Compilation Techniques, pages 220–231, New
Orleans, Louisiana, Sept. 2003.

[10] A. El-Moursy, R. Garg, D. H. Albonesi, and
S. Dwarkadas. Compatible phase co-scheduling on
a cmp of multi-threaded processors. In Proceedings of
2006 International Parallel and Distribute Processing
Symposium (IPDPS), April 2006.

[11] M. Huang, D. Chaver, L. Pinuel, M. Prieto, and F. Tirado.
Customizing the Branch Predictor to Reduce Complexity
and Energy Consumption. IEEE Micro, 23(5):12–25,
Sept. 2003.

[12] M. Huang, J. Renau, and J. Torrellas. Positional Adap-
tation of Processors: Application to Energy Reduction.
In International Symposium on Computer Architecture,
pages 157–168, San Diego, California, June 2003.

[13] R. Huang, A. Garg, and M. Huang. Software-Hardware
Cooperative Memory Disambiguation. In International
Symposium on High-Performance Computer Architecture,
Austin, Texas, Feburary 2006.

[14] S. Ioannidis, U. Rencuzogullari, R. Stets, and
S. Dwarkadas. CRAUL: Compiler and run-time
integration for adaptation under load. Journal of
Scientific Programming, pages 261–273, August 1999.

[15] W. Liu and M. Huang. EXPERT: Expedited Simulation
Exploiting Program Behavior Repetition. In International
Conference on Supercomputing, St. Malo, France, June–
July 2004.

[16] G. Magklis, M. Scott, G. Semeraro, D. Albonesi, and
S. Dropsho. Profile-based Dynamic Voltage and Fre-
quency Scaling for a Multiple Clock Domain Micro-
processor. In International Symposium on Computer
Architecture, pages 14–25, San Diego, California, June
2003.

[17] G. Magklis, G. Semeraro, D. H. Albonesi, S. Dropsho,
S. Dwarkadas, and M. L. Scott. Dynamic frequency and
voltage scaling for a multiple clock domain micropro-
cessor. IEEE Micro, 23(6):62–68, November–December
2003.

[18] A. E. Papathanasiou and M. L. Scott. Energy efficiency
through burstiness. In Proc. of the 5th IEEE Workshop on
Mobile Computing Systems and Applications, Monterey,
CA, October 2003.

[19] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. In Proc. of the USENIX 2004
Technical Conf., Boston, MA, June-July 2004.

[20] U. Rencuzogullari and S. Dwarkadas. Dynamic adap-
tation to available resources for parallel computing in
an autonomous network of workstations. In 8th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, June 2001.

[21] U. Rencuzogullari and S. Dwarkadas. A technique for
adaptation to available resources on clusters independent
of synchronization methods used. In International Con-
ference on Parallel Processing, Aug. 2002.

[22] X. Shen, C. Ding, S. Dwarkadas, and M. L. Scott.
Characterizing phases in service-oriented applications.
Technical Report TR 848, Department of Computer Sci-
ence, University of Rochester, November 2004.

[23] X. Shen, Y. Zhong, and C. Ding. Locality Phase Predic-
tion. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Boston, Massachusetts, Oct. 2004.

[24] R. Stets, S. Dwarkadas, L. I. Kontothanassis, U. Rencu-
zogullari, and M. L. Scott. The effect of network total
order, broadcast, and remote-write capability on network-
based shared memory computing. In Proc. of the 6th
Intl. Symp. on High Performance Computer Architecture,
Toulouse, France, January 2000.

[25] C. Zhang, C. Ding, M. Ogihara, Y. Zhong, and Y. Wu.
A hierarchical model of data locality. In Proceedings
of ACM Symposium on Principles of Programming Lan-
guages, Charleston, SC, January 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

