
A Parallel Exact Hybrid Approach for Solving Multi-Objective

Problems on the Computational Grid∗

M. Mezmaz, N. Melab and E-G. Talbi

Laboratoire d’Informatique Fondamentale de Lille

UMR CNRS 8022, INRIA Futurs - DOLPHIN Project

Cité scientifique - 59655, Villeneuve d’Ascq cedex - France

{mezmaz,melab,talbi}@lifl.fr

Abstract

This paper presents a parallel hybrid exact multi-
objective approach which combines two metaheuristics
- a genetic algorithm (GA) and a memetic algorithm
(MA), with an exact method - a branch and bound
(B&B) algorithm. Such approach profits from both the
exploration power of the GA, the intensification capa-
bility of the MA and the ability of the B&B to pro-
vide optimal solutions with proof of optimality. To
fully exploit the resources of a computational grid, the
hybrid method is parallelized according to three well-
known parallel models - the island model for the GA,
the multi-start model for the MA and the parallel tree
exploration model for the B&B. The obtained method
has been experimented and validated on a bi-objective
flow-shop scheduling problem. The approach allowed to
solve exactly for the first time an instance of the prob-
lem - 50 jobs on 5 machines. More than 400 processors
belonging to 4 administrative domains have contributed
to the resolution process during more than 6 days.

Keywords: Multi-Objective Optimization ; Hybridiza-
tion; Parallel Computing; Genetic/Memetic Algo-
rithm; Branch and Bound; Flow-Shop.

1. Introduction

Combinatorial optimization addresses problems for
which the resolution consists in finding the optimal
configuration(s) among a large finite set of possible con-
figurations. Most of these problems are NP-hard and
multi-objective in practice. Their resolution is often

∗This work is part of the CHallenge in Combinatorial Op-
timization (CHOC) project supported by the National French
Research Agency (ANR) through the Hign-Performance Com-
puting and Computational Grids (CIGC) programme.

performed either with exact or near-optimal methods.
The best results have often been provided by hybrid ap-
proaches combining both of these different methods [8].
Nevertheless, as the hybridization mechanism is CPU
time-consuming it is not often fully exploited in prac-
tice. Indeed, experiments with hybrid algorithms are
often stopped before the convergence is reached [1].
Solving large size and time-intensive combinatorial op-
timization problems with parallel hybrid optimization
algorithms requires a large amount of computational
resources. Grid computing is recently revealed as a
powerful way to harness these resources and efficiently
deal with such problems.
In this paper, we are interested a parallel hybrid ap-
proach that combines a GA and an MA (including a lo-
cal search method) to provide the AGMA algorithm [1].
This latter is powerful as it profits from the exploration
power of the GA and the intensification capability of
the MA. AGMA is then combined with a B&B algo-
rithm to provide a hybrid method which is able to pro-
duce efficiently exact solutions to multi-objective prob-
lems. Different models have been proposed in the lit-
erature for the parallel design and implementation of
optimization methods [6]. Three of them are exploited
in this paper: the island model, the multi-start model
and the parallel exploration of search tree. The island
model allows to provide more effective, diversified and
robust solutions by delaying the global convergence of
the GA. The multi-start model allows the paralleliza-
tion of the local search phase of the MA algorithm.
The parallel exploration of search tree allows to speed
up the execution of the B&B algorithm.
The proposed approach has been experimented on the
bi-objective permutation flow-shop problem [10]. The
problem consists roughly to find a schedule of a set of
jobs on a set of machines that minimizes the makespan
and the total tardiness. Jobs must be scheduled in

1-4244-0054-6/06/$20.00 ©2006 IEEE

the same order on all machines, and each machine can
not be simultaneously assigned to two jobs. The paral-
lel hybrid approach has been applied to such problem.
The approach allowed to solve exactly for the first time
an instance of the problem - 50 jobs on 5 machines.
More than 400 processors belonging to 4 administra-
tive domains have contributed to the resolution process
during more than 6 days.
The rest of this paper is organized as follows: Sec-
tion 2 highlights the major features of multi-objective
optimization and presents an overview of GAs, MAs
and B&B. Sections 3 and 4 describe the hybridization
and parallelization of the combined algorithms respec-
tively. Section 5 formulates the flow-shop permutation
problem and reports the obtained experimental results.
The conclusion is drawn in Section 6.

2. Multi-objective combinatorial opti-

mization

2.1. Concepts and definitions

In combinatorial optimization, a problem can
be mono-objective or multi-objective whether one
is interested respectively in one or more than one
objective. A cost is associated to each solution of the
problem being tackled, and this cost can be according
to the number of objectives, either a simple value or a
vector of values. Solving a combinatorial optimization
problem consists in finding the solution(s) having the
optimal cost. If the optimality concept is simple to
define in the case of mono-objective problems, it is
not obvious for multi-objective problems. Optimality
for multi-objective problems is generally defined using
the relation of dominance between vectors.

Definition.1:
Let X = (X1, ..,XN) and Y = (Y1, .., YN) be two
vectors and i,j ∈ [1,N] two integers. The dominance
relation is defined as follows:
X dominates Y ⇐⇒ (∀i,Xi ≤ Yi) and (∃j,Xj < Yj)

The dominance relation constitutes a partial order,
implying that several optimal solutions may exist.
The set of optimal solutions is called Pareto Optimal
Set, and the Pareto front is the corresponding set of
the Pareto Optimal Set in the objective space.

Definition.2:
Let X = (X1, ..,XN) and Y = (Y1, .., YN) be two
vectors and i,j ∈ [1,N] two integers. Let E be a set of
vectors, and F the Pareto front of E,

X ∈ F ⇐⇒ � Y ∈ E / Y dominates X.

2.2. Resolution methods

In practice, there is a broad range of NP-hard dis-
crete multi-objective optimization problems (MOPs).
Basically, two major approaches are often used to
tackle these problems: exact methods and metaheuris-
tics. Exact methods allow to find exact solutions
but they are impractical as they are extremely time-
consuming. Conversely, the use of metaheuristics gen-
erally meets the needs of decision makers to efficiently
generate “satisfactory” solutions. In this work, we are
interested in two metaheuristics GA and MA and one
exact method i.e. B&B.
- GAs are population-based metaheuristics based on
the iterative application of stochastic operators on a
population of candidate solutions.
- MAs have strong similarities with “classical” GAs.
They are designed in order to speed up the convergence
of GAs, considered to be slower. The principal idea is
to include a local search mechanism in a GA process
by replacing one of its genetic operators. For this rea-
son, MAs are often considered as GAs hybridized with
a local search.
- B&B algorithms are based on an implicit enumer-
ation of all the solutions of the considered problem.
The solution space is explored by dynamically building
a tree whose root node represents the problem being
solved and its whole associated search space, the leaf
nodes are the possible solutions and the internal nodes
are subspaces of the total solution space.

3. A Multi-objective exact hybrid ap-

proach

In order to take advantage of the benefits brought by
various methods, it is often necessary to combine them.
Nowadays, hybrid methods allow to obtain the best re-
sults on the majority of the academic and practical
problems. In our work, we addressed the high level hy-
bridization with the co-evolutionary and relay modes.
In the high level hybridization, the internal structure of
a method is not modified unlike in the low level, where
a resolution method is inserted into another one. In
the relay mode, the methods are sequentially executed
contrary to the co-evolutionary mode where they are
simultaneously executed. A complete presentation of
the various modes and levels of hybridization can be
found in [8].
In this paper, we are interested in combining the three
optimization methods presented above: GA, MA and

B&B. The objective is to take benefits from each of
them: exploration powerful of the GA, search inten-
sification capability of MA and the ability of B&B to
provide exact solutions.

3.1. AGMA: A hybridization of GA & MA

In single objective optimization, it is well known
that GAs provide better results when they are hy-
bridized with local search algorithms. Indeed, the GA
convergence is too slow to be really effective without
any cooperation. In [1], a hybrid genetic-memetic al-
gorithm named AGMA that combines GA and an MA
has been proposed. In this paper, we do not give the
details and parameters of the two algorithms, and if
needs be, the reader is referred to [1]. The GA uses
mainly two parameters: an archive (Pareto front) PO∗

of non-dominated solutions, and a progression ratio
PPO∗ of PO∗. At each generation, these two parame-
ters are updated. If no significant progression is noticed
(PPO∗ < α, where α is a fixed threshold), an intensified
search process is triggered. The intensification consists
in applying MA to the current population during one
generation. The application of MA returns a Pareto
front PO∗

′

that serves to update the Pareto front PO∗

of the GA.
MA consists in selecting randomly a set of solutions
from the current population of the GA. A crossover
operator is then applied to these solutions and new
solutions are generated. Among these new solutions
only non-dominated ones are maintained to constitute
a new Pareto front PO∗

′

. A local search is then applied
to each solution of PO∗

′

to compute its neighborhood.
The non-dominated solutions belonging to the neigh-
borhood are inserted into PO∗

′

.

3.2. Hybridization of AGMA with B&B

The goal of the hybridization with B&B is to ex-
ploit the complementary advantages of both AGMA
and B&B. Indeed, the AGMA algorithm allows to pro-
vide efficiently near-optimal solutions. The B&B algo-
rithm exploits these solutions as lower bounds to elimi-
nate a large number of nodes, and thus to provide more
efficiently exact solutions. In this work, we exploited
and experimented two high-level hybridization modes:
relay and co-evolutionary. In the relay mode, B&B is
initialized with the Pareto front provided by AGMA.
In the co-evolutionary mode, B&B and AGMA are de-
ployed simultaneously and cooperate by exchanging so-
lutions of their Pareto fronts. In both modes, the role
of AGMA is to provide B&B with good solutions in
order to eliminate earlier B&B nodes that hold bad

solutions.

4. A Multi-level parallelization of the ap-

proach

Nowadays, parallel computing is more and more per-
formed on computational grids. These systems exploit
resources (processors, memory, etc.) of thousands of
computers offering the illusion of an extremely pow-
erful virtual unique computer. They make it possible
to solve problem instances which require a very long
execution time. A computational grid represents a vir-
tual infrastructure built of a coordinated shared set
of computational resources, distributed and heteroge-
neous, for which there is no centralized administration.
Many middlewares are proposed to facilitate their ex-
ploitation. However, they do not often allow to support
parallel computing. Indeed, many of them do not pro-
vide tools to make possible the cooperation between
parallel tasks. Therefore, we have proposed in [7] a co-
ordination model as an extension of these middlewares.
The model is particularly adapted to multi-objective
combinatorial optimization.

4.1. The coordination model

Several coordination models have been proposed in
the literature, and Linda [3] is certainly the most pop-
ular of them. It is based on the generative communi-
cation paradigm. In this latter, the exchange of mes-
sages between the processes is done via a shared mem-
ory in which a sender process puts its message and
from which a receiver process recovers it. In Linda, the
shared memory and a message are respectively called
tuple space and tuple. The tuple space is a collection
of tuples, not a set, given the fact that it can contain
several copies of the same tuple. A tuple is a finite or-
dered series of typed fields, each field containing either
a typed value or a process call, named process field. A
tuple which contains only typed values is called data
tuple. A tuple which contains at least a process field is
called process tuple.
As soon as a process tuple finishes its execution, it
transforms itself into a data tuple by replacing the
process fields by the values returned by their respec-
tive process calls. Unlike a data tuple, which is a pas-
sive entity, a process tuple is an active entity which
exchanges tuples by generating, reading and consum-
ing other tuples. Linda is not completely adequate for
parallel multi-objective combinatorial optimization on
grids. Therefore, the extensions proposed in [7] con-
sist in adding group, non-blocking and rewriting oper-
ations. Group operations are necessary because sets of

solutions (Pareto fronts) are managed. Non-blocking
and rewriting operations are important in a volatile
and large scale grid.

4.2. Multi-level parallelization

Lot of work was carried out on the parallelization
of the combinatorial optimization methods. From the
various adopted parallel approaches, a certain number
of models are identified [9, 6, 2]. In our work, three
models are exploited - the island model for the GA part
of AGMA, the multi-start model for the local search
part of MA, and the parallel tree exploration model
for the B&B algorithm.

4.3. The island model

The island model is inspired by behaviors observed
in the ecological niches. In this model, several
evolutionary algorithms are deployed to evolve si-
multaneously various populations of solutions, often
called islands. The islands are not independent since
solutions are exchanged between them. This exchange
aims at delaying the convergence of the evolutionary
process and to explore more zones in the solution
space. For each island, a migration operator intervenes
at the end of each generation. Its role, in particular,
consists to decide the appropriateness of operating
a migration, to select the population sender of im-
migrants or the receiver of emigrants, to choose the
emigrating solutions and to integrate the immigrant
ones. The implementation of the island model using
our proposed coordination model for computational
grids is based on three types of tuples: island tuples,
migration tuples, and fault-tolerance tuples.
- Island tuples: At the beginning, a main program
puts in the tuple space as many island tuples as islands
to be deployed. An island tuple is a tuple process
made up of only one field corresponding to an AGMA.
An island tuple contains mainly two parameters which
are the island number (or AGMA) and the total
number of the deployed islands (or AGMAs). The
island numbers are distinct values between 1 and the
total number of islands. Once put in the tuple space,
the island tuples are deployed by the middleware as
AGMAs. In addition to the island tuple, two others
tuples are assigned to each island - migration and
fault-tolerance tuples. Both are data tuples and are
used respectively for migration in the island model
and for the fault-tolerance mechanism.
- Migration tuples: A migration tuple has the
form [N,MIGRANTS], where N is the number
of a given island and MIGRANTS contains its

migrant solutions. This kind of tuples is used for the
importation and exportation of migrants between the
islands. The exportation is done in two stages. First,
Pareto front solutions to be exported are selected,
then they are put in the migration tuple associated
with the island. The importation is done according to
a migration topology, and the island whose solutions
will be imported is selected.
- Fault-tolerance tuples: Fault-tolerance can
be dealt with either at the application or mid-
dleware level. In our approach, both levels are
exploited. At the middleware level, the adopted
strategy consists in re-starting from scratch, with
the same parameters, on another machine any
broken down process tuple. At the application
level, the fault-tolerance is ensured using the fault-
tolerance tuples. Only one fault-tolerance tuple is
assigned for each island having the following structure
[N, GENERATION, POPULATION, PARETO]. The
four fields designate respectively the island number,
the number of its current generation, its current
population and its Pareto front. The islands save
regularly their state by updating the fields of the their
associated fault-tolerance tuple. When an island tuple
is launched, its first operation is an attempt to read
its fault-tolerance tuples. The existence of this tuple
means that the same island number was carried out
before, and thus the deployed island is a broken down
island restarted by the middleware. In this case the
generation number, the population, and Pareto front
of the island are updated according to values of the
fault-tolerance tuple. Otherwise, the island is deployed
with its initial values.

4.4. The multi-start model

The multi-start model consists in simultaneously
launching several tasks and gathering their results.
This model was exploited for the local search paral-
lelization. A local search consists in generating new so-
lutions from the solutions of the MA, to simultaneously
explore the neighborhood of these initial solutions, to
merge the neighborhood solutions obtained with the
initial solution, to keep only the optimal Pareto solu-
tions, to again explore the neighborhood of the kept
Pareto solutions and so on. A local search stops when
the neighborhood solutions do not improve the initial
solutions. A local search is thus a launching of a se-
ries of task sets where each task is an exploration of
the neighborhood. The deployment of each task set is
done according to the multi-start model.
Only one type of tuple, called exploration tuple, is used

for the implementation of this model. They are process
tuples which contain two fields - a local search num-
ber and a call to the exploration program. This pro-
gram receives, as arguments, the solutions for which
the neighborhoods are visited, and returns back the
neighboring solutions. Given the relatively short dura-
tion of a neighborhood exploration, no fault-tolerance
mechanism is elaborated at the application level. In the
case of a machine fault during an exploration process,
the middleware ensures its redeployment on another
machine with the same parameters.

4.5. The parallel tree exploration model

The parallel tree exploration model consists in visit-
ing in parallel different nodes of the sub-trees defining
solution subspaces. It means that the branching, selec-
tion, bounding and elimination operators are carried
out in parallel by different processes exploring these
subspaces. In the majority of the B&B parallelization
approaches, the work unit is a list of nodes. Either for
load balancing, fault-tolerance, scalability, granularity
management or termination detection, exchanging lists
of nodes on a computational grid is costly in terms of
communication and storage. In order to overcome such
limit, we propose another approach to describe work
units in B&B that minimizes communication and stor-
age costs involved mainly in work distribution and fault
tolerance.
The approach assigns according to depth first strategy
a number and a weight to each node of the basic tree
associated to the problem being solved. The basic tree
is the tree generated without applying any elimination
operator. The number associated to each internal node
is identical to the number of its left-most child node.
Leaf nodes are numbered from the left to right. The
root number is thus equal to the number of the left-
most leaf node of the basic tree. The weight of a node
is the number of the leaves of the sub-tree of which it
is the root. The leaf nodes have a weight equal to 1. In
the majority of problems, the permutation flow-shop
for example, nodes of the same level, even belonging
to different sub-trees, have an equal weight. In this
approach, a work unit is described by an interval [x, y[
indicating all nodes whose numbers are higher than x

and strictly lower than y.
Three types of tuples are used for the deployment of
the B&B according to this approach: B&B tuples, work
tuples and solution tuples.
- B&B tuples: Unlike both other tuples which are
data tuples, B&B tuples are process tuples. The de-
ployment of the algorithm is done by deposing as many
B&B tuples as B&B processes participating to the com-

putation. As for the island tuples, the middleware is
given the responsibility of deploying them on the com-
putational grid.
- Work tuples: Work tuples are associated with dif-
ferent intervals. A work tuple has the form [N,X, Y],
where N is the identifier of an interval, X its begin-
ning and Y its end. At the beginning, the tuple space
is initialized with only one work tuple covering the to-
tality of the tree nodes. It corresponds to the interval
[1, weight(root)[. It is given to the first B&B process
joining the computation.
When a work tuple [Ni,Xi,Yi] explored by a process i

resumes (Xi ≥ Yi) the process i addresses a request to
get back work from the tuple space. The tuple space
returns back the greatest work tuple not yet allocated,
if it exists. Otherwise, the tuple space applies a di-
vision operation to the tuple assigned to a process j,
ideally corresponding to the biggest interval. Its divi-
sion results in two tuples [Nj ,Xj ,Z] and [Ni,Z,Yj]. The
process i obtains the latter work tuple and j keeps the
former because it already began its exploration from
Xj . To avoid the affectation of too fine granularity
units, the tuple space uses a threshold below which a
tuple is duplicated instead of splitting it. The termina-
tion detection is performed in a natural way. Indeed, a
tuple [Ni,Xi,Yi] may be withdrawn if Xi ≥ Yi. In this
way, the program stops when there are no work tuples
in the tuple space.
In addition to the load balancing and termination
detection, this approach also facilitates the fault-
tolerance management. Periodically, each process
sends to the tuple space a report of the progress of
its work tuple exploration. If [N ,X1,Y1] and [N ,X2,Y2]
designate respectively the same work tuple before and
during its exploration, the tuple space updates its cor-
responding interval by applying a tuple fusion reaction
which gives the tuple [N ,Max(X1, X2),Min(Y1, Y2)].
- Solution tuples: A solution tuple consists of two
fields representing the solution code and its fitness vec-
tor. On these tuples, a withdrawal Pareto reaction is
defined. A solution tuple is withdrawn from the tuple
space if its fitness vector is dominated by the fitness
vector of another solution tuple. This withdrawal re-
action ensures that only the Pareto solutions are found
in the tuple space. Each new Pareto solution found
by either a B&B or an island process will be imme-
diately deposited in the tuple space so that the other
processes use it. The B&B processes regularly read all
the solution tuples to make it possible to the elimina-
tion operator to intervene as soon as possible.
Through the use of solution tuples, both hybridization
models were designed and implemented in a very sim-
ple way. In the relay mode, it is enough to launch the

island processes, to stop them once a stopping crite-
rion (evolution progression) indicates that the Pareto
solutions do not improve any more, and to make them
followed by the B&B processes described previously.
When the island processes resume, the tuple space is
not emptied of its Pareto solutions, the B&B processes
are thus initialized by the Pareto solutions provided by
the island processes. In the co-evolutionary mode, the
island and B&B processes are launched at the same
time. However, when the island model converges, the
island processes are replaced by B&B processes in or-
der to fully exploit the power of the grid. As the two
process types share the same tuple space, the solutions
found by either island or B&B processes are used by
the other ones.

5. Application to the bi-objective flow-

shop problem

5.1. Problem formulation

The flow-shop problem is one of the numerous
scheduling multi-objective problems [10] that has re-
ceived a great attention given its importance in many
industrial areas. The problem can be formulated as
a set of N jobs J1, J2, . . . , JN to be scheduled on M

machines. The machines are critical resources as each
machine can not be simultaneously assigned to two
jobs. Each job Ji is composed of M consecutive tasks
ti1, . . . , tiM , where tij represents the jth task of the job
Ji requiring the machine mj . To each task tij is asso-
ciated a processing time pij , and each job Ji must be
achieved before a due date di.
The problem being tackled here is the bi-objective
permutation flow-Shop problem where jobs must be
scheduled in the same order on all the machines.
Therefore, two objectives have to be minimized: (1)
Cmax: Makespan (Total completion time), (2) T : To-
tal tardiness. The task tij being scheduled at time
sij , the two objectives can be formulated as follows:

Cmax = Max{siM + piM |i ∈ [1 . . . N]}

T =
∑N

i=1
[max(0, siM + piM − di)]

5.2. Experimentation

The application of the proposed parallel hybrid
approach to the flow-shop problem has been experi-
mented on one of the instances proposed by [4]. More
exactly, it is the second instance generated for problems
of 50 jobs on 5 machines in which only the makespan is

http://www.eivd.ch/ina/Collaborateurs/etd/default.htm

considered. The instance has been extended with the
tardiness as the second objective. Such instance has
never been solved exactly in its bi-objective formula-
tion.
The proposed parallel hybrid method presented has
been experimented according to various parameters.
These parameters concern the three parallel models
and the two hybridization types. These parameters
and their associated values are the following:
- Hybridization between the GA and the MA: the de-
fault parameters associated to the AGMA in [1] are
reused.
- Hybridization of the AGMA with the B&B: in ei-
ther relay or co-evolutionary mode, an island process
is stopped if no new Pareto solution is found after 20
minutes. Moreover, in order to fully exploit the com-
putational grid power, a B&B process is deployed in
its place.
- The parallel island model: the migration operator
and the checkpointing mechanism are triggered in each
island every 2 minutes. The exchange of individuals is
done according to the random topology. The migrants
is the whole Pareto front if it does not contain more
than 20 solutions, and only 20 solutions randomly se-
lected from the Pareto front otherwise.
- The multi-start model: each exploration consists in
visiting the neighborhood of 11 solutions at the same
time.
- The parallel tree exploration: the B&B process con-
tacts the tuple space every 3 minutes in order to save
the state of its work and to read the solutions deposited
by the other island or B&B processes.
The experimentation material platform is the compu-
tational pool detailed in Table 1. It is made up of
over 400 machines distributed across four administra-
tive domains belonging to four education departments
of the University of Lille1 - the two education (E)
and research (R) Gigabit Ethernet domains of Poly-
tech’Lille, the 100 MegaBit Ethernet domain of IUT-A
and the Gigabit Ethernet domain of the FIL depart-
ment. These domains are inter-connected by the Giga-
bit network of the university. The software grid middle-
ware used for implementation is XtremWeb [5]. This
latter is a dispatcher-worker middleware developed at
University of Paris Sud. It is basically dedicated to
the deployment of multi-parametric applications. We
have extended it with the our Linda-like coordination
model to deal with parallel cooperative multi-objective
optimization [7].

Table 2 summarizes the results obtained with four
different experiments. Each experiment corresponds

http://www.lifl.fr/OPAC/

Deployments Meta. (60 islands) B&B Meta.+B&B
Only Meta. 1h43 0 1h43
Only B&B. 0 152h3 152h3

Meta. and B&B in Relay 1h43 116h26 118h9
Meta. and B&B in Cooperation 1h44 128h40 128h40

Table 2. Execution time obtained with and without hybridization

No. of islands 1 10-50 60 70 80 90 100
Time (seconds) 7200 7200 6231 6242 6244 6247 6231

Table 3. Total execution time according to the number of islands

CPU (GHz) Domain Role No.

P4 3.06 Polytech’Lille(R) Farmer 1
P4 1.70 24
P4 2.40 FIL 48
P4 2.80 72
P4 3.00 26

AMD 1.30 14
Celeron 2.40 35
Celeron 0.80 Worker 14
Celeron 2.00 Polytech’Lille(E) 8
Celeron 2.20 28

P3 1.20 12
P4 3.20 12
P4 1.60 12
P4 2.00 13
P4 2.80 IUT-A 45
P4 2.66 7
P4 3.00 41

Total 412

Table 1. The computational pool

to one raw in the table. The three last columns
report respectively the execution time of the two
metaheuristics (AGMA), the execution time of the
B&B, and their sum.
The first experiment (first raw in Table 2) consists
in deploying the AGMA algorithm without B&B.
A critical parameter of such deployment is the de-
termination of the convenient number of islands.
A trade-off between efficiency and effectiveness has
to be found. To do that a series of experiments
have been conducted with different values of such
parameter. Tables 3 and 4 illustrate respectively the
execution times and S-metric values obtained with the
different numbers of islands. The S-metric measures
the hyper-volume delimited by a reference point and
a Pareto front. It allows to evaluate the quality of
a Pareto front provided by an algorithm in terms of

convergence and diversity. The results show that 60
islands allow to provide efficiently the best Pareto
front.

The second experiment (second raw in Table 2) con-
sists in deploying only the B&B processes without any
hybridization. As it can be seen in Table 2, the exact
Pareto front, plotted in Figure 1, has been found after
more than 152 hours (over six days) of computation.
The last two experiments (raws 3 and 4 in Table 2)
concern the hybridization of AGMA with a B&B in
the relay and co-evolutionary modes. The objective of
the hybridization is to obtain an optimal solution with
proof of optimality with the near-optimal solution pro-
vided by the AGMA. In both cases, 60 islands are used
as it is the right number of islands to provide efficiently
effective solutions. Table 2 shows that the relay mode
is faster than the co-evolutionary mode. Indeed, the re-
lay deployment resumes after approximately 118 hours
of computation, while the co-evolutionary one resumes
ten hours later. Moreover, in both cases the execution
is faster than the execution of B&B executed alone.
This demonstrate that metaheuristics allow by far to
speed up the execution of exact methods.

6. Conclusions and future work

We have proposed a parallel hybrid combinato-
rial optimization approach which combines two meta-
heuristics - a genetic algorithm and a memetic algo-
rithm, and an exact method - a B&B algorithm. In
addition to their efficiency in finding the optimal so-
lutions, both metaheuristics bring to the new method
their capabilities of exploration and intensification of
the search process. On the other hand, the B&B al-
gorithm contributes with its ability to provide optimal
solutions. Both metaheuristics are combined in a high
level co-evolutionary mode in order to obtain a new
hybrid metaheuristic, called AGMA [1]. This latter
is combined with the B&B algorithm either in a relay

No. of islands 1 10 20 30 40 50 60-100
S-metric 1086366 1123495 1123602 1123519 1123617 1123617 1123654(Exact)

Table 4. S-metric value according to the number of islands

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2830 2840 2850 2860 2870 2880 2890 2900 2910

T
ar

di
ne

ss

Makespan

"Exact Pareto Front"

Figure 1. The exact obtained Pareto front

mode or in a co-evolutionary mode in order to build a
new exact method.
The parallelization of this method on a grid is per-
formed by exploiting three well-known parallel models
- the island model for the GA, the multi-start model
for the local search part of the MA and the parallel tree
exploration model for the B&B algorithm. The imple-
mentation of the three parallel models is based on the
coordination model proposed in [7].
The method has been experimented on a computa-
tional grid composed of more than 400 machines be-
longing to four distinct domains. The experiments
lasted several days allowing to solve a bi-objective
permutation flow-shop instance which has never been
solved. The experimental results demonstrate the
effectiveness of the approach and its efficient mech-
anisms: load balancing, fault-tolerance, granularity
management and termination detection.
The analysis of these results raises new interrogations
on hybridization and parallel computing. Indeed, re-
garding hybridization we plan to evaluate the separate
contribution of each individual method to the effec-
tiveness. Moreover, it is important to study in the
co-evolutionary mode the distribution of resources be-
tween the two methods: exact methods and meta-
heuristics. On parallel computing, questions concern
the behavior and limits of the method on a larger com-
putational grid and more complex instances. To pro-
vide answers to these questions, we plan to use the
Grid5000 (https://www.grid5000.fr) experimental grid
in the near future.

References

[1] M. Basseur, F. Seynhaeve, and E.-G. Talbi. Adap-
tive mechanisms for multi-objective evolutionary al-
gorithms. In Congress on Engineering in System Ap-
plication CESA’03, pages 72–86, Lille, France, 2003.

[2] D.Gelenter and T.G.Crainic. Parallel Branch and
Bound Algorithms: Survey and Synthesis. Operation
Research, pages 42:1042–1066, 1994.

[3] D.Gelernter. Generative communication in linda.
ACM Transactions on Programming Languages and
Systems, 7:80–112, 1985.

[4] E.Taillard. Banchmarks for basic scheduling prob-
lems. European Journal of European Research, pages
23:661–673, 1993.

[5] G. Fedak, C. Germain, V. Neri, and F. Cappello.
XtremWeb: building an experimental platform for
Global Computing. Workshop on Global Comput-
ing on Personal Devices (CCGRID2001), IEEE Press,
May 2001.

[6] N. Melab. Contributions à la rsolution de problèmes
d’optimisation combinatoire sur grilles de calcul. PhD
thesis, LIFL, USTL, Novembre 2005.

[7] M.-S. Mezmaz, N. Melab, and E.-G. Talbi. To-
wards a Coordination Model for Parallel Cooperative
P2P Multi-objective Optimization. In In Springer
Verlag LNCS 3470, Proc. of European Grid Conf.
(EGC’2005), pages 305–314, Amsterdam, The Nether-
lands, 14–16 Feb. 2005.

[8] E.-G. Talbi. A Taxonomy of Hybrid Metaheuristics.
Journal of Heuristics, Kluwer Academic Publishers,
Vol.8:541–564, 2002.

[9] E.-G. Talbi, E. Alba, N. Melab, and G. Luque. Meta-
heuristics and Parallelism, chapter 4, pages 79–103. In
Wiley Book On Parallel Metaheuristics: A New Class
of Algorithms, 2005.

[10] V. T’kindt and J.-C. Billaut. Multicriteria Schedul-
ing - Theory, Models and Algorithms. Springer-Verlag,
2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

