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Abstract

This paper presents a load balancing algorithm for
a parallel implementation of an evolutionary strategy
on heterogeneous clusters. Evolutionary strategies can
efficiency solve a diverse set of optimization problems.
Due to cluster heterogeneity and in order to improve
the speedup of the parallel implementation a load bal-
ancing algorithm has been implemented. This load
balancing algorithm takes into account cluster hetero-
geneity and it is based on an optimal intial distribu-
tion. This initial distribution is determined based on
the cluster nodes’ computational powers, that are di-
namically measured in each slave node by an ad hoc
load-bechmark. The implementation presents very sat-
isfactory parallelization results, both in performance
and scalability and Super-linear speedup is reached for
several tests configurations. Ezxperimental results show
excellent perfomence, increasing the improvements with
the load balancing algorithm.

1. Introduction

Evolutionary algorithms are heuristic based search
techniques that have generated a great deal of inter-
est in the last years. Although there is a number of
paradigms, such as genetic algorithms, in this paper we
will discuss only the evolutionary strategies paradigm
and its parallel implementation. This paradigm has
been successfully applied to solve a large number of op-
timization problems, including task scheduling in dis-
tributed systems [7], image processing [16] or calcula-
tion of robot trajectories [11].

*This work has been partially funded by the Spanish Com-
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An evolutionary strategy program may take a long
execution time for large size problems. Traditionally,
the population size of the algorithm is 50-100 individ-
uals. This amount, even adequate for moderately size
problems, is small for current and real applications and
an increase of population size yields to a linear increase
in the execution time. On the other hand, the evolu-
tionary algorithms are ideally suited for data parallel
implementations [13, 14].

Cluster and grid computing are arising a lot of inter-
est, thanks to their excellent price/performance ratio,
scalability, fault tolerance and flexibility features [1, 2].
Cluster implementations are becoming nowadays a fea-
sible solution for computer applications with high level
of computational power demand. An important issue
to take into account in clusters is the system hetero-
geneity. There are to main reasons that have stimu-
lated the introduction of heterogeneity in clusters. The
first one is the clusters flexibility and reconfigurability,
that allow to change old nodes or to introduce new
nodes very easily. On the other hand, the tremendous
improvement rate of PC’s and workstations, following
the Moore’s Law, makes that newly introduced nodes
will have very different computing capabilities.

Equilibrating the amount of work assigned to each
node in a cluster is a complex problem, even more than
for other kinds of parallel systems. Even though load
balancing has received a considerable amount of inter-
est, it is still not definitely solved [3, 21, 22]. Neverthe-
less, this problem is central for minimizing the applica-
tions’ response time and optimizing the exploitation of
resources, avoiding overloading some processors while
others are idling. Clusters present additional chal-
lenges, since they can easily become heterogeneous, re-
quiring load distributions that take into consideration
each node’s computational features [15]. Determining
the optimal location for processes in a heterogeneous



system is a complicated issue but it is necessary to
provide efficient, scalable, low overhead and general-
purpose strategies capable of handling heterogeneity.
This paper presents a simple, centralized, global and
efficient load balancing algorithm for a parallel im-
plementation of an evolutionary strategy on heteroge-
neous clusters. Due to heterogeneity a new workload
index has been proposed. The algorithm takes into con-
sideration both the different node capabilities and the
complete system state. It is based on an initial work-
load distribution where the population is distributed
among all of the computational nodes according to
their actual computational power, estimated from its
computational power and of external tasks assignment.
The rest of the paper is organized as follows: sec-
tion 2 presents previous work on parallel implementa-
tions. A description of the parallel implementation and
the load balancing algorithm are discussed in section
3. Section 4 shows the experimental results and finally
section 5 presents some conclusions and future work.

2 Previous and Related Work

Traditionally there are two kinds of parallel evolu-
tionary strategies, the master-slave model and the is-
land model [8]. In the master-slave model, the mas-
ter stores the population, executes the mutations and
transfer the individuals to the slaves that perform the
evaluation of the function [9]. This approach is used
when the evaluation function operator is the most cost
operation in the algorithm.

In the island model, the population is partitioned
equally among the slave processors, and each proces-
sor runs the algorithm on its local population [6]. Then
the master process selects the best solution among the
slaves’ results. In the island model the network traffic
is not heavy because iterations of the sequential algo-
rithm are performed in each processor [8].

In evolutionary strategies there are not migration of
individuals from one slave to other, like happens in ge-
netics algorithms [4, 8], yielding a null communication
overhead along slave nodes. Therefore parallel evolu-
tionary strategies with an island model are a suitable
model for clusters.

Van Velduizen et al. ([18]) suggest the use of general
techniques for load balancing. [12] compares two load
balancing strategies: a static scheme in which workload
is distributed using a Round Robin policy at compila-
tion time; and a dynamic scheme where the tasks are
sorted in downward order and in each iteration a new
task is assigned to the least loaded node. On the other
hand [10] presents a dynamic load balancing algorithm
for a genetic algorithm. This algorithm is based on the

migration of individuals among the cluster nodes.
None of the previous parallel implementations, nei-
ther genetic algorithms nor evolutionary strategies,
take into account the cluster heterogeneity. This pa-
per presents a load balanced parallel implementation
of evolutionary strategies on heterogeneous clusters.

3 Parallel Implementation for Hetero-
geneous Systems

3.1 Motivation

Evolutionary strategies have a number of features
that make suitable to yield good performance benefits
with a parallel implementation on a PC cluster. These
features are the following:

1. Since there are no data dependencies among the
individuals of a population, the exploitation of
data parallelism can be done just dividing the total
workload (the number of individuals) among N in-
dependent nodes, without synchronization points.

2. It is a fine granularity problem, therefore a great
parallelism degree can be achieved. This improves
the algorithm’s scalability when the number of
nodes is increased and allows to keep the load bal-
ance even on a heterogeneous cluster.

3. Unlike genetic algorithms, the network traffic is
not heavy because there are not migrations of in-
dividuals among different slave nodes. Therefore
the communication overhead is very low.

3.2 Master-Slave Strategy

The parallel strategy is based on a farm model [20] in
which a master process distributes the data to be dealt
with upon a set of slave processes. After receiving its
population, each slave can start computing the algo-
rithm and sends back the partial results to the master,
once it has finished processing them.

On heterogeneous clusters the population distribu-
tion should be done proportional to the nodes’ compu-
tational capabilities. Otherwise if the workload were
evenly distributed, the application response time would
be determined by the slowest node, which would finish
its work last. Additionally, in a non-dedicated clus-
ter the node capabilities depends on both the different
node computational attributes as well as the different
amounts of external tasks assignments.

In order to introduce the load balancing algorithm
a multiphase approach is used, where there are two



tightly interleaved phases separated by a synchroniza-
tion point [19]. In this case the first phase is devoted
to the load balancing algorithm and the second phase
involves the evolutionary strategy itself.

e [nitial balanced distribution: in this stage the
workload is distributed among all of the clus-
ter’s nodes according to their actual computational
power. The computational power is estimated
from the nodes’ computational capabilities and
from the external tasks. Each slave process runs
a load-benchmark to determine its own computa-
tional power. Based on the load-benchmark re-
sults a computational power index is calculated on
each slave process and this value is sent to the mas-
ter process. When the master collects the compu-
tational power indexes of all of the slave nodes, it
calculates the total cluster computational power
and the best distribution of the population (see
section 3.3), and sends a message to every cluster
nodes with the number of individuals that it has
to evolve.

e FEwvolutionary strategy: Afterwords receiving its
population the slave process evolves it, a finite and
fixed number of generations. When the slave pro-
cess reaches the number of steps it comes back
the better individual of its population to the mas-
ter. Then the master evaluates all these individ-
uals and decides if the algorithm should go on or
should stop.

Now, the detailed algorithm is presented:

Master
1. Receives the nodes’ computational power.

2. Computes the number of individuals that each
node must create.

3. Sends to each node the number of individuals that
must create and evolve.

4. Waits until nodes finish their work.

5. Collects from the nodes the best individual of each
population.

6. Computes the objective function and verify if the
objective value has reached. In affirmative case,
the algorithm is stopped and the solution is re-
turned, in other case the algorithm goes on.

7. If the algorithm must go on, the master informs
to the slaves nodes.

Master Slave
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Figure 1. General overview of the process
communication

Slave Node

1. Runs the load-benchmark and sends the result to
the master.

2. Receives the amount of individuals of its popula-
tion.

3. Evolves the algorithm over its population a finite
number of iterations.

4. Returns to the master the best individual.

5. If the master decides going on with the algorithm,
the slave repeats the steps 3,4 and 5.

Figure 1 shows a flow diagram that includes the com-
munication scheme followed by the processes involved
in the application.



3.3 The Load-Bechmark for the Initial
Distribution

As it has been explained above the load balancing
algorithm is based on an optimal initial distribution.
And this initial distribution is based on the nodes’
computational power, denoted by P;, and on the to-
tal cluster computational power (Pp = Efil P;). The
computational power of a node N, is estimated based
on the execution of a load-benchmark.

The load-becnhmark is executed in each of the clus-
ter nodes and is based on running the evolutionary
strategy algorithm during a fixed time span, equal
for all of the nodes. During this fixed time span the
load-benchmark measures the amount of iterations per-
formed by a node with a fixed number of individuals.
With these parameters the load-benchmark calculates
the average time (¢;) that each node spent to execute
one iteration of one individual. Therefore the load-
benchmark measures dynamically the node’s computa-
tional power which is the inverse of this average time:
P =1

Based on these parameters the master process deter-
mines the optimal distribution for the current cluster
state. If S is the population size and Py is the cluster’s
total computational power, each slave N; with compu-
tational power P; will receive S; individuals, according
to the following expression:

)
=B

This expression is determined by two conditions.
First, all of the cluster nodes must take the same re-
sponse time, in order to avoid idle time. Second, the
sum of all of the node populations must be equal to the
total population size:

Al Si
>im1 Si =

3.4 Evolutionary Strategy

S P; (1)

U Fl

The evolutionary algorithm has been implemented
to find the global minimum of both the Rastrigin and
the Ackley functions, in their ten variables version [8].
These functions have a known global minimum value
(0 at f(0,..,0)) and multiplies local minimums, which
difficulties the search of the global minimum.

The evolutionary strategy implemented is the fol-
lowing;:

1. A population P of u random solutions is created.
Each solution is called X ;, with j € {1, .., u}.

2. If the stop condition is not reached, a vector
7 = (z1,..,2n) is created for each solution j of
P. The component z; is obtained from normal
distribution: Z; ~ N(0,0%) Vj € {1,.., u}

3. é new _indiv&iual ?j is stemmed from 7]» and 7j:
Y, =X,+Z%;

4. If f(Y;) < f(X;), then X, is replaced by Y.
Update every Ps;.

5. To repeat the steps 2, 3 and 4 k-times.

6. To evaluate each solution X ;. If stop condition is
reached, return the solution. In other case, change
every o; according to:

° a;w“’ =o0;-cif Ps; <threshold_for_oc

o o7 =24 if Psj > threshold_for_.o

Where Ps; E the number of times that o; causes
changes in X ;, divided by k, and a typical value
of cis %

7. Set every Ps; to zero and return to the step 2.

4 Experimental Results

In order to evaluate the performance improvements
of the parallel implementation described above, a set of
tests were performed on a heterogeneous cluster. Three
objectives were pursued in the tests presented here:

1. To verify the feasibility of applying a parallel so-
lution based on a PC cluster to two different op-
timization problems based on evolutionary strate-
gies: the minimization of the Rastrigin and the
Ackley functions. The performance improvements
of the parallel version with respect to the sequen-
tial version, with different population size will be
analyzed.

2. To evaluate the improvements achieved by the load
balancing algorithm on a heterogeneous cluster. A
number of experiments have been performed for
testing the behavior of the load balancing algo-
rithm, comparing the application total execution
time in both cases with and without load balanc-
ing algorithm.

3. The load balancing algorithm is based on the mea-
sures of the nodes’ computational power estimated
from an ad hoc load-benchmark. The time exe-
cuting the load-benchmark has an important im-
pact on the load balancing algorithm accuracy
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Figure 2. Nodes’ computational power of the
cluster

and therefore on the response time of the paral-
lel version. The last objective of the tests were
to improve the load balancing algorithm deter-
mining the most suitable time span for the load-
benchmark execution.

4.1 Experimental Setup

The tests were performed over a 14 node PC cluster
connected through a Gigabit-Ethernet network, called
Helios. Each node is a 1.8 GHz AMD XP proces-
sor with DDRRAM 512 MB of main memory and 512
KB of cache memory. The PC’s operating system is
Red Hat Linux 8.0 (v. 2.4.22). The application was
developed using C++ language, GNU tools and the
MPI/LAM 7.0.4 library [5, 17].

In order to make the cluster heterogeneous, extra
load was introduced by executing different number of
local tasks in each node. Consequently, differently
loaded nodes yielded different response times, since in
computer systems tasks share the processor time using
a Round Robin scheduling policy. Figure 2 presents the
nodes’ computational power, experimentally measured
for this cluster.

The tests were performed over two different opti-
mization problems based on evolutionary strategies:
the minimization of the Rastrigin and the Ackley func-
tions. For each of these problems several tests were
performed, increasing the number of individuals, with
the algorithm’s parameters presented in table 1.

4.2 Results with Homogeneous Cluster

This section presents a number of tests to compare
the performance of the parallel and sequential imple-

[ Algorithm Parameter |  Value |

Solution error allowed | 5% 10~ °
Threshold_for_oc 0.9
Change factor, ¢ 0.2

Table 1. Parameters of the algorithm used in
the experimental results.

mentations of the evolutionary strategies on the homo-
geneous cluster. Figure 3 shows the evolution of the
response time, given in seconds, of the parallel and the
sequential versions increasing the number of individu-
als for both Ackley (3(a)) and Rastrigin (3(b)) func-
tions.

Figures 4(a) and 4(b) show the speedup achieved in
the cluster for the Ackley and the Rastrigin functions,
respectively.

Looking at these figures it has to be noted that the
parallel implementation yields a substantial reduction
in the application response times, increasing the im-
provements with the population size. The speedup
and the efficiency figures are very close to their maxi-
mum achievable value and in some cases outperforms
it, yielding a super-linear speedup. This behavior can
be explained by the effect of the increment of the cache
memory size on the whole system.

Additionally, it is possible to deduce that this ap-
proach shows a high degree of scalability. The maxi-
mum values for speedup and efficiency remain almost
constant for any cluster configuration when the num-
ber of individuals is increased. This is due to the low
communication overheads which remains constant with
respect to the problem size.

4.3 Results with Heterogeneous Cluster

For these experiments two nodes of the cluster were
loaded with one additional task and another two nodes
were loaded with two additional task, yielding on a het-
erogeneous environment (from the performance point
of view) with the nodes’ computational power pre-
sented in figure 2. This experiment makes a detailed
comparison of the heterogeneous cluster performance
with and without load balancing algorithm. The work-
load distribution has to take into account the differ-
ences on the nodes’ computational power.

Figure 5 presents the application response times
achieved for both Ackley (5(a)) and Rastrigin (5(b))

Speedup is defined as Sy, = T1 /Ty, where T} is the execution
time of the algorithm running on only one processor and T, is
the execution time of the parallel algorithm carried out over n
processors.
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functions, with and without load balancing algorithm.
As expected, the load balancing algorithm achieves sig-
nificant improvements, reaching better results when
the number of individuals is increased. A possible ex-
planation for this behavior is that in those cases the
load balancing algorithm has more possibilities to dis-
tribute the total workload among the different nodes,
and reaches a better distribution, proportional to the
nodes’ computational power.

A major consequence we can point out of these re-
sults is that the time span of the load-benchmark has
a strong impact on the load balancing algorithm ac-
curacy. If the benchmark time span is too short, the
initial distribution of the individuals is not accurate
enough to handle the system heterogeneity. On the
other hand, if the benchmark time span is too large
it has a noticeable impact on the application response

time, and therefore the performance benefit achieved
by the load balancing algorithm does not outperforms
this time. This is the case shown in figure 5, when the
population size is small, and the load-benchmark time
is larger than the response application time. Therefore,
in these cases the response time with load balancing is
larger than without it.

In order to determine the influence of the benchmark
execution time on the distribution accuracy a theoreti-
cal and optimal distribution has been estimated for the
heterogeneous cluster.

Figure 6 shows the evolution of the relative error of
the load balancing algorithm distribution with respect
to the theoretical distribution for both the Ackley and
Rastrigin functions. From theses results it has to be
noted the following conclusions:

e The benchmark execution time has a strong im-
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pact on the accuracy of the initial distribution.

e There is a maximum value of this parameter that
optimize both the workload distribution and the
response application time. This value depends on
the Ppr and on the cluster heterogeneity.

5 Conclusions and future work

In this paper, a load balancing algorithm for a paral-
lel implementation of an evolutionary strategy has been
presented. A remarkable feature of the implemented
algorithm is its low communication overhead, which
results in very satisfactory parallelization results, both
in performance and scalability. Super-linear speedup

is reached for several tests configurations. Therefore
a major conclusion is that the parallel approach on a
cluster is a very good solution to reduce the response
time of this kind of applications.

An important issue to take into account is system
heterogeneity, originated both by different node com-
putational attributes as well as by different amounts
of external load assignments. Therefore a load balanc-
ing algorithm has been introduced. The algorithm is
centralized, global and it is based on an initial distri-
bution which would be optimal if the nodes’ computa-
tional power remain constant along the application ex-
ecution. The initial distribution is based on the cluster
total computational power and on the nodes’ compu-



tational powers, measured in real time.

All of the experiments performed here have shown
that using the load balancing algorithm has resulted in
large reductions in the response time. These improve-
ments become more and more relevant as the number
of individuals is increased. The overhead introduced by
this method depends strongly on the load-benchmark
execution time, but on the other hand, this has an im-
portant impact on the distribution accuracy.

Future work includes the development of a dynamic
and distributed load balancing algorithm in order to
compare both strategies. Additionally, the develop-
ment of more systematic and precise methods for esti-
mating the relative node computational power. Finally
we plan to migrate this application to a grid architec-
ture.
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