
On-chip and On-line Self-Reconfigurable Adaptable Platform:

the Non-Uniform Cellular Automata Case

Andres Upegui, Eduardo Sanchez

Ecole Polytechnique Fédérale de Lausanne, Logic Systems Laboratory,
1015 Lausanne, Switzerland

(andres.upegui, eduardo.sanchez)@epfl.ch

Abstract

In spite of the high parallelism exhibited by cellular

automata architectures, most implementations are

usually run in software. For increasing execution

parallelism, hardware implementations on FPGAs have

been proposed, under the cost of being un-flexible, and

inefficient in terms of resource utilization. In this paper

we present a platform for evolving CA by exploiting the

partial re-configurability of current commercial FPGAs.

Our implementation includes an on-chip soft-processor

that generates a partial bitstream, reconfigures the

FPGA, and computes the fitness. After finding a good

individual, the evolved CA can be used as a peripheral

for performing useful computation. As case study we

present CA co-evolution for a random number generator

and for the firefly synchronization problem.

1 Introduction

Designing analog and digital electrical circuits is, by
tradition, a hard engineering task, vulnerable to human

errors, and no one can guarantee the optimality of a
solution. Design automation has become a challenge for

tool designers, and given the increasing complexity of

circuits, higher description levels are needed. Evolvable
Hardware (EHW) arises as a promising solution to this

problem: from a given behavior specification of a circuit,

an evolutionary algorithm (EA) can find a circuit able to
satisfy the specification.

EAs take inspiration from the principles of biological

evolution decoding a phenotype from a genotype. The
genotype is a number string, where the genetic

operations, reproduction and mutation, are applied.
Reproduction is performed by genome crossing and

mutation is performed in a probabilistic way. In the case

of EHW, a phenotype is decoded from this genome for

obtaining a circuit with a given set of components and

connectivity. A fitness note is assigned to this individual

given the performance exhibited. EHW have shown to
perform well finding solutions from simple Boolean

functions to complex analog circuits, sometimes
performing better than engineered solutions.

The hardware substrate supporting the evolution is one of

the most important initial decisions to make when
evolving hardware. The hardware architecture is closely

related with the type of solution being evolved. Hardware

platforms have, in most cases, a cellular structure
composed of uniform or non-uniform components. In

some cases one can evolve the components functionality,

in others the connectivity, or, in the most powerful ones,
both. Field Programmable Gate Arrays (FPGAs) fit well

for this third category: they are composed of configurable

logic elements interconnected by configurable switch
matrices.

In this paper we present a novel system approach for
evolving hardware. The main novelty of the proposed

system consists on the mapping from the genotype to the

phenotype: the genome directly determines the hardware
configuration implementing the rule function by partially

reconfiguring the hardware substrate supporting the CA.

All this performed by a system on chip, allowing an on-
chip and on-line self-reconfigurable adaptable system.

2. Evolvable Hardware Platforms

When evolving hardware, there is a first main issue to

address: the hardware substrate supporting the evolved

circuit. Custom evolvable chips use to provide dynamic
and partial reconfiguration, dispose of multi-context

configuration memories and can be configured with

random bitstreams. The commercial options main
advantage is the absence of non-recurrent engineering, as

any general purpose architecture, under the cost of

reduced flexibility and performance.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Among commercial options, the obsolete FPGA XC6200
from Xilinx constituted the perfect platform for intrinsic

evolvable hardware; it was possible to download any

arbitrary bitstream without risking contentions. Maybe
the most known work using these devices is that of

Adrian Thompson [1] who evolved analog circuits, by

exploiting the dynamics inherent to the physical
properties of the FPGA internal components.

More recent work on evolvable circuits on commercial
FPGAs has focused on Virtex architectures from Xilinx.

The interest on these devices is their partial dynamic

reconfigurability, with the limitation that no arbitrary
configuration bitstreams can be loaded. Anyway, in [2]

there are presented 3 techniques for EHW on Virtex

families with coarse and fine grained level solutions.

3. Dynamic Partial Reconfiguration on Xilinx

FPGAs

FPGAs are programmable logic devices that permit the

implementation of digital systems. They provide an array

of logic cells that can be configured to perform a given
function by means of a configuration bitstream. Some

FPGAs allow performing partial reconfiguration, where a

reduced bitstream reconfigures only a given subset of
internal components. Dynamic partial reconfiguration

(DPR) is done while the device is active.

Xilinx FPGAs configuration bitstream is composed by
frames. A frame constitutes the minimum configuration

information that can be modified on these devices. For
Xilinx FPGAs there are two documented flows to

perform DPR: Module Based and Difference Based [3].

Even if only these flows are supported by the FPGA
vendor, other approaches have been proposed. Self-

reconfigurable platforms generate a special interest on the

field, given the autonomy they provide. Virtex II FPGAs
include an Internal Access Configuration Port (ICAP),

which allows reading and writing the configuration

bitstream from inside the FPGA. This ICAP allows an
on-chip processor to self-reconfigure the FPGA

supporting it. Self-reconfigurable platforms modify the
system by re-configuring the FPGAs with partial

bitstreams. The main drawback of these partial bitstreams

is that they must be pre- placed and routed on a
workstation, restricting the number of reconfigurable

systems to a predefined value.

An attempt for allowing a platform to self-reconfigure
with a design description conceived on the fly has been

proposed [4]: XPART (Xilinx Partial Reconfiguration

Toolkit) is an application program interface (API), for
Xilinx embedded processors, that provides methods to

read and modify selected FPGA resources by using the
ICAP. Anyway, XPART was never released.

4. Cellular Programming

Cellular Automata (CA) are discrete time dynamical
systems, consisting on an array of identical computing

cells [5]. A cell is defined by a set of discrete states, and a

rule for determining the transitions between states. On the
array, states are synchronously updated according to the

rule, which is function of the current state from the cell

itself and the states of the surrounding neighbours.
Non-uniform CA differ from their uniform counterpart in

the state transition rule diversity exhibited by the non-

uniform ones. Uniform CA constitute a sub-set of non-
uniform CA, making the non-uniform ones a more

general and powerful platform. On the same way, this
power improvement is compensated with a higher

difficulty when designing them. That’s the reason why

evolutionary techniques have been used for finding non-
uniform CA state transfer rules[6, 7]. Several

evolutionary algorithms have been used for non-uniform

CA: mainly genetic algorithms [7] and cellular
programming [6, 8, 9].

In cellular programming each cell’s state transfer rule is

coded as a bit-string, most known as a genome. This
genome implements a rule for computing the next state.

Each genome is, thus, composed of 8 bits for CA with
neighborhood radius r = 1. Instead of using a population

of CA as genetic algorithms, the cellular programming

approach involves a single, non-uniform CA. This fact
implies that the final solution would not be an individual

selected from a population (like on GAs), but the

population itself.
When running the algorithm, initial cell rules are

initialized at random. Then, initial states are equally

randomly initialized; we let the CA run for M iterations,
and we repeat it for C=300 different initial states. There

is not a global fitness, as in genetic algorithms, but a local
fitness for each automaton. Each cell’s fitness is

accumulated for the C state initializations, according to a

performance measure according to the behaviour desired.
After computing the fitness, the genetic operators

(reproduction, crossover, and mutation) are applied to

genomes. In this algorithm, evolutionary operators act on
a local manner, by limiting the reproduction and

crossover operators to use genomes from neighbour cells

(see more details in [8, 9]).

5. The evolvable platform

In this section we present a platform able to self-
reconfiguring non-uniform CA state transitions through

the ICAP. Our platform consists on a Microblaze soft-

processor running on a Virtex-II FPGA from Xilinx

5.1. General System Description

The complete system schematic is depicted in figure 1. A
Microblaze soft-processor from Xilinx runs an

evolutionary algorithm. The program is stored on an

internal BRAM, and an external SRAM is used for data
storing – i.e. genome storing in this case. The system

interfaces through an UART peripheral with the external

world. The one-dimensional (1-D) CA to be evolved can
be accessed for reading or for writing the states through

general purpose I/O interfaces, anyway rule modifications

are exclusively performed by the HWICAP peripheral.
The HWICAP module allows the Microblaze to read and

write the FPGA configuration memory through the
Internal Configuration Access Port (ICAP) at run time,

enabling our evolutive algorithm to modify the circuit

structure and functionality during the circuit’s operation.

Figure 1. System schematic.

5.2. Cellular Automata Implementation

In this work we concentrate on 1-D grids, with a number
of states per cell k=2, denoted 0 and 1. In such CA each

cell is connected to r local neighbours (cells) on either
side, as well as to itself. Where r is a parameter referred

to as the radius (each cell has 2 r + 1 neighbours). In our

case, the radius r=1, thus the neighborhood equals 3.
A 1-D CA composed of 50 automata is included; it can be

configured for running on free-run mode – i.e. a state

update at each clock cycle – or on controlled iterative
mode. An initial state for the CA can be configured

through the writing interface, while the full state can be

read by the reading interface.
We have focused our interest on 1-D CA, with k=2 and

r=1, given their analogy with FPGAs basic elements
(LUTs and flip-flops). Such automaton implemented in

hardware would require a flip-flop, for storing the current

state, and a 3-input LUT. The most basic logic cell of
Virtex-II FPGAs is a slice, which contains 2 flip-flops

and 2 4-input LUT, fitting well for implementing two of

the above described automata.
Hard macros allow specifying the exact placement of a

desired component on a design. In [10] hard macros are

used for instantiating fuzzy rules, which are then evolved
from a PC. In our case, we design a hard macro

consisting in a slice containing 2 automata; the 2-CA hard
macro is depicted in figure 2. Then we instantiated a 1-D

automata with size 50 – i.e. 25 hard macros .

Figure 2. 2-CA hard macro.

As described in [2], one can access the LUT

configuration of a whole column of slices in a single
configuration frame. That’s the reason why we dispose

the set of 25 hard macros on a single column. Then, just

by reading and writing a single frame one can evolve the
configuration bitstream containing the LUTs’ functions.

By using this approach on an FPGA Virtex-II 1000 we
can evolve a CA with up to 160 cells by just modifying a

single frame.

6. Experimental Setup and Results

Two problems were chosen for validating our platform:

firefly synchronization [8] and a random number

generator [9]. In both cases we used the same cellular
programming algorithm described in section 4.

6.1. Firefly synchronization

In CA, the firefly synchronization problem consists on

synchronizing the firing of a set of 2-state automata. CA

are initialized at a random configuration, and after a
number of iterations each automaton must swap its state

synchronizing with its neighbors.

For the cellular programming approach, we initialize the
genome for every cell in a random way, and through the

HWICAP peripheral we map the genome contents on the

frame containing the LUT contents.
Once the frame is re-configured, one can test the CA

through the reading and writing interfaces. A random
initial state is loaded on the CA, and we let it run for 54

iterations. The fitness is computed by the Microblaze

soft-processor, by reading the CA state. For computing
the fitness we let it execute four more iterations: if the

sequence is 0-1-0-1 the fitness is 1, otherwise it is 0. The

total fitness is the accumulation of the fitness of 300 runs.

 Then a new genome for each cell is generated as
described in section 4. Our platform achieves to

successfully finding genomes able to synchronize the

switching of the states, as well as described in [8].

6.2. Pseudo-random number generator

Good random number generators are mainly consequence
of natural physical processes. Pseudo-random number

generators are commonly used by information systems:

starting from a seed value, a non-linear transformation is
applied for simulating real random number generators.

Measuring the quality of a given transformation function

is difficult; however, a simple and effective way of doing
it is to use the entropy of the generated sequence [11].

For the pseudo-random number generator we use the CA

described in the previous section, as well as the same
cellular programming algorithm (excepting the fitness

function). In [9], Sipper and Tomassini evolved a random
number generator in a 1-D 50-cell CA using cellular

programming. We implement the same algorithm, with

the difference that we do not read a value at each CA
update, but we let the CA running in free-run mode.

The fitness computation consists on:

- Partial configuring the FPGA with a given CA,
- Random initialization of states and sampling of 4096

consecutive values.

- Compute entropy of the system as the mean entropy
for each bit subsequence, with the expression:

n

E

E

n

i

i

h

h
1 with:)(log2

1

i

j

k

j

i

j

i

h phphE

h

 Being n the number of cells, h the subsequence

length, and Eh
i the entropy for the cell i considering a

subsequence length h, phj
i is the probability of

obtaining a given subsequence j on the cell i when the

subsequence length is h.

- Repeat, from the initialization, 300 experiences; the
fitness is computed as the average value.

In our experiments we considered a subsequent length

value h=4 allowing a maximal theoretical value of
entropy Eh=4. In [9] it is reported a maximum fitness of

3.997; However they do not specify how many evolutions
were performed before arriving to such solution. The

maximum fitness obtained by our platform after running

20 evolutions is 3.963.

7. Conclusions

The methodology proposed in this paper deals with useful

issues when evolving hardware in a general way.
Performing on-chip evolution on reconfigurable

platforms has always been an important challenge, and
this paper describes how to do it, in an efficient way, on

nowadays commercial devices.

We have presented a novel system approach for evolving
hardware. Our platform has shown to be suitable for

evolving non-uniform CA, and the same approach can be

easily extended to other cellular structures – like artificial
neurons or fuzzy rules – just by defining their respective

hard macro. The system on chip supporting these
reconfiguration capabilities provides the hardware

platform to support the previously called on-chip and on-

line self-reconfigurable adaptable systems, by providing
the flexibility needed by a real phenotype modification on

the evolved hard individual.

References

[1] A. Thompson, "An evolved circuit, intrinsic in silicon,

entwined with physics", Evolvable Systems: From Biology

to Hardware, LNCS, vol. 1259, pp. 390-405, 1997.

[2] A. Upegui and E. Sanchez, "Evolving hardware by

dynamically reconfiguring xilinx FPGAs", Evolvable

Systems: From Biology to Hardware, LNCS, vol. 3637,

pp. 56-65, 2005.

[3] Xilinx_Corp., "XAPP 290: Two Flows for Partial

Reconfiguration: Module Based or Difference Based":

www.xilinx.com, Sept, 2004.

[4] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and

P. Sundararajan, "A self-reconfiguring platform",

Proceedings of Field-Programmable Logic and

Applications, LNCS, vol. 2778, pp. 565-574, 2003.

[5] S. Wolfram, A new kind of science. Champaign, IL:

Wolfram Media, 2002.

[6] M. Sipper, "Co-evolving non-uniform cellular automata to

perform computations", Physica D-Nonlinear Phenomena,

vol. 92, pp. 193-208, 1996.

[7] M. Mitchell, J. P. Crutchfield, and P. T. Hraber,

"Evolving Cellular-Automata to Perform Computations -

Mechanisms and Impediments", Physica D, vol. 75, pp.

361-391, 1994.

[8] M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez,

and M. Tomassini, "The firefly machine: online

evolware", Proceedings of the IEEE International

Conference on Evolutionary Computation, pp. 181-186,

1997.

[9] M. Sipper and M. Tomassini, "Generating parallel random

number generators by cellular programming",

International Journal of Modern Physics C, vol. 7, pp.

181-190, 1996.

[10] G. Mermoud, A. Upegui, C. A. Pena, and E. Sanchez, "A

dynamically-reconfigurable FPGA platform for evolving

fuzzy systems", Computational Intelligence and

Bioinspired Systems, LNCS, vol. 3512, pp. 572-581, 2005.

[11] J. R. Koza, Genetic programming : on the programming

of computers by means of natural selection. Cambridge,

Mass.: MIT Press, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

