
ON THE SECURITY OF MULTIMEDIA ENCRYPTION SCHEMES BASED ON MULTIPLE

HUFFMAN TABLE (MHT)

Jiantao Zhou, Zhiqin Liang, Yan Chen, and Oscar Au

Department of Electrical and Electronic Engineering

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong, China.

Email: {eejtzhou, zhiqin, eecyan, eeau}@ust.hk

ABSTRACT

This paper addresses the security issues of the multimedia

encryption schemes based on multiple Huffman table

(MHT). A detailed analysis of known-plaintext attack is

presented to show that the Huffman tables used for

encryption should be carefully selected to avoid the weak

keys problem. Further, we propose an efficient chosen-

plaintext attack on the basic MHT method as well as the

enhanced scheme inserting random bits. We also show that

random rotation in partitioned bit stream cannot essentially

improve the security.

1. INTRODUCTION

The development in digital multimedia and communication

technologies has paved ways for people around the world to

acquire, utilize, and share multimedia content. The

multimedia data security, as a consequence, is becoming

increasingly important.

The intuitive solution is to encrypt the multimedia data

using conventional cryptographic algorithms such as DES.

Due to the high data rate of multimedia data, these usually

add large number of processing overhead to meet the real-

time delivering requirement. To reduce the computations

involved, selective encryption has been proposed. However,

portions of the content are still visible and identifying the

features introduces some additional computations. Therefore,

designing a good multimedia encryption scheme, which

features high level of security and low computational cost,

is a challenging task.

Recently, Wu et al. proposed an efficient multimedia

encryption methodology, called multiple Huffman table

(MHT) method [1-3], which combines the encryption with

entropy coding using multiple statistical models

alternatively in a secret order. The major advantage of this

kind of scheme is that the encryption with reasonably high

level of security and unaffected compression can be

achieved simultaneously, requiring almost negligible

additional overhead. Unfortunately, MHT method is only

secure under cipher-only and know-plaintext attack, and is

vulnerable under chosen- plaintext attack [1-4]. To improve

the security, several kinds of enhanced MHT encryption

schemes have been proposed by either inserting random bits

in the generated cipher or introducing stream cipher into the

original systems [1-4]. Recently, a relevant encryption

scheme via random rotation in partitioned bit streams has

been reported, and has been integrated with MHT [5-6].

In this work, we analyze the security of the basic MHT

scheme as well as the enhanced methods. We show that the

Huffman tables used for encryption should be carefully

selected, otherwise the computational cost needed by

exhaustive search will be significantly reduced. An efficient

chosen-plaintext attack on the enhanced method inserting

random bits is also presented. Furthermore, we briefly

evaluate the security of the scheme with random rotation in

partitioned bit stream by using a simple example.

The rest of the paper is organized as follows. Section 2

presents an overview of MHT methods. The detailed

security analysis is given in section 3. Section 4 makes

some concluding remarks.

2. MHT ENCRYPTION METHOD

Encryption and compression are, in fact, intimately related

in that it is redundancy in the data permits encryption and

compression [7]. This fact motivates us to integrate

encryption with compression.

Huffman coder is very popular in modern multimedia

compression system, with the aim of compressing symbols

such as quantized DCT coefficients into bit streams,

according to some predefined statistical models. Since,

usually, the statistical model space is not large, it does not

offer enough security. The MHT algorithm [1-4], in order to

increase the model space while maintaining the

computational efficiency, keeps the structure of the

Huffman tree but enlarges the model space through

21851424403677/06/$20.00 ©2006 IEEE ICME 2006

mutating the original trees. The procedure of basic MHT

algorithm can be described as follows:

a) Train four original Huffman trees from different sets

of training data. An example for JPEG dc coefficient

coding can be found in Fig. 8 in [1].

b) Perform tree mutation to create the whole Huffman

tree space. The operation is illustrated in Fig. 1.

c) Randomly select m different trees from the space,

and number them from 0 to 1m .

d) Generate a random vector 0 1{ , , }nP p p , where

each
ip is an integer ranging from 0 to 1m .

e) For the ith symbol, use tree modi np to encode it.

Fig. 1. Tree Mutation Process. A, B, C, D denote alphabets.

Typically, we set 8m and 128n . Since both the

creation of Huffman trees and the look-up table operations

are quite simple, the MHT scheme needs small key-setup

cost and encryption/decryption cost. On the other hand, due

to the fact that decoding a Huffman coded bit stream

without any knowledge of the Huffman table is extremely

difficult [8], MHT is secure under cipher-only attack and

know-plaintext attack [1-3]. However, under chosen-

plaintext attack the MHT scheme is vulnerable, even when

the cipher can receive symbols as a whole chunk and output

the corresponding codewords all together [1].

Aiming to increase the security against chosen-plaintext

attack, two types of enhanced schemes: selective random bit

insertion scheme, and stream cipher involved MHT scheme,

have been proposed [1,4]. In the former case, another

random vector 0 1(,)vQ q q is generated [1]. For the

()w i th bit in the encrypted bit stream, where 50w is a

constant and i , function iF will be performed.

mod

mod

0
()

1

i v

i

i v

do nothing when q
F c

add one random bit after c when q
 (1)

In the latter case, a key stream 0()h s is generated using a

stream cipher such as SHA-1, where
0s is the seed [4]. The

key stream will be partitioned into several blocks

1 2|| || || ||rb b b , where
ib determines a Huffman tree from

the tree space to encode the encountered symbol. See [1,4]

for detailed discussion.

Recently, another relevant encryption scheme via random

rotation in partitioned bit streams was proposed by altering

the generated bit stream [5]. Suppose 1 2 NX x x x is a bit

stream of N bits. This algorithm consists of the following

two major steps, where ip and ir serve as the secret keys.

1) Partition X into k blocks
iX with length

ip ,

1,i k .

2) Perform a
ir -bit left rotation on each block

iA .

 An integrated random rotation scheme with stream cipher

has also been reported in [6].

3. SECURITY ANALYSIS

3.1 Known-plaintext attack and weak keys problem

In this subsection, we propose a detailed analysis of known-

plaintext attack on basic MHT, and show its weak keys

problem. Suppose we are given a bit stream
1 2 NX x x x ,

and know that it is the multiple Huffman encoding of some

alphabet string
1 2 SC c c c . Since any bit stream is of

equal probability, we have no knowledge to determine the

boundary of X , i.e., establish the alphabet-codeword

relationship. Hence, in order to partition X into S

nonempty sub-blocks
1 2 Sd d d , we have to consider 1N

SC

cases. In the traditional case where just one single Huffman

table is used, we can check the prefix condition and

consistence condition to eliminate some impossible

partitions. In the current MHT scheme, we cannot do so

since these two conditions are not necessarily satisfied for

the whole bit stream. However, if we can estimate the upper

bound K to the length of a codeword, the number of

partition can be reduced from 1 ()N S

SC O N to ()SO K .

According to the Huffman tree creation procedure and Fig.

8 in [1], we know 11K . Nonetheless, an attack with

complexity of (11)SO is still formidable.

A more sophisticated method would be to use the fact that

we have knowledge about the tree structure, i.e., we know

the possible length of any alphabet, as Table 1 shows. In the

limiting case where all the m trees are mutated from the

same original tree, identical alphabets in the plaintext

correspond to codewords with the same length, although

they might be encoded by different trees. And from Table 1,

we can find that one specific alphabet can take at most 3

different lengths. This observation immediately reduces the

number of cases to be checked to 133 3 , since we only

need to guess the length once for all identical alphabets.

Here, denotes the alphabet set 0 1 11{ , , , , }a a a error . The

complexity of order 3 is already feasible, especially when

the given plaintext dose not include all different letters.

In both basic and enhanced MHT, the Huffman trees are

randomly selected from the tree space. The probability that

all selected trees are mutated from the same original tree is:
1 5

1 0
4 () /(4) 6 10

m

i
P M i M i (2)

where 122M is the total number of trees generated from

one original tree. It is almost four times higher than that of

the optimal case where all m selected trees are uniformly

mutated from the four original trees

2186

14 4 5

2 0
(1) / (4) 1.52 10

m

i
P M M M i (3)

Note, also, that if all the m trees come from the last two

original trees, around 2 / 3 of all alphabets in will have

fixed length. The occurring probability is:

1

3 0

2
0.0039

4

m

i

M i
P

M i
 (4)

Hence, random selection of Huffman trees will introduce

weak keys problem in the sense that some of the selected

trees provide lower security than the others. To avoid this

problem, a better solution is to randomly select / 4m trees

among each original tree space of size M , instead of

choosing m trees from the whole space of size 4M .

Table 1: Possible code length for alphabets. In ‘length’

column, four numbers correspond to four original trees.

Alphabet Length Alphabet Length

0a 2 2 2 1
7a 5 7 6 6

1a 3 2 2 3
8a 6 8 7 7

2a 3 2 3 4
9a 7 9 8 8

3a 3 3 3 4
10a 8 10 9 9

4a 3 4 3 3
11a 9 11 10 10

5a 3 5 4 4 error 9 11 10 10

6a 4 6 5 5 - -

3.2 Cryptanalysis on the scheme inserting random bits

Before presenting the cryptanalysis on the enhanced scheme

inserting random bits, we propose an efficient chosen-

plaintext attack on the basic MHT method.

Recall in [4], the author proved, under chosen-plaintext

attack, the basic MHT could be broken in n times of

encryption oracle access. But this conclusion is only valid

when the cipher receives one single symbol and outputs its

corresponding codeword. In this work, we consider the

more complicated case where a whole chunk of alphabets

are received and the corresponding codewords are output all

together. We have the following proposition:

Proposition: Under chosen-plaintext attack, the basic MHT

can be broken in 2n oracle accesses, when the cipher

outputs the bit stream of n alphabets all together.

Proof: The attack method can be described as follows.

Step 1: Input alphabet stream
1 2 1 0nc c c a , and obtain bit

stream
1 2 1n nz z z z , where

ic can be any alphabet,
ia

is ith alphabet, and iz is the corresponding codeword.

Step 2: Input another length-n alphabet stream

1 2 1 11nc c c a , and the output sequence is '

1 2 1n nz z z z . We

choose
11a is because, from Fig. 8 in [1],

0a and
11a are

separated by the root node, i.e., the first bit of the codeword

representing
0a and

11a is different. Therefore, we can

obtain ' '

1 2 1 1 2 100 0n n n nZ z z z z z z z z . Denote the

index of the first ‘1’ in 'Z as j (left to right order).

Obviously, the codeword of
0a and

11a starts from the jth bit.

Step 3: Input length-n alphabet stream
1 2 1 1nc c c a .

Since the start position has been determined in Step 2, it is

straightforward to find the corresponding codeword of
1a .

Continuing in this fashion, in Step , all the alphabet-

codeword pairs of the nth tree are recovered. Repeat such

steps, we can restore all the alphabet-codeword pairs for all

n trees, and the computational cost is 2n n n .

Now the key thing for the random bits insertion scheme is

to find the locations of the inserted bits. Note that these

locations have been fixed as long as the vector Q is

determined. Assume the encoded bit stream of
1 2 nc c c is

1 2 1 1 2 1 3 1f f g g h hB b b b y b b y b b y b , where ib is the

original bit, and
iy is the inserted random bit taking 0 or 1

with the same probability. Therefore, we can encode

1 2 nc c c T times, and obtain
1 2, TB B B . We then perform

the operations 1i iD B B , 2 ~i T . Due to the

randomness of
iy , the bit ‘1’ in

iD reveals where the

inserted bits locate. The missing detection probability for

every random bit is 2 T . After successful detection, we

simply remove them from the cipher, and apply the attack

described in the proof to break the enhanced scheme.

Since when detecting the random bits, we exploit the

random property, one may argue that what if inserting

deterministic bits instead of random bits. In fact, this does

not help much to improve the security. Recall that the

random bits will be added after the ()w i th bit if mod 1i vq .

Hence, in the bit stream available, the (1)w th bit is a

suspicious bit to be the first added bit, and (2 1)w th,

(2 2)w th bit are two suspicious bits to be the second

added bit. Along this line, we can find all suspicious bits.

And according to [1], the number of random bits should not

exceed 1% of the original ciphertext, thus, the total number

of suspicious bits is quite limited. For example, for a cipher

with length 700, and 70w , the total number of suspicious

bits is 45. Consequently, after recovering all the alphabet-

codeword pairs for each tree, using the aforementioned

method, we further perform two additional checking steps:

Step a: Check whether the obtained codewords contain

suspicious bits according to the suspicious bits index. If yes,

go to Step b, otherwise, continue to find the alphabet-

codeword pairs for the previous tables.

Step b: Check whether the following equality holds,

where il denotes the length of obtained codeword of ia .
1

0
2 1il

i
E (5)

Since Huffman coding is optimal, Eq. 5 will be violated if

any bits are inserted. In the case of 1E , from Table 1, we

can find the relationship between the inserted bit location

u N (relative position within the codeword, left to right

order) with 2log (1)Y E , for four original tree

conditions. From Fig. 2, we can see that if 6u , we can

obtain an unique solution of u from Y . When 2 6u ,

the number of solution is at most 2. Under this situation, we

just keep these two candidates, and one of them can be used

2187

to successfully remove the inserted bit, leading to correct

decoding of the bit stream.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

The location of the random bit

Y
=

lo
g 2(1

E
)

original tree1
original tree2
original tree3
original tree4

Fig. 2. Relationship between inserted bit location u and Y .

3.3 Random rotation in partitioned bit streams

A relevant encryption scheme via random rotation in

partitioned bit streams has been suggested in [5]. Due to the

space limitation, we just present a simple example to

illustrate the basic idea of our attack, and the detailed

analysis will be reported in our forthcoming paper. Suppose

there is one alphabet a corresponds to codeword ‘1’, and

another alphabet b corresponds to codeword ‘01’. Note that

in this encryption scheme, multiple Huffman tables are not

considered. We set the partition key 6p , and rotation key

3r . Our goal is to recover these two values.

When encoding length-n alphabets aa a , we can obtain

bit stream 11 1 . We then encode baa a , and the

obtained bit stream is 111011 1 . From this, we can know

that 3p r holds. In the following steps, we can input

aba a , aaba a , aaaba a , and get the corresponding

bit stream 111101 1 , 1111101 1 , and 011 1 . It can be

seen that ‘ 0 ’ in the codeword of aaba a hits the

boundary, i.e., 6p . So, we can derive 3r .

Although the author has proved the existence of large

numbers of alias keys that encode the same plaintext to the

same ciphertext [5], the underlying reason of the success of

the attack is that by differential analysis, the number of alias

keys can be reduced to 1. The analysis for MHT with

random rotation is a natural extension of the above method.

Therefore, random rotation in partitioned bit streams cannot

essentially improve the security.

4. CONCLUDING REMARKS

The security of the multimedia encryption schemes based on

multiple Huffman table has been addressed. A detailed

analysis of know-plaintext attack reveals that the multiple

Huffman tables used for encryption should be carefully

selected to avoid the weak keys problem. In some extreme

cases, the computation of exhaustive search can even be of

order 133 . Furthermore, we propose an efficient chosen-

plaintext attack to the basic MHT scheme as well as the

enhanced scheme inserting random bits. We also briefly

evaluate the security of a relevant encryption scheme with

random rotation in partitioned bit streams.

In this paper, we have not discussed the schemes with

stream cipher generators. Generally speaking, the only

relevant attack model in those cases is the known-plaintext

attack because the internal state of the stream cipher is

independent of the plaintext and the ciphertext, making the

flexibility of chosen-plaintext attack cannot be exploited.

Currently, it is not practical to recover the secret keys of the

stream cipher such as SHA-1, although recently

breakthrough has been achieved [9]. The security of these

schemes, however, solely relies on the assumption that

decoding a multiple Huffman table encoded bit stream is

computationally infeasible even if we have full knowledge

about all the multiple tables, but only do not know the using

order. To what extend is this assumption true is still an open

question, and needs more mathematical analyses.

5. ACOKNOWLEDGEMENT

This work has been supported by the Innovation and

Technology Commission of the Hong Kong Special

Administrative Region, China (project no. ITS/122/03 and

project no. GHP/033/05).

6. REFERENCES

[1] C. Wu and C.-C. J. Kuo, “Design of integrated multimedia

compression and encryption systems”, IEEE Trans. Multimedia,

vol. 7, no.5, pp. 828-839, 2005.

[2] C. Wu and C.-C. J. Kuo, “Efficient multimedia encryption via

entropy codec design”, SPIE international symposium on

electronic imaging, San Jose, CA, Jan 2001.

[3] C. Wu and C.-C. J. Kuo, “Fast encryption methods for

audiovisual data confidentiality ”, SPIE international symposium

on Information Technologies, Boston. pp. 284-295, Nov 2000.

[4] D. Xie and C.-C. J. Kuo, “Enhanced multiple Huffman table

(MHT) encryption scheme using key hoping”, Proc. ISCAS 2004,

vol.5, pp. 568-571, May 2004.

[5] D. Xie and C.-C. J. Kuo, “Multimedia data encryption via

random rotation in partitioned bit streams”, Proc. ISCAS 2005

vol.5, pp. 5533-5536, May 2005.

[6] I. Cheong, Y. Huang, Y. Yung, S. Ke, and W. Chen, “An

efficient encryption scheme for MPEG video”, International

Conference on Consumer Electronics, pp. 61-62, Jan 2005.

[7] S. T. Klein, A. Bookstein, and S. Deerwester, “Storing test

retrieval systems on CD-ROM: Compression and Encryption”,

ACM Trans. Information Systems, vol. 7, no.3, pp. 230-245, 1989.

[8] D. Gillman, M. Mohtashemi, and R. Rivest, “On breaking a

Huffman code”, IEEE Trans. Information Theory, vol. 42, no. 3,

pp. 972-976, 1996.

[9] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full

SHA-1”, Lecture notes on computer science, vol. 3621, pp. 17-36, ,

Springer-Verlag, Berlin, 2005.

2188

