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ABSTRACT 

This paper addresses the security issues of the multimedia 

encryption schemes based on multiple Huffman table 

(MHT). A detailed analysis of known-plaintext attack is 

presented to show that the Huffman tables used for 

encryption should be carefully selected to avoid the weak 

keys problem. Further, we propose an efficient chosen-

plaintext attack on the basic MHT method as well as the 

enhanced scheme inserting random bits. We also show that 

random rotation in partitioned bit stream cannot essentially 

improve the security.    

1. INTRODUCTION 

The development in digital multimedia and communication 

technologies has paved ways for people around the world to 

acquire, utilize, and share multimedia content. The 

multimedia data security, as a consequence, is becoming 

increasingly important.  

The intuitive solution is to encrypt the multimedia data 

using conventional cryptographic algorithms such as DES. 

Due to the high data rate of multimedia data, these usually 

add large number of processing overhead to meet the real-

time delivering requirement. To reduce the computations 

involved, selective encryption has been proposed. However, 

portions of the content are still visible and identifying the 

features introduces some additional computations. Therefore, 

designing a good multimedia encryption scheme, which 

features high level of security and low computational cost, 

is a challenging task.    

Recently, Wu et al. proposed an efficient multimedia 

encryption methodology, called multiple Huffman table 

(MHT) method [1-3], which combines the encryption with 

entropy coding using multiple statistical models 

alternatively in a secret order. The major advantage of this 

kind of scheme is that the encryption with reasonably high 

level of security and unaffected compression can be 

achieved simultaneously, requiring almost negligible 

additional overhead. Unfortunately, MHT method is only 

secure under cipher-only and know-plaintext attack, and is 

vulnerable under chosen- plaintext attack [1-4]. To improve 

the security, several kinds of enhanced MHT encryption 

schemes have been proposed by either inserting random bits 

in the generated cipher or introducing stream cipher into the 

original systems [1-4]. Recently, a relevant encryption 

scheme via random rotation in partitioned bit streams has 

been reported, and has been integrated with MHT [5-6].  

In this work, we analyze the security of the basic MHT 

scheme as well as the enhanced methods. We show that the 

Huffman tables used for encryption should be carefully 

selected, otherwise the computational cost needed by 

exhaustive search will be significantly reduced. An efficient 

chosen-plaintext attack on the enhanced method inserting 

random bits is also presented. Furthermore, we briefly 

evaluate the security of the scheme with random rotation in 

partitioned bit stream by using a simple example.  

The rest of the paper is organized as follows. Section 2 

presents an overview of MHT methods. The detailed 

security analysis is given in section 3. Section 4 makes 

some concluding remarks.    

   

2. MHT ENCRYPTION METHOD 

Encryption and compression are, in fact, intimately related 

in that it is redundancy in the data permits encryption and 

compression [7]. This fact motivates us to integrate 

encryption with compression.  

Huffman coder is very popular in modern multimedia 

compression system, with the aim of compressing symbols 

such as quantized DCT coefficients into bit streams, 

according to some predefined statistical models. Since, 

usually, the statistical model space is not large, it does not 

offer enough security. The MHT algorithm [1-4], in order to 

increase the model space while maintaining the 

computational efficiency, keeps the structure of the 

Huffman tree but enlarges the model space through 
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mutating the original trees. The procedure of basic MHT 

algorithm can be described as follows: 

a) Train four original Huffman trees from different sets 

of training data. An example for JPEG dc coefficient 

coding can be found in Fig. 8 in [1].    

b) Perform tree mutation to create the whole Huffman 

tree space. The operation is illustrated in Fig. 1.  

c) Randomly select m  different trees from the space, 

and number them from 0 to 1m .

d) Generate a random vector 0 1{ , , }nP p p , where 

each 
ip  is an integer ranging from 0 to 1m .

e) For the ith symbol, use tree modi np to encode it.  

Fig. 1. Tree Mutation Process. A, B, C, D denote alphabets. 

Typically, we set 8m  and 128n . Since both the 

creation of Huffman trees and the look-up table operations 

are quite simple, the MHT scheme needs small key-setup 

cost and encryption/decryption cost. On the other hand, due 

to the fact that decoding a Huffman coded bit stream 

without any knowledge of the Huffman table is extremely 

difficult [8], MHT is secure under cipher-only attack and 

know-plaintext attack [1-3]. However, under chosen-

plaintext attack the MHT scheme is vulnerable, even when 

the cipher can receive symbols as a whole chunk and output 

the corresponding codewords all together [1].  

Aiming to increase the security against chosen-plaintext 

attack, two types of enhanced schemes: selective random bit 

insertion scheme, and stream cipher involved MHT scheme, 

have been proposed [1,4]. In the former case, another 

random vector 0 1( , )vQ q q is generated [1]. For the 

( )w i th bit in the encrypted bit stream, where 50w  is a 

constant and i , function iF  will be performed.  

mod

mod

0
( )

1

i v

i

i v

do nothing when q
F c

add one random bit after c when q
     (1) 

In the latter case, a key stream 0( )h s  is generated using a 

stream cipher such as SHA-1, where 
0s  is the seed [4]. The 

key stream will be partitioned into several blocks 

1 2|| || || ||rb b b , where 
ib  determines a Huffman tree from 

the tree space to encode the encountered symbol. See [1,4] 

for detailed discussion.    

Recently, another relevant encryption scheme via random 

rotation in partitioned bit streams was proposed by altering 

the generated bit stream [5]. Suppose 1 2 NX x x x  is a bit 

stream of N  bits. This algorithm consists of the following 

two major steps, where ip  and ir  serve as the secret keys.  

1) Partition X into k  blocks 
iX  with length 

ip ,

1,i k .

2) Perform a 
ir -bit left rotation on each block 

iA .

   An integrated random rotation scheme with stream cipher 

has also been reported in [6].  

3. SECURITY ANALYSIS 

3.1 Known-plaintext attack and weak keys problem 

In this subsection, we propose a detailed analysis of known-

plaintext attack on basic MHT, and show its weak keys 

problem. Suppose we are given a bit stream 
1 2 NX x x x ,

and know that it is the multiple Huffman encoding of some 

alphabet string 
1 2 SC c c c . Since any bit stream is of 

equal probability, we have no knowledge to determine the 

boundary of X , i.e., establish the alphabet-codeword 

relationship. Hence, in order to partition X  into S

nonempty sub-blocks 
1 2 Sd d d , we have to consider 1N

SC

cases. In the traditional case where just one single Huffman 

table is used, we can check the prefix condition and 

consistence condition to eliminate some impossible 

partitions. In the current MHT scheme, we cannot do so 

since these two conditions are not necessarily satisfied for 

the whole bit stream. However, if we can estimate the upper 

bound K  to the length of a codeword, the number of 

partition can be reduced from 1 ( )N S

SC O N  to ( )SO K .

According to the Huffman tree creation procedure and Fig. 

8 in [1], we know 11K . Nonetheless, an attack with 

complexity of (11 )SO  is still formidable.  

A more sophisticated method would be to use the fact that 

we have knowledge about the tree structure, i.e., we know 

the possible length of any alphabet, as Table 1 shows. In the 

limiting case where all the m  trees are mutated from the 

same original tree, identical alphabets in the plaintext 

correspond to codewords with the same length, although 

they might be encoded by different trees. And from Table 1, 

we can find that one specific alphabet can take at most 3 

different lengths. This observation immediately reduces the 

number of cases to be checked to 133 3 , since we only 

need to guess the length once for all identical alphabets.  

Here,  denotes the alphabet set 0 1 11{ , , , , }a a a error . The 

complexity of order 3 is already feasible, especially when 

the given plaintext dose not include all  different letters.  

In both basic and enhanced MHT, the Huffman trees are 

randomly selected from the tree space. The probability that 

all selected trees are mutated from the same original tree is:  
1 5

1 0
4 ( ) /(4 ) 6 10

m

i
P M i M i                        (2) 

where  122M  is the total number of trees generated from 

one original tree. It is almost four times higher than that of 

the optimal case where all m  selected trees are uniformly 

mutated from the four original trees 
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14 4 5

2 0
( 1) / (4 ) 1.52 10

m

i
P M M M i            (3) 

Note, also, that if all the m  trees come from the last two 

original trees, around 2 / 3 of all alphabets in  will have 

fixed length. The occurring probability is:  

1

3 0

2
0.0039

4

m

i

M i
P

M i
                                       (4) 

Hence, random selection of Huffman trees will introduce 

weak keys problem in the sense that some of the selected 

trees provide lower security than the others. To avoid this 

problem, a better solution is to randomly select / 4m  trees 

among each original tree space of size M , instead of 

choosing m  trees from the whole space of size 4M .   

Table 1: Possible code length for alphabets. In ‘length’ 

column, four numbers correspond to four original trees.  

Alphabet Length Alphabet Length 

0a 2 2 2 1 
7a 5 7 6 6 

1a 3 2 2 3 
8a 6 8 7 7 

2a 3 2 3 4 
9a 7 9 8 8 

3a 3 3 3 4 
10a 8 10 9 9 

4a 3 4 3 3 
11a 9 11 10 10 

5a 3 5 4 4 error 9 11 10 10 

6a 4 6 5 5 - - 

3.2 Cryptanalysis on the scheme inserting random bits  

Before presenting the cryptanalysis on the enhanced scheme 

inserting random bits, we propose an efficient chosen-

plaintext attack on the basic MHT method.   

Recall in [4], the author proved, under chosen-plaintext 

attack, the basic MHT could be broken in n  times of 

encryption oracle access. But this conclusion is only valid 

when the cipher receives one single symbol and outputs its 

corresponding codeword. In this work, we consider the 

more complicated case where a whole chunk of alphabets 

are received and the corresponding codewords are output all 

together. We have the following proposition:  

Proposition: Under chosen-plaintext attack, the basic MHT 

can be broken in 2n  oracle accesses, when the cipher 

outputs the bit stream of n  alphabets all together.  

Proof: The attack method can be described as follows.

Step 1: Input alphabet stream 
1 2 1 0nc c c a , and obtain bit 

stream 
1 2 1n nz z z z , where 

ic  can be any alphabet, 
ia

is ith alphabet, and iz  is the corresponding codeword.  

Step 2: Input another length-n alphabet stream 

1 2 1 11nc c c a , and the output sequence is '

1 2 1n nz z z z . We 

choose 
11a  is because, from Fig. 8 in [1], 

0a  and 
11a are 

separated by the root node, i.e., the first bit of the codeword 

representing 
0a  and 

11a  is different. Therefore, we can 

obtain ' '

1 2 1 1 2 100 0n n n nZ z z z z z z z z . Denote the 

index of the first ‘1’ in 'Z as j (left to right order). 

Obviously, the codeword of 
0a and 

11a starts from the jth bit.  

Step 3: Input length-n alphabet stream 
1 2 1 1nc c c a .

Since the start position has been determined in Step 2, it is 

straightforward to find the corresponding codeword of 
1a .

Continuing in this fashion, in Step , all the alphabet-

codeword pairs of the nth tree are recovered. Repeat such 

steps, we can restore all the alphabet-codeword pairs for all 

n  trees, and the computational cost is 2n n n .

Now the key thing for the random bits insertion scheme is 

to find the locations of the inserted bits. Note that these 

locations have been fixed as long as the vector Q  is 

determined. Assume the encoded bit stream of 
1 2 nc c c is

1 2 1 1 2 1 3 1f f g g h hB b b b y b b y b b y b , where ib is the 

original bit, and 
iy  is the inserted random bit taking 0 or 1 

with the same probability. Therefore, we can encode 

1 2 nc c c T  times, and obtain 
1 2, TB B B . We then perform 

the operations 1i iD B B , 2 ~i T . Due to the 

randomness of 
iy , the bit ‘1’ in 

iD  reveals where the 

inserted bits locate. The missing detection probability for 

every random bit is 2 T . After successful detection, we 

simply remove them from the cipher, and apply the attack 

described in the proof to break the enhanced scheme. 

Since when detecting the random bits, we exploit the 

random property, one may argue that what if inserting 

deterministic bits instead of random bits. In fact, this does 

not help much to improve the security. Recall that the 

random bits will be added after the ( )w i th bit if mod 1i vq .

Hence, in the bit stream available, the ( 1)w th bit is a 

suspicious bit to be the first added bit, and (2 1)w th,

(2 2)w th bit are two suspicious bits to be the second 

added bit. Along this line, we can find all suspicious bits. 

And according to [1], the number of random bits should not 

exceed 1% of the original ciphertext, thus, the total number 

of suspicious bits is quite limited. For example, for a cipher 

with length 700, and 70w , the total number of suspicious 

bits is 45. Consequently, after recovering all the alphabet-

codeword pairs for each tree, using the aforementioned 

method, we further perform two additional checking steps:  

Step a: Check whether the obtained codewords contain 

suspicious bits according to the suspicious bits index. If yes, 

go to Step b, otherwise, continue to find the alphabet-

codeword pairs for the previous tables.  

Step b: Check whether the following equality holds, 

where il  denotes the length of obtained codeword of ia .
1

0
2 1il

i
E                                                 (5) 

Since Huffman coding is optimal, Eq. 5 will be violated if 

any bits are inserted. In the case of 1E , from Table 1, we 

can find the relationship between the inserted bit location 

u N  (relative position within the codeword, left to right 

order) with 2log (1 )Y E , for four original tree 

conditions. From Fig. 2, we can see that if 6u , we can 

obtain an unique solution of u  from Y . When 2 6u ,

the number of solution is at most 2.  Under this situation, we 

just keep these two candidates, and one of them can be used 
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to successfully remove the inserted bit, leading to correct 

decoding of the bit stream.  

0 2 4 6 8 10 12
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Y
=
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g 2(1

E
)

original tree1
original tree2
original tree3
original tree4

Fig. 2. Relationship between inserted bit location u and Y .

3.3 Random rotation in partitioned bit streams  

A relevant encryption scheme via random rotation in 

partitioned bit streams has been suggested in [5]. Due to the 

space limitation, we just present a simple example to 

illustrate the basic idea of our attack, and the detailed 

analysis will be reported in our forthcoming paper. Suppose 

there is one alphabet a  corresponds to codeword ‘1’, and 

another alphabet b  corresponds to codeword ‘01’. Note that 

in this encryption scheme, multiple Huffman tables are not 

considered. We set the partition key 6p , and rotation key 

3r . Our goal is to recover these two values.  

When encoding length-n alphabets aa a , we can obtain 

bit stream 11 1 . We then encode baa a , and the 

obtained bit stream is 111011 1 . From this, we can know 

that 3p r  holds. In the following steps, we can input 

aba a , aaba a , aaaba a , and get the corresponding 

bit stream 111101 1 , 1111101 1 , and 011 1 . It can be 

seen that ‘ 0 ’ in the codeword of aaba a  hits the 

boundary, i.e., 6p . So, we can derive 3r .

Although the author has proved the existence of large 

numbers of alias keys that encode the same plaintext to the 

same ciphertext [5], the underlying reason of the success of 

the attack is that by differential analysis, the number of alias 

keys can be reduced to 1. The analysis for MHT with 

random rotation is a natural extension of the above method. 

Therefore, random rotation in partitioned bit streams cannot 

essentially improve the security.  

4. CONCLUDING REMARKS 

The security of the multimedia encryption schemes based on 

multiple Huffman table has been addressed. A detailed 

analysis of know-plaintext attack reveals that the multiple 

Huffman tables used for encryption should be carefully 

selected to avoid the weak keys problem. In some extreme 

cases, the computation of exhaustive search can even be of 

order 133 . Furthermore, we propose an efficient chosen-

plaintext attack to the basic MHT scheme as well as the 

enhanced scheme inserting random bits. We also briefly 

evaluate the security of a relevant encryption scheme with 

random rotation in partitioned bit streams.  

In this paper, we have not discussed the schemes with 

stream cipher generators. Generally speaking, the only 

relevant attack model in those cases is the known-plaintext 

attack because the internal state of the stream cipher is 

independent of the plaintext and the ciphertext, making the 

flexibility of chosen-plaintext attack cannot be exploited. 

Currently, it is not practical to recover the secret keys of the 

stream cipher such as SHA-1, although recently 

breakthrough has been achieved [9]. The security of these 

schemes, however, solely relies on the assumption that 

decoding a multiple Huffman table encoded bit stream is 

computationally infeasible even if we have full knowledge 

about all the multiple tables, but only do not know the using 

order. To what extend is this assumption true is still an open 

question, and needs more mathematical analyses. 
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