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Abstract

Given a point-based 3D computer graphics model which is de-
fined by a point set P (P = {pi ∈ R3}) and a desired reduced
number of output samples Ns, the simplification approach finds
a point set Ps which (i) satisfies |Ps| = Ns (|Ps| is the cardi-
nality of Ps) and (ii) minimizes the difference of the correspond-
ing surface Ss(defined by Ps) and the original surface S(defined
by P ). Although a number of previous approaches have been pro-
posed for simplification, most of them (i) do not focus on point-
based 3D models, (ii)do not consider efficiency, quality and gen-
erality together. In this paper, we introduce an adaptive simplifi-
cation method (ASM) which is an efficient technique for simplify-
ing point-based complex 3D model . ASM achieves low running
time by clustering the points locally based on the preservation of
geometric characteristics. Finally, we analyze the performance of
ASM and show that it outperforms most of the current state-of-the-
art methods in terms of efficiency, quality and generality.

1. Introduction
Early work in the simplification of 3D computer graphics

model focuses on polygonal models because other model repre-
sentations, such as spline, volumetric and implicit-surface can be
converted to a polygonal one. There are four main types of algo-
rithms for simplifying polygonal meshes: (i) Vertex removal (Fig-
ure 1(a)) (e.g. [1]); (ii) Vertex clustering (Figure 1(b)) (e.g. [2],
[3]); (iii) Edge contraction(Figure 1(c)) (e.g. [4], [5]); (iv) Particle
simulation(Figure 1(d))(e.g. [6], [7]). However, most of the above
algorithms cannot be applied to point-based surface directly. The
main motivation of this paper is to investigate whether there is a
new approach which (i)inherits the advantage of simplification al-
gorithms for polygonal meshes and (ii) works well on point-based
surface.

With the popularity of 3D scanners, more and more point-based
3D models are available. Point-based 3D models have three char-
acteristics: (i) most of them consists of millions of 3D points;
(ii) the boundary surfaces of the models are represented by a dis-
crete point set; (iii) there does not exist any topological relation-
ship between these points. Traditional methods first convert a dis-
crete point cloud to a continuous surface representation, such as
spline, volumetric, implicit-surface, or polygon. Then, the mod-
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Figure 1. Different kinds of simplification methods

els are simplified by the above simplification algorithms. However,
the process of conversion is time consuming and memory consum-
ing, especially with the increasing cardinality of the point set. As
a result, another motivation of this paper is to investigate whether
there is a new approach which can simplify the point set directly
and avoid the process of conversion.

The contribution of this paper are threefold. First, we propose
a local clustering approach which is very efficient for clustering
the points in a grid cell structure based on the preservation of geo-
metric characteristics. Second, we introduce a novel error metric ,
known as key point error (KPE), to evaluate the error of the simpli-
fied model. Third, we introduce an adaptive simplification method
(ASM) which combines local clustering with a global error-bound.

The rest of the paper is organized as follows. Section 2 surveys
the related work on simplification methods for point-based mod-
els. Section 3 describes local clustering methods, key point error,
and the ASM algorithm. Section 4 evaluates ASM experimentally.
Section 5 is conclusion and future work.

2. Background
Recently, point clouds receive much attention as a representa-

tion of models in computer graphics. Point clouds which are pro-
duced by 3D scanning devices can be rendered and visualized di-
rectly by point-based rendering and visualization methods.

Alexa et al.[8] and Linsen et al[9] first proposed simplifica-
tion algorithm for point-based models. Their algorithms belong to
the class of vertex removal. Then, Pauly and Gross[10] provided
a resampling strategy based on one of signal processing theory.
The most related work to us is proposed by Pauly, et al [11]. They
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provided four surface simplification methods which are adapted
from the simplification methods for polygonal surface: incremen-
tal clustering, hierarchical clustering, iterative simplification and
particle simulation.

3. Adaptive simplifi cation algorithm

3.1. Key point

Without loss of generality, we assume that a point-based sur-
face Sc in a grid cell c can be approximated by a local surface func-
tion f(p). Usually, local surface function is a polynomial function
which is determined by a set of points pi(pi ∈ c, 1 ≤ i ≤ nc,
where nc is the number of the points in a grid cell c). The point pj

(pj ∈ c, 1 ≤ j ≤ nk ≤ nc, where nk is the number of the key
points in c) is called a ”Key point” if its contribution is high in the
process of determining the geometric characteristics of a local sur-
face. Figure 2 illustrates the key points(the black points) on the
curve in a 2D view. Key points in figure 2(a) determine the extent
of the curve and the maximum value and the minimum value of the
curve. If key points are preserved, most of the geometric character-
istics of the curve are preserved as well in the process of simplifi-
cation. Key points include three kinds of points: (i) start points and
end points; (ii) stationary points; (iii) inflection points. These key
points capture the skeleton of the curve or the surface. The preser-
vation of key points decrease the difference between the original
surface Sc before simplification and the corresponding surface S

′
c

after simplification.
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(a) key points of the curve (b) simplifying the curve

Figure 2. Key point

3.2. Local clustering

The computation cost for finding key points is very high be-
cause local surface function fp and its derivatives f ′

p, f
′′
p are diffi-

cult to compute. In order to improve the efficiency, we propose an-
other approach based on several interesting observations:(1) It is
not necessary to preserve inflection points, since most of the inflec-
tion points are close to the center of the clusters, as shown in Fig-
ure 2(b). (2) It is not necessary to preserve the start point and the
end point for closed surfaces. (3) The coordinates of the key points
achieve either a maximum or minimum value when compared with
the corresponding coordinates of a number of neighboring points
along an axis with small variance.(4) The data points between key
points can easily be partitioned into one or several clusters along
the axis with maximum variance. For example, the data points be-
tween the black points in figure 2 are easy to form clusters along
the x-axis.

Based on these observations , we first calculate the eigenvec-
tors and eigenvalues of the covariance matrix of the points in grid
cell c. Then, the eigenvectors are sorted in descending order ac-

cording to their corresponding eigenvalues.Note that, the objec-
tive here is to determine the variance of the local surface normal.
Finally, all the points are projected to the new coordinate system
which is formed by the eigenvectors. The following Lemma 1 and
Lemma 2 are obtained by the property of key points.(We only fo-
cus on stationary points)

Lemma 1. If the coordinate of a point p along the axis v2 with
the smallest eigenvalue has the maximum (minimum)value, p is a
global maximum(minimum) point in grid cell c.

Lemma 2. If the coordinate of a point p along the axis v2 with the
smallest eigenvalue is greater(smaller) than that of its neighbors,
p is a local maximum (minimum)point in grid cell c.

The proofs are given in [13].
There are two ways for the algorithm to determine the key

points according to the lemmas:(i) It obtains the points with the
maximum or minimum value along the axis v2 as key points di-
rectly; (ii) It considers the points one by one. If the point sat-
isfies Lemma2, the point is a local maximum (minimum) point.
Although searching for the nearest neighbor of a point is very
fast, computational cost will be expensive for a large point set.
In order to save computation cost, the algorithm adopts a parti-
tion strategy: (i) it calculates the difference between the maxi-
mum value MAXv2 and the minimum value MINv2 along v2.
(ii) A partition threshold α (0 ≤ α ≤ 1

2
) is specified. There

exists two planes perpendicular to v2 and whose intersections
with v2 are given by MAXv2 − α · (MAXv2 − MINv2) and
MINv2 − α · (MAXv2 − MINv2) respectively. They divide
the space in the grid cell c into three parts. (iii) The algorithm
clusters the points in the three parts based on another two axis
v0, v1. Note that, we take the center of the clusters above the
plane v2 = (MAXv2 − α · (MAXv2 − MINv2)) or below the
plane v2 = MINv2 − α · (MAXv2 − MINv2) as key points,
since adopting the center of the clusters (i)alleviates the influ-
ence of noise and (ii) the centers are close to the key points if
α is small. The value of α determines the number of missing key
points. If α is large, the number of missing key points is small.
However, in this case, the center of the clusters are not close to the
key points any more and cannot achieve the objective of preserv-
ing key points. According to our experiments, α = 1

8
represents a

suitable choice.
The algorithm is divided into six steps: (i) the mean point pc

of all the data points pi in the grid cell c is computed by the equa-

tion pc =
� nc

i=1 pi

nc
(nc is the number of points in a grid cell c).

(ii) A 3 × 3 covariance matrix CM is calculated by the equation

CM = Cov(axis k, axis l) =
� nc

i=1(pki−pkc)(pli−plc)

nc
, where

axis k, axis l ∈ {x− axis, y − axis, z − axis}. (iii) the eigen-
vectors and eigenvalues of the covariance matrix CM are deter-
mined by the equation CM · vk = λk · vk (0 ≤ k ≤ 2). (iv) All
the points are transformed to the new coordinate system defined
by the eigenvectors v0, v1, v2. (v)The points are partitioned into
three parts by the above partition strategy. (vi)The points in the
top and bottom parts are clustered as key points, while the points
between the key points are clustered by their values along v0, v1.
The centroids of the clusters become the new sample points.

Figure 3 illustrates this local clustering approach based on
PCA using a 2D view. Figure 3(a) shows the original data points,
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(a) Original data points (b) PCA transform

(c) Partition strategy (d) New samples

Figure 3. Local clustering

while Figure 3(b) illustrates the change after PCA. The points in
Figure 3(c) are partitioned into three parts by two dashed lines
(v2 = MAXv2−α·(MAXv2−MINv2) and v2 = MINv2−α·
(MAXv2 − MINv2))according to the partition strategy. It is ob-
vious that there are two clusters in the top partition, while only one
cluster is in the bottom . The centers of the clusters which contain
the black points are viewed as key points. Finally, all the points in
the middle part are clustered between the key points along v0. Fig-
ure 3(d) shows the new samples after clustering.

Figure 4 shows the results of the local clustering method based
on PCA to simplify the model of a dragon (437646 points) to dif-
ferent output model size (Ns). The arrows in the top row show
some key points which are preserved by the algorithm, while the
arrows in the bottom row point out the change in mean curvature.

Dragon model N � = 4×10
�

N � = 8×10
�

N � = 1.6×10
�

Figure 4. Dragon model

3.3. Combination with random sampling

The clustering algorithm has two major disadvantages: (i) the
surface quality is low; (ii)we are unable to control the number of
samples. The objective of key point preservation is to improve the
quality of the surface. In order to control the number of the out-
put samples, we combine local clustering with random sampling.
First, the system gives the number of samples Nc for the grid cell
c. Then, the algorithm clusters the black points in Figure 3(c).(iii)
if (Nc > Cn)(where Cn is the number of the centers of the clus-
ters), it selects Nc − Cn samples by clustering the white points.
(iv) if (Nc < Cn), it randomly selects Nc from Cn points.

3.4. Error analysis

We propose a novel error estimation method based on the ob-
servation that the output surface S′ is similar to the original sur-
face S which means the key points in S′ are close to the corre-
sponding key points in S. The error between S′ and S is measured

by the average of the distances between key points, which we re-
fer to as the Average key point error(AKPE). We can also adopt a
Maximum key point error(MKPE) as defined in Eq(2) below:

AKPE =
1

nk

nk�

k=1

d(pk[i], p′
k[i]) (1)

MKPE = Max1≤k≤nk
d(pk[i], p′

k[i]) (2)

d(pk[i], p′
k[i]) =

2�

i=0

(pk[i] − p′
k[i])2 (3)

where nk is the number of selected key points, pk[i] is the co-
ordinate of the key point(pk ∈ S) along the ith dimension ,
p′

k[i] is the coordinate of the corresponding key point (p′
k ∈ S′).

d(pk[i], p′
k[i]) is the distance measure.
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Figure 5. Error estimation

Figure 5(a) illustrates the process of calculating KPE. The al-
gorithm first obtains the key points {p0, p1, p2} in the original sur-
face S and the corresponding key points {p′

0, p
′
1, p

′
2} in the out-

put surface S′ by the methods in section 3.2. Then, the distances
(d0, d1, d2)between key point pairs (p0, p

′
0), (p1, p

′
1), (p2, p

′
2)are

computed respectively. Finally, KPE is calculated by Eqs (1) and
(2).

3.5. The overview of the algorithm

The algorithm for ASM is shown in Figure 6. In order to control
the total number of output samples, an evaluation function f(ci) is
proposed to determine the contribution of each grid cell ci as fol-
lows.

f(ci) =
ω · cs · |ci|

|Ps| (4)

where ω is the value of weight which reflects the importance of
the grid cell ci, cs is the output model size, |ci| is the number of
the points in the grid cell ci, and |Ps| is the cardinality of the point
set Ps. Obviously, the value of f(ci) is proportional to |ci|.

The error tolerance ε is given by the user which bounds the
maximum key point error (MKPE)for local clustering. If MKPE
is greater than ε in the process of local clustering, we reduce the
value of α(α is the control parameter to determine the partition
plane) and adjust the corresponding partition plane by the fitness
function ψ(α)

ψ(α) =
MAXv2 − (MAXv2−α1·(MAXv2−MINv2 ))·ε

MKPE

MAXv2 − MINv2

(5)

where MAXv2 and MINv2 are the maximum and minimum
value along the eigenvector v2 with the smallest eigenvalue re-
spectively, and α1 is the value of α before adjusting. Maximum
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key point error MKPE is then computed by Eq (2). Note that,
it is obvious that the key point with maximum key point error is
the global maximum point or the global minimum point in the
grid cell Ci. As a result, the algorithm first calculates MKPE.
If MKPE > ε, it adjusts the value of α by Eq (5). Otherwise, it
clusters other points by the approach based on PCA.

Algorithm ASM(Point set P , Sample number Ns, Tolerance ε)
/*ε is the maximum error tolerance */
/*|P ′

s| is the cardinality of the point set P after clustering */
/*MKPEN is the key point error after clustering */
1. Hashes all the points to the grid G;
2. For each grid cell ci

3. Compute f(ci) by Eq(4);
4. Calculate MKPE by Eq(2);
5. If (MKPE > ε)
6. Compute α by Eq(5);
7. Perform local clustering;

Figure 6. The algorithm for ASM

4. Experiment
All the experiments presented are executed with a Pentium 2.8 GHz

CPU with 1 GByte memory. Our datasets are obtained from the Stanford
3D scanning repository([12]), and other geometric models archives. The
cardinality of the models are shown in Table 1. The time for simplifying
models (the size of output model is 5% of the size of input model) and the
Average key point errors(AKPE) are illustrated in Table 2

Model name Cardinality Output Model name Cardinality Output
Human Brain 19459 973 Knee 37889 1895
Ball Joint 137063 6854 Armadillo 172975 8649
Skeleton hand 327324 16366 Dragon 437646 21882
Hip 530169 26509 HappyBuddha 543653 27183
Malaysia 1815771 90789 Asian Dragon 3609601 180481
Thai Statue 4999997 250000 Lucy 14027873 701394

Table 1. The cardinality of the models

Model name time(s)AKPE Model name time(s)AKPE
Human Brain 0.126 7.03×10−5 Knee 0.211 6.83×10−5

Ball Joint 0.843 6.52×10−5 Armadillo 1.421 6.51×10−5

Skeleton hand 2.112 6.48×10−5 Dragon 2.314 6.47×10−5

Hip 3.161 6.41×10−5 Happy Buddha 3.161 6.41×10−5

Malaysia 8.121 6.27×10−5 Asian Dragon 15.061 6.13×10−5

Thai Statue 25.014 6.01×10−5 Lucy 35.263 5.81×10−5

Table 2. The simplification time and AKPE

Figure 7 illustrates the results of ASM when applied to simplify a ball
joint model (137063 points) to different output model size (Ns). The ar-
rows in the top row show some key points which are preserved by the al-
gorithm, while the arrows in the bottom row point out the change in mean
curvature. Blue color denotes high curvature, while green color denotes
low curvature. Note that, the key point preservation leads to the changes
in mean curvature around the key point. In general, the change of the mean

curvature is determined by the distribution of the points around the key
point.

Ball Joint model N � = 2×10

�

N � = 4×10

�

N � = 8×10

�

Figure 7. Ball joint model

5. Conclusion and future work
The paper investigates the problem of meshless simplifi cation. Our

contribution is an effi cient simplifi cation method which we refer to as the
adaptive simplifi cation method(ASM). ASM is based on PCA which pre-
serves most of the key points with a small computational cost. A key point
error metric is then introduced to measure the difference between the orig-
inal surface and the surface after simplifi cation. ASM guarantees a global
error bound in the simplifi cation process. In the future, it will be interest-
ing to apply ASM to different kinds of point-based models with different
surface properties.
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