
DISTRIBUTED SVM APPLIED TO IMAGE CLASSIFICATION

Effrosyni Kokiopoulou and Pascal Frossard

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Institute - ITS

CH- 1015 Lausanne, Switzerland

{effrosyni.kokiopoulou,pascal.frossard}@epfl.ch

ABSTRACT

This paper proposes an algorithm for distributed classifica-

tion, based on a SVM scheme. The contribution of each sup-

port vector is approximated by low complexity distributed

thresholding over sub-dictionaries, whose union forms a re-

dundant dictionary of atoms that spans the space of the ob-

served signal. Redundant dictionaries allow for sparse repre-

sentation of the observed signal, hence a good approximation

of the support vector contributions, which is moreover robust

to noise. The algorithm is applied to distributed image clas-

sification, in the context of handwritten digit recognition in

a sensor network. The experimental results indicate that the

proposed method is capable of achieving the same classifica-

tion performance as the standard (non distributed) SVM, with

an increased resiliency to noise.

1. INTRODUCTION

Advances in processor and radio technology have motivated a

lot of research efforts on sensor networks, which is an emerg-

ing and promising field in the signal processing community.

Distributed algorithms are getting increasing attention, as they

allow to shift the computational complexity towards the re-

ceiving end, possibly without loss in performance. In this pa-

per, we study the distributed classification problem where the

observed signal x which is to be classified, is typically apart

from the classifying unit.

In particular, we investigate a distributed image classi-

fication scenario, in a network of inexpensive general pur-

pose vision sensors with severe limitations on memory and

power capabilities. The sensors take measurements of the ob-

served image x by projecting it on a redundant dictionary of

visual primitives [1] and then by keeping a few of the largest

components. This can be viewed as a feature extraction pro-

cess. These features are sent to a central processing unit, usu-

ally called Fusion Center (FC). The proposed distributed clas-

sification algorithm makes use of Support Vector Machines

(SVM) [2], which is among the state-of-the-art classification

This work has been partly supported by the Swiss National Science

Foundation, under grants PP-002-68737, and NCCR IM2.

algorithms. The choice of SVMs as a classification method

is also motivated by the nature of the features extracted at the

sensors, which form a sparse approximation of the observed

signal.

To the best of our knowledge, there is not much work

done on distributed image classification. A somewhat related

framework is given in [3], where the authors propose the use

of rotation invariant features for distributed image retrieval.

However, the primary target of our algorithm is generic classi-

fication problems, like handwritten digit recognition and face

recognition applications, which are different than image re-

trieval. We show that the distributed classification scheme

allows to reach performance that is very similar to a classi-

cal (non-distributed) SVM algorithm, with an improved re-

silience to noise.

2. SUPPORT VECTOR MACHINES OVERVIEW

This section presents a brief overview of SVM algorithms,

and the motivations behind their choice for distributed clas-

sification. Denote by X = [x1, . . . , xn] ∈ Rd×n the train-

ing samples and by Y ∈ Rn×C their associated class la-

bels, where C is the number of classes. Consider first the

binary classification problem and the case of linear discrimi-

nant functions. Each test sample x ∈ Rd is classified to class

1 or class 2 according to the sign of a linear discriminant func-

tion of the form 〈w, x〉+w0, where w,w0 have been obtained

by training and w0 is usually called bias.

In SVMs the goal is to determine w such that the margin

among the training samples of different classes is maximized

[2, ch.4]. This involves the solution of a quadratic problem

(QP) whose dual form is

LD =
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyjx
�
i xj , (1)

where αi, i = 1, . . . , n; αi ≤ 0 are the Lagrange multipliers.

It turns out that the vector w has a sparse form over the train-

ing data samples i.e., w is a linear combination of a few train-

ing samples, usually called the support vectors. Those vectors

17531424403677/06/$20.00 ©2006 IEEE ICME 2006

correspond to the training data whose Lagrange multiplier αi

is nonzero. Thus, it holds that

w =
∑

i∈SV

αiyisi, (2)

where si is the i-th support vector. The signal x is classi-

fied according to the sign of the discriminant function, which

reads, in the linear SVM case:

g(x) =
∑

i∈SV

αiyi〈si, x〉 + w0. (3)

Consider now the nonlinear SVM case. In this case we

employ a nonlinear mapping φ : Rd → Φ which embeds the

data in a higher dimensional space (perhaps of infinite dimen-

sion) and we perform implicitly linear classification in that

space. For the binary classification problem we seek again

a discriminant function of the form g(x) = 〈w, φ(x)〉 + w0.

The dual form of the SVM QP now becomes

LD =
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyjφ(xi)�φ(xj). (4)

The solution w now has the form

w =
∑

i∈SV

αiyiφ(si), (5)

and the classification of a new data sample x involves eval-

uating the sign of g(x) =
∑

i∈SV αiyi〈φ(si), φ(x)〉 + w0.

Using Mercer kernels it holds that K(x, y) = 〈φ(x), φ(y)〉,
and the inner product of φ(x) and φ(y) can be computed as a

function of x and y. Therefore, the discriminant function now

becomes:

g(x) =
∑

i∈SV

αiyiK(si, x) + w0. (6)

In the case of multi-class classification with C classes, there is

no straightforward way to extend the SVM maximum margin

principle. Usually, one combines several binary SVM clas-

sifiers. Two well known methods are the one-versus-all and

all-to-all. In the first method, one trains C classifiers such that

when the i-th classifier is trained, the training samples of the

i-th class are assigned in one class and all the remaining train-

ing samples are assigned to the other class. In this case a new

test sample is assigned according to the following decision

rule

g(x) = arg max
k

{
∑

i∈SV (k)

α
(k)
i yiK(s(k)

i , x) + w
(k)
0 }, (7)

where k runs among all C classifiers. The other alternative

is the all-to-all method. In this case, we train
C(C−1)

2 bi-

nary classifiers, one for each pair of classes and a decision

rule similar to (7) is employed. In this paper, we use the first

Fig. 1. Sensor network architecture.

one-versus-all method due to its simplicity and its low com-

putational complexity. It is important to observe that, in order

to classify a new test sample x, we need only to compute the

kernel products K(si, x) of x with the support vectors. When

K is a Mercer kernel then the product K(si, x) corresponds

to a function of the inner product 〈si, x〉 [2, ch.4]. We show in

the next section how we can compute the products 〈si, x〉 (and

therefore K(si, x)) in a sensor network using the framework

of redundant dictionaries.

3. DISTRIBUTED CLASSIFICATION

3.1. Distributed Thresholding

Consider now the classification problem using SVM in the

context of a sensor network as illustrated in Figure 1, where

Si denotes the i-th sensor and FC the Fusion Center. Mo-

tivated by the fact that the decision rule of a test sample x
can be applied when the components 〈si, x〉 are known, we

propose the use of the redundant dictionaries framework for

feature extraction at the sensors. We assume the existence

of a redundant dictionary D which spans the Hilbert space

H of all images. Often, D is constructed in a structured

way by applying transformations γ to a mother function φ,

D = {φγ , φγ = U(γ)φ, γ ∈ Γ}, where Γ is an index set on

the parameter space. The components φγ are usually called

atoms. The number of different parameters directly drives the

redundancy of the dictionary.

Denote by L the number of sensors. We partition the full

dictionary D into L subsets Ci, i = 1, . . . , L. The i-th sensor

Si is assigned the atoms of subset Ci. The sensors observe

a possibly noisy signal x that is to be classified. Each sensor

projects x on its own part of the dictionary and thresholds the

resulting components of the following form

〈x, φγj 〉, γj ∈ Ci. (8)

In this case, by thresholding, we mean that the sensor keeps

only the Hi largest components (in magnitude). This process

can be interpreted as feature extraction and the components

from (8) are the features used by our distributed algorithm. In

the sequel, each sensor sends the Hi components (features)

that survived the thresholding part to the fusion center.

1754

3.2. Dictionary construction and distribution

Redundant dictionaries have been successfully used for sparse

signal representations, particularly for non-linear image ex-

pansions [1]. The intuition for using redundancy in our prob-

lem is that thresholding is able to capture the most prominent

primitives of the signal which are helpful for discrimination

purposes. These primitives represent geometric features in

the case of image expansion.

The dictionary is split into disjoint sub-dictionaries Ci, i =
1, . . . , L, which are distributed to the different sensors. The

motivation for having sub-dictionaries as disjoint as possible

lies in the fact that the thresholded components (i.e. largest

ones) are usually located around high correlation peaks. No-

tice that, having many sub-dictionaries which are as much in-

dependent as possible, yields components from many peaks,

hence more meaningful ones. In our algorithm, we partition

the full dictionary into smaller parts, using Spectral Cluster-

ing [4]. In particular, we build a weighted graph G = (N, E)
where each node corresponds to a different atom in the dic-

tionary and the edges are eij = 〈φi, φj〉. Then, clustering

is performed by computing the eigenvectors of the Laplacian

matrix of G.

3.3. Classification

The FC collects all the features (M =
∑

i Hi in total) from

the sensors and classifies the signal x by evaluating the dis-

criminant function given by equation (3) for linear SVM and

by equation (6) for nonlinear SVM. We assume that the FC

has trained an SVM for the particular classification problem

we are interested in. Thus, it has computed the support vec-

tors, the Lagrange multipliers ai and the bias w0. So, the

missing part is the components 〈x, si〉. If the FC knew these

components, then it would feed them into equation (3) or

equation (6) and would classify the observed signal x. How-

ever, these components involve x which is observed only at

the sensors and the FC can only approximate them via the

features provided by the sensors.

Let us see now how one can approximate those compo-

nents using the features collected from the sensors. Denote

by S the union of all index sets of the atoms of each sen-

sor, which survived the thresholding operation and made it to

the FC. Denote also ΦS ∈ Rd×M the matrix whose columns

contain the atoms of set S. Recall that the FC has the full

dictionary and therefore it can form the matrix ΦS . Then, in

order to compute 〈x, si〉, we approximate each support vector

si from the column span of ΦS . This is done by solving a

small least squares (LS) system of the form

β∗ = arg min
β

‖si − ΦSβ‖2 = Φ†
Ssi, (9)

where Φ†
S denotes the Moore-Penrose pseudo-inverse of ΦS

[5]. The LS solution is optimal with respect to mean squared

error. Note that the above LS system must be solved for each

support vector. This can be performed efficiently by solving

a LS system with multiple right hand sides, as follows

B∗ = arg min
B

‖S − ΦSB‖2 = Φ†
SS. (10)

In the above formula we introduced S, whose columns are

the support vectors that must be approximated, and B, whose

columns are the coefficients to be computed. This involves

the computation of the pseudo-inverse Φ†
S only once. Addi-

tionally, assume that the collected features are stacked into a

vector r = [〈x, φγ1〉, . . . , 〈x, φγM
〉]�. If β∗ are the approxi-

mation coefficients for si, then observe that the components

〈si, x〉 can be approximated as follows

〈si, x〉 ≈ 〈
∑

j∈S
β∗

j φγj , x〉 =
∑

j∈S
β∗

j 〈φγj , x〉 = 〈β∗, r〉.

Therefore, once the support vectors have been approximated

by solving Eq. (10), the computation of 〈si, x〉’s simplifies to

an inexpensive inner product. For the nonlinear SVM case,

we use the 〈si, x〉’s to further compute the kernel product

K(si, x).
Finally, note that one possible distributed approach is to

simply distribute the support vectors to the sensors. Then

each sensor projects x on its own support vectors and the FC

collects the partial results. However, this results in very spe-

cialized sensors, which will be able to work only for specific

instances of the problem. In many cases, the SVM has to be

re-trained (for instance by incremental learning, boosting etc)

and the sensors have then to be updated. On the contrary, our

algorithm uses general purpose sensors that are independent

of the support vectors at hand.

4. EXPERIMENTAL RESULTS

We provide experimental results that demonstrate the valid-

ity of the proposed algorithm for distributed image classifi-

cation. For the SVM training, we use SPIDER1 an object-

oriented machine learning library for MATLAB. We consider

the multi-class classification problem in hand-written digit

recognition. We use the digit collection that is publicly avail-

able at S. Roweis web page2. This collection contains 20 × 16

bit binary images of “0” through “9”, and each class contains

39 samples.

For the dictionary construction, we use the Anisotropic

Refinement (AR) atoms which have been successfully used

in image coding [1]. These are edge-like atoms which are ob-

tained by the partial second derivative of the Gaussian func-

tion with respect to one of its coordinates. In particular, the

mother function is φ = 2√
3π

(4x2 − 2) exp(−(x2 + y2)). In

this case, a geometric transformation γ = (�t,�a, θ) used for the

1http://www.kyb.tuebingen.mpg.de/bs/people/spider/
2http://www.cs.toronto.edu/ roweis/data/binaryalphadigs.mat

1755

50 100 150 200

10

15

20

25
C

la
ss

if
ic

at
io

n
 e

rr
o

r
ra

te
 (

%
)

distributed SVM

training set size

50 100 150 200

10

15

20

25

C
la

ss
if

ic
at

io
n

 e
rr

o
r

ra
te

 (
%

)

standard SVM

training set size

Fig. 2. Classification error rates for both distributed and stan-

dard SVM.

dictionary construction, consists of five parameters: transla-

tion �t, anisotropic dilations �a and rotation θ. We use 10 rota-

tion angles in [0, π], and 10 scales which are logarithmically

equi-distributed in the interval [1, N], where N is the size

of the image. Finally, the clustering of the atoms into sub-

dictionaries is performed on the non-translated atoms (i.e.,
�t = �0). Translation is eventually applied on the atoms (af-

ter clustering) and spans all possible pixel locations.

Classification performance. We now explore the multi-

class classification performance of both distributed SVM and

standard SVM across various sizes of training set. We use lin-

ear SVM and the one-versus-all scheme for multi-class train-

ing. We compute the classification error rate (in %) for train-

ing set sizes of {5, 10, 15, 20} samples per class. In order

to make sure that the results are not biased by a specific in-

stance of the training set, we perform 10 random realizations

of the training set. In our experiment, we use L = 30 sub-

dictionaries and keep H = 2 components per dictionary. Thus,

60 features in total are collected by the FC. Figure 2 illustrates

the results in boxplot notation. Observe that the distributed

SVM algorithm is competitive with the standard (non - dis-

tributed) SVM algorithm.

Resilience to noise. We also study the behavior of both

distributed and standard SVM algorithm with respect to noise

on the observed signal x. We use a large training set of 20

SNR -5 0 5 10

distributed SVM 22.11 9.47 5.79 3.16

standard SVM 27.37 12.11 6.32 3.16

Table 1. Classification error rate (%) for various values of

SNR.

samples per class (200 samples in total) and a small test set

(19 samples) consisting only of digits “0”. We add additive

white Gaussian noise on the test set and we measure the clas-

sification error rate for SNR ∈ [−5 : 5 : 10]. We report in

Table 1 the average results over 10 random realizations of the

training/test set. Observe that the proposed algorithm is more

resilient to noise than standard SVM for low values of SNR.

For higher values of SNR both algorithms exhibit similar be-

havior, as expected.

5. CONCLUSIONS

This paper has presented a distributed classification algorithm,

with an application to image classification in sensor networks.

The proposed algorithm is based on low-complexity thresh-

olding over redundant dictionaries at the sensors. The ex-

tracted features are inner product values, which are subse-

quently used at the fusion center for classification using an

SVM. Experimental results suggest that the proposed algo-

rithm is competitive to the standard SVM and it is also more

resilient to noise.

6. REFERENCES

[1] Figueras i Ventura R, Vandergheynst P, and Frossard P,

“Low rate and flexible image coding with redundant rep-

resentations.,” IEEE Transactions on Image Processing,

February 2006.

[2] A. Webb, Statistical Pattern Recognition, Wiley, 2nd

edition, 2002.

[3] B. Beferull-Lozano, H. Xie, and A. Ortega, “Rotation-

invariant features based on steerable transforms with an

application to distributed image classification,” in Proc.
IEEE Int. Conference on Image Processing, 2003, pp.

521–524.

[4] Andrew Y. Ng, Michael Jordan, and Yair Weiss, “On

spectral clustering: analysis and an algorithm,” in NIPS
14, 2002.

[5] G. H. Golub and C. Van Loan, Matrix Computations,
3rd edn, The John Hopkins University Press, Baltimore,

1996.

1756

