
DESIGN AND VERIFICATION OF COMMUNICATION PROTOCOLS FOR PEER-TO-PEER
MULTIMEDIA SYSTEMS

Senem Velipasalar, Chang-Hong Lin, Jason Schlessman, Wayne Wolf

Princeton University, Dept. of Electrical Engineering, Princeton, NJ 08544
{svelipas, chlin, jschless, wolf}@princeton.edu

ABSTRACT

This paper addresses issues pertaining to the necessity of uti-
lizing formal verification methods in the design of protocols
for peer-to-peer multimedia systems. These systems require
sophisticated communication protocols, and these protocols
require verification. We discuss two sample protocols de-
signed for two distinct peer-to-peer computer vision appli-
cations, namely multi-object multi-camera tracking and dis-
tributed gesture recognition. We present simulation and ver-
ification results for these protocols, obtained by using the
SPIN verification tool, and discuss the importance of veri-
fying the protocols used in peer-to-peer multimedia systems.

1. INTRODUCTION

Distributed multimedia systems are being used in an increas-
ing number of application areas such as multi-camera sys-
tems for surveillance and smart rooms in addition to multi-
modal configurations. As networks of distributed processors
become economically viable and increasingly useful for mul-
timedia applications, some concerns are made manifest. A
first concern is the topology of the distributed processors, that
is, with whom a given processor can communicate. Server-
based systems have a bandwidth scaling problem, since the
central server can quickly become overloaded by the increase
in requests commensurate with an increased number of nodes.
This necessitates the use of peer-to-peer systems, as they pro-
vide an increased number of communication channels and
thus scalability. A second concern is the manner in which
the nodes will communicate, that is, what data will be sent in
what fashion, and what events trigger the data transfer. As a
result, peer-to-peer systems require efficient communication
protocols. Also, the lack of a central server within peer-to-
peer systems mandates a sophisticated communication pro-
tocol. These protocols find use in real-time systems, which
tend to have stringent requirements for proper system func-
tionality. Hence, the protocol design for these systems neces-
sitates transcending typical qualitative analysis using simula-
tion; and instead, requires verification. The protocol must be

This work has been funded by NSF ITR grant 325119, NSF grant CCR-
0329810, and ARO grant #W911NF-05-1-0480.

checked to ensure it does not cause unacceptable issues such
as deadlocks and process starvation, and has correctness prop-
erties such as the system eventually reaching specified oper-
ating states. Formal verification methods of protocols can be
derived from treating the individual nodes of a system as fi-
nite state automata. These then emulate communication with
each other through the abstraction of a channel. At this point,
rules for communication dependant upon individual automata
states are developed. With the system modeled, a number of
formal techniques exist for verifying the models.

Verification of communication protocols has been pursued
previously, particularly for security and cryptographic sys-
tems. Karlof et al. [1] analyzed the security properties of
two cryptographic protocols and discovered several potential
weaknesses in voting systems. Evans and Schneider [2] in-
troduced time into communication sequential processes and
verified time-dependent authentication properties of security
protocols. Vanackère [3] modeled cryptographic protocols as
a finite number of processes interacting with a hostile envi-
ronment and proposed a protocol analyzer TRUST for verifi-
cation. Finally, a burgeoning body of work exists pertaining
to the formal verification of networked multimedia systems.
Bowman et al. [4] described multimedia stream as a timed au-
tomata, and verified the satisfaction of quality of service QoS
properties including throughput and end-to-end latency. Sun
et al. [5] proposed a testing method for verifying QoS func-
tions in distributed multimedia systems where media streams
are modeled as a set of timed automata.

In this paper, we introduce and exhaustively verify two
communication protocols designed for different peer-to-peer
computer vision applications. In the following section we
briefly discuss SPIN, the tool used for our work.

2. THE SPIN VERIFICATION TOOL

SPIN is a powerful software tool used for the formal verifica-
tion of distributed software systems. It can analyze the logical
consistency of concurrent systems, specifically of data com-
munication protocols. A system is described in a modeling
language called Promela (Process Meta Language). Com-
munication via message channels can be defined to be syn-
chronous or asynchronous. Given a Promela model, SPIN
can either perform random simulations of the system’s exe-

14211424403677/06/$20.00 ©2006 IEEE ICME 2006

cution or it can perform exhaustive verification of correctness
properties [6]. It goes through all possible system states, en-
abling designers to discover potential flaws while developing
protocols. We used this tool to analyze and verify two differ-
ent communication protocols introduced in Sections 3 and 4.

3. SCCS: A SCALABLE CLUSTERED CAMERA
SYSTEM

SCCS is a peer-to-peer multi-camera system for multiple ob-
ject tracking [7]. Different CPUs are used within this system
to process inputs from different cameras. Instead of transfer-
ring control of tracking jobs from one camera to another, each
camera in the system performs its own tracking and keeps lo-
cal tracks for each target object, providing fault tolerance.

In this system, a camera will need information from the
other cameras when: a) a new object appears in its field of
view, or b) a tracker cannot be matched to its target object.
These events are referred to as new label and lost label events,
respectively. If one of these events occurs within a camera’s
field of view, the processor processing that camera needs to
communicate with the other processors. As communication
can be expensive, this requires the design of an efficient com-
munication protocol, which can also alleviate the potential
problems caused by communication delays. Furthermore, as
a system such as this might be utilized in a real-time critical
environment, it mandates a communication protocol which
provides robustness and guarantees of the prevention of is-
sues such as deadlocks and process starvation.

3.1. SCCS Communication Protocol

The SCCS protocol uses non-blocking send and receive prim-
itives for message communication. Non-blocking messages
are used since for each camera it is difficult to predict when
and how many messages will be received from other cameras.
Also, they provide a higher level of efficiency when compared
to blocking communications.

This protocol also addresses the issue of synchronization,
which is important for multi-camera systems. As the pro-
cessors will have different amounts of processing to do and
may also have different processing speeds, it is possible that
one processor can be ahead of/behind the others during exe-
cution. To ensure the transfer of coherent vision data between
cameras, the processors must be synchronized. To achieve
this, our protocol provides synchronization points, where all
nodes are required to wait until every node has reached the
same point. These points are determined based on a synchro-
nization rate, synch rate, where synchronization points occur
every synch rate frames. Between two such points, each cam-
era focuses on performing its local tracking tasks, saving the
requests that it will make at the next synchronization point.

Fig. 1 shows a diagram of an extended version of the syn-
chronization mechanism introduced in [7]. The extensions
applied pertain to real-time concerns. This figure illustrates

Ci

Not
Received

Sync Prev

Finish

Reply

Processing

&

Self Sync

Sending
Tracking

Finished

Processing

Tracking &

Sending

Request
Sync All

Received

Finished
Tracking

Not Not

Finished

Probing

All Sync &

Processing

Request

Ci−1
Ci+1

Sync Previous

Received
Probing

Sync Prev

Sending

Self Sync &&

Processing

Req/Rep

Processing

Req/Rep

Not Finished

Fig. 1. Camera States at Synchronization Point

the camera states at a synchronization point. In the first state,
the camera finishes its local tracking, and the processor sends
out all of its saved requests. Then, the camera enters the sec-
ond state and begins to probe to see if a done message has
been received from the previous camera. If not, this cam-
era probes for requests from the other cameras and processes
them while waiting for the replies to its own requests. When
the done message is received from the previous camera the
camera enters the third state. When all of its own requests
are fulfilled, it sends out a done message to the next camera.
In the fourth state, each camera node still processes requests
from other cameras, and keeps probing for the overall done
message. Once it is received, a new cycle starts and the node
returns back to the first state. In this extended version, done
messages are sent by using a ring type of message routing.

3.2. SPIN Simulation and Verification Results

To analyze and verify our communication protocol, we de-
scribed our system by using Promela. We modeled three dif-
ferent scenarios: (a) a 2-processor system with full commu-
nication, (b) a 3-processor system, where the first processor
can communicate with the second and third, second proces-
sor can only communicate with the first, and third one only
replies to incoming requests, and (c) a 3-processor system
with full communication, where full communication means
every processor in the system can send requests and replies to
each other. The reason we tried scenario (b) is clarified below.

First, we performed random simulations. With random
simulation, every run may produce a different type of execu-
tion. In all the simulations of all three scenarios, all the pro-
cessors of the model terminated properly. However, each ran-
dom simulation goes through one possible set of states. Thus,
an exhaustive search of the state space is needed to guarantee
that the protocol is error-free. We performed exhaustive veri-
fication of the three different scenarios with different synchro-
nization rates. We also inserted an assertion into the model to
ensure a processor starts a new synchronization interval only
if every processor in the system has sent a done message at
the synchronization point. All three cases have been verified

1422

with no errors. Table 1 shows the results obtained, where
the synch rate is 1, and there are 4 synchronization points.
(a), (b) and (c) correspond to the scenarios described above.
As can be seen in the table, when 3 processors are used with
full communication, the number of states becomes very high
compared to other scenarios, thus the search requires more
memory. Scenario (b) was modeled so that we can compare
scenario (c) to (b), and see the increase in the number of states
and memory requirement. The total memory usage in the ta-
ble is the “total actual memory usage” output of the SPIN ver-
ification. This is the amount after the compression performed
by SPIN, and includes the memory used for a hash table of
states. Table 2 shows another set of results for a synch rate of
2.

No. of State-vector Total Memory Depth
States Size (bytes) Usage (MB)

2 Proc. (a) 12259 496 3.017 159
3 Proc. (b) 19369 1252 3.217 182
3 Proc. (c) 5846880 1252 146.417 202

Table 1. Comparison of exhaustive verification outputs for different num-

ber of processors and different communication patterns. The synch rate is 1

and there are 4 synchronization points.

No. of State-vector Total Memory Depth
States Size (bytes) Usage (MB)

2 Proc. (a) 20305 496 3.217 200
3 Proc. (b) 196767 1252 7.817 600
3 Proc. (c) 15016100 1252 418.417 657

Table 2. Comparison of exhaustive verification outputs for different num-

ber of processors and different communication patterns. The synch rate is 2

and there is 1 synchronization point.

Fig. 2 shows the number of states reached with scenar-
ios (a), (b) and (c), and different number of synchronization
points. For the 3-processor and full communication scenario,
the number of states increases very fast with increasing num-
ber of communication points. Since the memory requirement
increases with the number of states, the scenario (c) requires
the most amount of memory for verification.

In addition, when the synch rate is increased, the number
of states increases for the same number of synchronization
points, as the requests of the local trackers are saved until the
next synchronization point, and then sent out.

These results show that verification of complicated pro-
tocols is not a straightforward task. Also, careful modeling
of the large systems, having many possible states, is very im-
portant for exhaustive verification. The models of our three
scenarios have been verified exhaustively without any errors.

4. DISTRIBUTED GESTURE RECOGNITION

We also analyzed and verified a distributed gesture recogni-
tion system as an example. Details of our gesture recognition
system considered were discussed previously [8]. The soft-
ware of the system can be broken into several stages, as illus-
trated in Fig. 3. For each camera, the algorithm consists of
two parts: intra and inter-frame processing. The intra-frame

1

79

2

747

3

3751

4

12259

5

30879

0

5000

10000

15000

20000

25000

30000

35000

N
u

m
b

er
 o

f
S

ta
te

s

Number of Synch. Points

(a)

1

106

2

875

3

4770

4

19369

5

65630

0

10000

20000

30000

40000

50000

60000

70000

N
u

m
b

er
 o

f
S

ta
te

s

Number of Synch. Points

(b)

1

5.46e2

2

2.16e4

3

4.35e5

4

5.85e6

5

6.27e7

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

N
u

m
b

er
 o

f
S

ta
te

s

Number of Synch. Points (c)
Fig. 2. Number of states reached during the verification of (a) 2-
and (b), (c) 3-processor scenarios.

processing performs human body detection and extracts ab-
stract graph parameters. It starts with region segmentation,
which performs background elimination and skin-tone detec-
tion to identify foreground objects and skin regions. The
system then extracts contours on the boundaries of detected
regions, and uses abstract ellipse parameters to model vari-
ous regions. The ellipses are then mapped to different human
body parts. The inter-frame processing uses Hidden Markov
Models to determine movements of the body parts, and uses
a distance classifier to detect specific gestures.

Contour
Following

Video

Input

Video

Output

Region
Segmentation

Ellipse
Fitting

Graph
Matching

+

HMM
for body parts

Gesture
Recognition

Recognition

Output

Intra-frame
Processing

Inter-frame
Processing

Data & Control Message Exchange

Fig. 3. Software architecture of gesture recognition algorithm.

With multiple cameras, camera nodes have to exchange
data and control information about video streams with their
neighbors. This communication helps perform recognition
as a whole and eliminates redundant operations. The entry
points of each processing stage are candidates for data ex-
changing, and as shown in Fig. 3, we assume communication
occurs after intra-frame processing. Other than the recog-
nized body parts, camera nodes also exchange control mes-
sages to determine which node should perform gesture recog-
nition for a particular individual. Here, we assume that cam-
era orientation remains stable, and the control messages con-
sist of timestamps for synchronization, and control tokens to

1423

determine the ownership of detected people. As a result, only
the owner camera performs inter-frame processing.

We propose a communication protocol within the appli-
cation layer useful for numerous structures. For example,
TCP/IP can be used as a networking middleware, with a data-
gram of our protocol serving as a payload of packets. Both
data and control messages can be integrated within a single
datagram, and sent to other cameras simultaneously. When a
node receives packages, the data has to be combined with its
own captured data set, and uses the received control signals to
determine subsequent procedures. The camera nodes would
first find matching body parts within received and captured
data, with the match containing more pixels in the head por-
tion considered as the dominant camera. Camera nodes then
use received control messages and dominant camera informa-
tion to determine the ownership of detected people.

4.1. Control Authentication Protocol

Although our system can handle multiple simultaneous ob-
jects, for control authentication each target should determine
their ownership independently with awareness of other ob-
jects. We propose target-centric modeling to determine own-
ership of each person inside the scene. For each detected per-
son, our system would spawn a separated service to recognize
the gesture of the person. The services take received messages
to identify the current system state for each target, and per-
form operations accordingly. The cameras seeing the target
person are identified first, and the camera to perform gesture
recognition is then chosen based on proposed protocol.

As shown in Fig. 3, control and data message exchanges
occur after intra-frame processing. After graph matching,
camera nodes would wait and check if there is a pending data
packet from its neighbors. If no message is received, or the
message has an out of date timestamp, the camera node then
performs gesture recognition on the captured body parts. If
the target is not owned by the current node, the node would
claim temporary ownership, in the case of a delayed or lost
message from its neighbors. When a node receives messages
from its neighbors, it first checks the timestamp of the packet,
and updates its own clock if a faster timestamp is received.
The body parts in the received messages are matched to the
captured data set, and the dominant cameras for each detected
person are then determined. There is an owner token for each
target, and the camera owning the token will perform gesture
recognition for that person. The ownership changes when the
current owner no longer dominates the target for a certain pe-
riod of time. For a camera without owner tokens, if the cam-
era dominates a target, it upgrades its ownership, otherwise it
does nothing. The protocol is illustrated in Fig. 4.

To ensure correctness and sufficiency of our protocol, we
again use SPIN. We claim that as long as a person is detected,
there will be at least one camera which recognizes its gesture,
and only one camera will be performing gesture recognition
when all the messages are received correctly within a frame.

Body Part
Matching

Pkt Rcv?

Out of dateN

Gesture
Recognition

Y

Timestamp

OthersY

Update
Clock

Next
Frame

N/T

Data
Integration

Upgrade
Ownership

Dominant?

N/T

Upgrade
Ownership

Y

Faster stamp

Current
Owner?

Current
Owner?

Y

N

Fig. 4. Protocol for distributed gesture recognition.

The SPIN exhaustive verification proves our claim, and shows
no redundant state and undesired loops in our system.

5. CONCLUSIONS

Peer-to-peer systems require sophisticated communication pro-
tocols that can handle processing and communication delays,
and system failure. These protocols need to be evaluated
and verified against potential deadlocks, and their correctness
properties need to be checked. We introduced two communi-
cation protocols designed for different peer-to-peer computer
vision systems, and then analyzed and verified them by us-
ing the SPIN verification tool. As large systems have many
states with larger-sized state vectors, their verification is not
a straightforward task, and requires careful modeling of the
system. We verified our protocols exhaustively without any
errors and redundancies. We also showed the verification
outputs for three different scenarios of the distributed multi-
camera multi-object tracking protocol. These results illustrate
the increase in the number of states for different number of
processors and different communication scenarios.

6. REFERENCES

[1] C. Karlof, N. Sastry and D. Wagner,“Cryptographic Voting Pro-
tocols: A Systems Perspective,” USENIX Security Symp., 2005.

[2] N. Evans and S. Schneider, “Analysing Time Dependent Secu-
rity Properties in CSP Using PVS,” ESORICS, 2000.

[3] V. Vanackère, “The TRUST Protocol Analyser, automatic and
efficient verification of cryptographic protocols,” Verification
Workshop, 2002.

[4] H. Bowman, G. Faconti and M. Massink, “Specification and
Verification of Media Constraints Using UPPAAL,” Eurograph-
ics Workshop, DSV-IS, 1998.

[5] T. Sun, K. Yasumoto, M. Mori and T. Higashino, “QoS Func-
tional Testing for Multimedia Systems,” IFIP FORTE, 2003.

[6] G. J. Holzmann, The Spin Model Checker - Primer and Refer-
ence Manual, Boston: Addison Wesley, 2004.

[7] S. Velipasalar, J. Schlessman, C-Y. Chen, W. Wolf, and
J. P. Singh, “SCCS: A Scalable Clustered Camera System for
Multiple Object Tracking Communicating via Message Passing
Interface,” IEEE ICME, 2006.

[8] C.H. Lin, T. Lv, W. Wolf, I.B. Ozer, “A peer-to-peer architecture
for distributed real-time gesture recognition,” ICME, 2004.

1424

