
RIPPLE-STREAM: SAFEGUARDING P2P STREAMING AGAINST DOS ATTACKS

Wenjie Wang, Yongqiang Xiong, Qian Zhang, Sugih Jamin

wenjiew@eecs.umich.edu, yqx@microsoft.com, qianzh@cs.ust.hk, jamin@eecs.umich.edu

ABSTRACT

Compared with file-sharing and distributed hash table (DHT)
network, P2P video streaming is more vulnerable to denial of
service (DoS) attacks because of its high bandwidth demand
and stringent time requirement. This paper studies the design
of DoS resilient streaming networks using credit systems. We
propose a novel framework—ripple-stream—to improve DoS
resilience of P2P streaming. Ripple-stream leverages existing
credit systems to introduce credit constraints in overlay con-
struction such that malicious nodes are pushed to the fringe
of overlays. Combining credit constraints with overlay opti-
mization techniques, ripple-stream can achieve both DoS re-
silience and overlay efficiency.

1. INTRODUCTION

Peer-to-peer networks, especially P2P file sharing networks,
have been quickly adopted by large Internet communities in
the past few years. Recently, the emergence of P2P stream-
ing service, such as conference broadcasting [1] and Inter-
net TV [2], demonstrates its potential to deliver high quality
media streams to a large audience. The thriving of P2P net-
works starts to attract denial of services (DoS) attacks. It is
well known that P2P file sharing networks are under intense
attacks from the music industry with the intention of reduc-
ing illegal music swapping [3]. Recent research has begun to
study the effect of such DoS attacks in P2P systems. Various
defense schemes have been proposed, including fair resource
allocation [4], randomized peer selection [5], and secure rout-
ing updates [6]. However, the existing defense schemes share
the following drawbacks. On one hand, existing approaches
study the DoS attacks case by case instead of providing a uni-
fied solution. On the other hand, in existing approaches, peers
don’t share DoS detection results so each has to detect mali-
cious behaviors on its own. Moreover, some attacks cannot
be efficiently detected without cooperation among peers.

Compared with the widely used file-sharing networks, P2P
streaming networks are more vulnerable to DoS attacks for
the following reasons. 1) Streaming, especially video stream-
ing, usually requires high bandwidth. A certain amount of
data loss could make the whole stream useless. 2) Stream-
ing applications require their data to be delivered in a timely
fashion. Data with a missed deadline is useless. 3) A stream-
ing network usually consists of a limited number (sometimes

only one) of data sources. The failure of the data source could
bring down the whole streaming system. Currently we are not
aware of any systematic study on DoS attacks and defenses
specifically targeting P2P streaming networks.

In this paper we propose a generic DoS resilience frame-
work named ripple-stream. To identify DoS attackers and
prevent the system from being corrupted by malicious nodes,
the ripple-stream framework employs a credit system to al-
low peers to evaluate other peers’ behaviors and introduces a
credit-constrained peer selection mechanism to organize the
overlay. In a ripple-stream based overlay, peers share the
credit information with each other, peers with high credibil-
ity are kept in the “core” of the overlay structure. Malicious
nodes, with low credibility, are pushed to the fringe of the
network. While enforcing the credit constraints, ripple-stream
customizes techniques such as triangular optimization and ran-
dom node recovery to guarantee overlay efficiency. Moreover,
the ripple-stream framework is designed to be flexible so it
can be applied to different overlay networks and P2P stream-
ing schemes. It is also designed to be extensible to incorporate
existing and future DoS defense mechanisms.

Our evaluations show that under typical attack scenarios,
ripple-stream can effectively shorten the convergence time of
overlay networks and significantly improve the data rate for
overlay peers. When there are no malicious nodes, ripple-
stream can achieve good overlay quality even with the credit
constraints it imposes on the connectivity among overlay peers.

We note however that we are not designing a DoS-resilient
credit system. Ripple-stream can work with future or more
advanced credit system to improve its efficiency. We cur-
rently only focus on internal DoS attacks that are launched
from peers that run malicious streaming clients. These at-
tacks are more severe than external attacks that are launched
on the network level. External attacks will be our future work.

2. RIPPLE-STREAM DESIGN

In this section we first introduce the categorization of DoS at-
tacks on P2P streaming network. Then we present the archi-
tecture of ripple-stream and its two key components: credit
management and overlay management.

We categorize the DoS attacks on P2P streaming networks
into attacks on the control plane and attacks on the data plane.
Attacks on the control plane include RTT cheating, accept-
ing too many downstream peers, connecting to too many up-
stream peers, and advertising fake data availability. Attacks

14171­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

Pre-trusted or high
credit hosts

Medium
credit hosts

Low credit hosts

Fig. 1. Example of a ripple-stream based overlay.

on the data plane include dropping, corrupting, delaying, du-
plicating, and forging media data. Details about these attacks
are available in [7].

2.1. Architecture

The essential idea of ripple-stream is to leverage an exist-
ing credit system to keep malicious peers or untrustworthy
peers on the fringe of the overlay. In a ripple-stream based
overlay, peers are organized around the data source based
on their credit. The higher the credit, the closer a peer can
be to the data source. Fig. 1 shows a simple example. The
ripple-stream framework enables peers to share their knowl-
edge such that further attacks from malicious nodes can be
prevented. It can work with existing or future defense schemes
to construct DoS resilience overlay networks.

We explain the ripple-stream framework by describing the
join procedure a new node goes through in a ripple-stream
overlay. When a new peer A joins the overlay, it first obtains
a list of peers with medium credit from a bootstrap mecha-
nism. The join procedure can vary among different overlays.
After joining the overlay, A accumulates credit by fulfilling
its duties on the control plane and on the data plane. These
credit-related operations are handled by the credit component
included in ripple-stream. Meanwhile, A also tries to find up-
stream peers that can provide better service based on some
overlay optimization principles. These upstream peers should
have similar credit values as A does. If A discovers malicious
behaviors exhibited by other peers, it disconnects from these
peers and reports its discovery to the credit system.

Thus, we can see that the ripple-stream framework con-
sists of two key components, credit management and overlay
management. Credit management defines the interface be-
tween overlay events or transactions and the underlying credit
system used by ripple-stream [8]. It regulates how credits are
accumulated and how penalties are applied in streaming over-
lays. Overlay management defines credit-constrained peer
selection and overlay optimization techniques. It regulates
how overlay peers should interconnect with each other to con-
struct DoS resilient and efficient overlays. DoS resilience is
achieved by enforcing credit constraints based on the credit
system, and overlay efficiency is guaranteed by overlay op-
timization based on network proximity metrics. Working to-
gether, the credit management system identifies malicious nodes
with low credit and the overlay management system pushes
them to the fringe of the overlay.

2.2. Credit Management

Ripple-stream uses a credit system to identify ill-behaving
peers. To achieve this goal, its credit management component
needs to translate a user’s behavior to its credit value. The
credit management component defines the following princi-
ples for this credit translation: Transaction importance, Trans-
action rating, Credit aging, and Long-term credibility and
short-term trust. In ripple-stream, events and transactions
have different importance levels. Data or control tampering,
once detected, is marked as an important event. Transaction
rating controls the rate nodes gain credit. Nodes gain credit
faster by serving more data. The credit aging system pre-
vents a node from maintaining high credit after it stops serv-
ing data. With short-term trust, the credit system is able to
respond quickly to the changes in a peer’s personality.

Since ripple-stream relies on existing credit systems to
maintain peers’ credit, only the credit systems that can im-
plement these principles are qualified for ripple-stream. We
find PeerTrust [8] to be a close match to the credit system re-
quired by ripple-stream. PeerTrust employs DHT to store and
lookup the credit of peers. It adopts trust-based peer selection
to deal with collusive behavior.

PeerTrust defines the following trust metric,

T (u) = α ∗
I(u)∑

i=1

S(u, i) ∗ Cr(p(u, i)) ∗ TF (u, i) + β ∗ CF (u)

In this equation, T (u) stands for the credit of peer u, I(u)
is the total number of transactions performed by u, S(u, i) is
the normalized amount of satisfaction u gets from transaction
i, p(u, i) represents the other peer in transaction i, and Cr(p)
stands for the credibility of feedbacks from peer p. TF (u, i)
is the transaction context factor. CF (u) is the community
factor of peer u, and α and β are normalized weight factors.

To use the above trust metric in our framework, ripple-
stream has new semantics for variables S(u, i), TF (u, i) and
I(u). In ripple-stream, S(u, i) stands for transaction rating
that can differentiate credit gained from data plane and con-
trol plane, TF (u, i) is the transaction importance that en-
forces high penalty for control and data tampering. I(u) has
to take transaction time into consideration during transaction
accounting. Ripple-stream can use the latest subset of I(u)
to calculate the short-term trust of a peer. The short-term
trust value is used to quickly identify malicious peers that start
their attacks after accumulating a certain amount of credit.

Based on the credit management principles and the trust
metric used, we currently define four credit types in ripple-
stream, control, data, tampering, and disconnecting. These
credit types correspond respectively to the credit a peer will
gain or lose if it helps with control, serves data, tampers with
control or data messages, and disconnects its downstream peers.
Among these credit types, tampering has the highest transac-
tion importance, and disconnecting has a higher importance
value than data and control. To penalize serious attacking be-
haviors such as data tampering, a high credit penalty is used.

1418

Disconnecting penalty is used to punish the behavior of fre-
quent peer disconnection. The amount of the penalty is equiv-
alent to the credit a peer can accumulate by serving data for
a certain time period. In ripple-stream, a downstream B dis-
connects from peer A if it observes low data quality from A.
This disconnection event costs both A and B the disconnect-
ing penalty. For a malicious node that attracts other peers then
disconnects them, such penalty can quickly degrade its credit.

Credit management is the fundamental defense mecha-
nism of ripple-stream. It requires peers, regardless of the type
of DoS detection schemes, to report their experience to the
credit system. Credit management works with the underly-
ing credit system to aggregate peers’ experience and calcu-
lates their credibility. The credibility information will be used
by the overlay management component to construct DoS re-
silient overlays.

2.3. Overlay Management

Overlay management defines overlay construction principles
based on peers’ credibility. It adopts credit-constrained peer
selection to regulate the way overlay peers interconnect with
each other based on their credit values. In addition, overlay
management adopts overlay optimization techniques to guar-
antee overlay efficiency based on network proximity metrics.

Credit-constrained peer selection requires peers to select
neighbors based on their credit values. A peer will only al-
low queries or data requests from peers whose credit is ap-
proachable. A peer considers another peer’s credit level to
be approachable if the normalized credit difference between
them is below a pre-defined threshold θ, Periodically, a peer
checks whether its credit difference with connected neigh-
bors exceeds such a threshold. It will disconnect the peers
whose credits become unapproachable. Note that one peer
only needs to estimate the credit difference to enforce the
credit constraints. There is no strict requirement on the ac-
curacy or freshness of peers’ credit value.

To assist approachable peers in locating each other, ripple-
stream employs a random node discovery mechanism. A node
maintains several peering neighbors with approachable cred-
its. These peering neighbors serve as alternative upstream
peers. When a new peer joins the overlay, it will ask for
the peering neighbors from its upstream peers from which the
new peer discovers its own peering neighbors.

To provide opportunities for later-joined nodes to serve
data, ripple-stream introduces credit-constrained triangular op-
timization algorithm to avoid links with high cost (similar to
[9]) among peers with approachable credits. Triangular opti-
mization can reorganize the overlay in an efficient way inde-
pendent of the sequence of node arrivals.

3. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ripple-stream
in two aspects: how it performs if there are no malicious
nodes in the P2P streaming system, and how well ripple-stream

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

A
vg

. N
um

be
r

of
 D

is
co

nn
ec

te
d

N
od

es

Time

Original RP Tree - 10%
Original RP Tree - 5%
Credit RP Tree - 10%

Credit RP Tree - 5%

Fig. 2. Number of disconnected

peers with 5% and 10% malicious

nodes.

 65

 70

 75

 80

 85

 90

 95

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 R
ec

ei
vi

ng
 R

at
e

Time

Original RP Tree - 10%
Original RP Tree - 5%
Credit RP Tree - 10%

Credit RP Tree - 5%

Fig. 3. Average receiving rate of

peers with 5% and 10% malicious

nodes.

responds to DoS attacks. We base our evaluation on a root-
path tree protocol (or RP tree protocol) with the ripple-stream
framework. We name it credit RP protocol. Similar to [10],
the optimization goal of the RP protocol is to minimize peers’
latencies to the root of the tree (root distance). In a RP tree, a
node maintains its path to the root of the tree along with the
root distance and tries to minimize this distance by randomly
querying other peers.

3.1. Performance Metrics and Simulation Setup

1. Average root RDP (Relative Delay Penalty [11]), eval-
uates how close peers are to the root.

2. Initial stabilization time, evaluates how long it takes an
overlay to stabilize initially after a peer joins.

3. Number of disconnected peers.

4. Average receiving rate.

The first two metrics are used to evaluate how ripple-
stream performs with no malicious nodes. Our expectations
are that ripple-stream takes a longer time to stabilize initially
and can achieve similar RDP performance as the original tree.
The last two metrics are used to evaluate the performance of
ripple-stream under DoS attacks.

We conduct our simulations on a topology of 4,000 nodes.
We vary the overlay group size from 50 to 1000. For each
overlay size, we randomly select the overlay nodes from the
network topology.

3.2. Performance under DoS attacks

To test how credit RP trees react under DoS attacks, we set
up the following attack scenario. A malicious node adver-
tises low root distance after it join the overlay. Meanwhile,
it forwards only part of media data to its downstream peers.
This is a typical attack scenario launched from both the data
plane and the control plane. Due to space limitation, we only
present this attack scenario in this paper to show the effective-
ness of ripple-stream.

Fig. 2 shows the number of disconnected nodes after ma-
licious nodes start the DoS attacks in a group of 600 nodes.
The credit RP tree can quickly stabilize after a number of
peers identify the malicious nodes. While in the original RP
tree, the malicious nodes keep attracting unsuspecting peers.

1419

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
oo

t R
D

P

Group Size

Credit RP Tree
Original RP Tree

Credit RP Tree w/o Triangular Opt

Fig. 4. Average root RDP of RP tree for various

group sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

bl
iz

at
io

n
T

im
e

Group Size

Credit RP Tree
Original RP Tree

Fig. 5. Initial stabilization time of credit RP tree.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350

N
um

be
r

of
 S

w
itc

he
s

Time

Credit RP Tree

Fig. 6. Number of switches over time in credit RP

tree for group size 600..

Since peers do not share their knowledge with each other,
these unsuspecting peers may connect to another malicious
node even though that malicious node has been discovered by
other peers. This explains the seesaw in the number of dis-
connected nodes for the original RP tree.

In Fig. 3, we present the average receive rate of the over-
lay peers. We assume there is a 1% data loss on the link
between two good peers. The malicious nodes report half
of their actual receiving rate. Fig. 3 shows that the average
receiving rate of the credit RP tree stabilizes at a high level
quickly even with a large number of malicious nodes.

3.3. RP Tree without Malicious Node

Fig. 4 shows the average root RDP of the original RP tree
and the credit RP tree. The credit RP tree has similar aver-
age root RDP as the original RP tree for small groups. For
large groups, the credit RP tree shows better root RDP. For
fair comparison, we also disable the credit-constrained trian-
gular optimization in the credit RP tree and include the result
in Fig. 4. The root RDP then becomes about 10% higher than
that of the original RP tree.

We compare the initial stabilization time of the original
RP tree and the credit RP tree in Fig. 5. In this simulation,
from an empty tree, we add ten peers into the overlay in each
time unit. After all peers are added into the overlay, we start
counting the stabilization time. From Fig. 5, we can see that
on average, it takes the credit RP tree about 10 times longer
to stabilize than the original RP tree. The credit constraints
in the credit RP tree generate additional switches that prolong
the initial stabilization process as the credits of peers evolve
over time. This is the price we pay to achieve DoS resiliency
shown earlier. However, from Fig. 6, which shows the aver-
age number of switches in the whole overlay of 600 nodes at
each time unit, we see that the number of switches in the over-
lay is in fact very low after time 100, which means the overlay
becomes relatively stable very quickly. The stabilization time
can be shortened if we assign a peer’s initial credit based on
its bandwidth and distances to other peers. This approach as-
sumes that every peer is good by default, and it requires initial
network measurements from each peer.

The overhead of ripple-stream depends on the credit sys-
tem it employs. For credit system using DHT, the overhead of
a ripple-stream based overlay is O(logN) times of the orig-
inal protocol, because each credit report and lookup will be

forwarded by O(logN) peers on average. N is the group size.
We skip the analysis here due to space limit.

4. CONCLUSION AND FURTHER DISCUSSION

In this paper we propose an open framework named ripple-
stream to construct efficient overlays with high DoS resilience.
Our evaluations show that, under attack, ripple-stream can ef-
fectively stabilize the overlay and significantly improve the
streaming quality. Ripple-stream has the flexibility to incor-
porate existing or future DoS defense schemes as long as
they send feedback into the credit system. Ripple-stream can
also work seamlessly with more advanced credit system to
increase its efficiency.

5. REFERENCES

[1] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling Conferencing Ap-
plications on the Internet using an Overlay Multicast Architecture,” in
Proc. of ACM SIGCOMM ’01, San Diego, CA, USA, Aug. 2001.

[2] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
Data-driven Overlay Network for Live Media Streaming,” in Proc. of
IEEE INFOCOM 05, Miami, FL, USA, Mar. 2005.

[3] J. Liang, R. Kumar, Y. Xi, and K. Ross, “Pollution in P2P File Shar-
ing Systems,” in Proc. of IEEE INFOCOM 05, Miami, FL, USA, Mar.
2005.

[4] N. Daswani and H. Garcia-Molina, “Query-Flood DoS Attacks in
Gnutella,” in ACM Computer and Communications Security, Washing-
tion, DC, USA, Nov 2002.

[5] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel, “Denial-of-Service Resilience in Peer-to-Peer File-
Sharing Systems,” in Proc. of ACM SIGMETRICS 05, Banff, Canada,
Jun. 2005.

[6] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach,
“Secure Routing for Structured Peer-to-Peer Overlay Networks,” in
Proc. of OSDI, Boston, MA, USA, Dec. 2002.

[7] W. Wang, Y. Xiong, and Q. Zhang, “Ripple-Stream: Safeguarding
P2P Streaming Against DoS Attacks,” Microsoft Research, Tech. Rep.
MSR-TR-2006-08, Jan. 2006.

[8] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust
for Peer-to-Peer Electronic Communities,” in IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 7, Jul. 2004, pp. 843–
857.

[9] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A Framework De-
livering Multicast To End Users,” in Proc. of IEEE INFOCOM ’02,
New York, NY, USA, Jun. 2002.

[10] P. Francis, “Yoid: Extending the Internet Multicast Architecture,” Apr.
2000, http://www.aciri.org/yoid.

[11] Y. Chu, S. Rao, and H. Zhang, “A Case For End System Multicast,” in
Proc. of ACM SIGMETRICS 00, Santa Clara, CA, USA, Jun. 2000.

1420

