
HYBRID TRAITOR TRACING

Hongxia Jin and Jeffery Lotspiech

IBM Almaden Research Center
San Jose, CA, 95120

ABSTRACT

In this paper we study the traitor tracing problem, a tech-
nique to help combat piracy of copyrighted materials. When
a pirated copy of the material is observed, a traitor tracing
scheme allows one to identify at least one of the real users
(traitors) who participate in the construction of the pirated
copy. The authors have been involved in what we believe
is the first large-scale deployment of the tracing traitors ap-
proach. In this paper we shall present a key management
scheme that provides the system designer flexibility, in that
he/she can choose to trace down to an individual user or only
trace to a device’s model. It helps effectively defend against
class attack and evil manufacturer problem. It also provides a
technology to protect consumers’ privacy when needed. This
flexibility is believed to be needed and has been adopted by
content protection standard AACS for next generation DVDs.

Keywords: key management, traitor tracing, watermark-
ing, next generation DVD

1. INTRODUCTION

This paper is concerned with the protection of copyrighted
materials in a one-to-many distribution channel. Some busi-
ness scenarios in this category concern that the copyrighted
content is only distributed to paying customers. For example,
a pay-TV broadcast system or selling copyrighted music con-
tent through the Web. Another type of business scenario in
this category, and the one we have been working on directly,
is massively distributing prerecorded media. The success of
these business models hinges on preventing the use of unau-
thorized copies of the media.

In July 2004, eight companies, Disney, IBM, Intel, Mat-
sushita, Microsoft, Sony, Toshiba, and Warner Bros., an-
nounced that they had come together to work on content pro-
tection for the new generation of high-definition DVD optical
discs. The technology they are developing is called Advanced
Access Content System, or AACS [1]. The fundamental pro-
tection of the AACS system is based on broadcast encryption
with a subset-difference tree using device keys and a media
key block. It allows unlimited, precise revocation without
danger of collateral damage to innocent devices. The mech-
anism is designed to exclude clones or compromised devices,
such as the infamous “DeCSS” application used for copying
“protected” DVD Video disks. Once the attacker has been
detected, newly released content incorporates new media key
blocks which exclude the keys known to the attackers. To
identify which keys have been used in the compromised de-
vices, a forensic media key block, a type of carefully crafted
test media key block, is fed into the device. The observed
results allow determination of the keys used in the device.

However, the AACS founders do not believe that this
level of renewability solves the piracy problem completely.
In fact, because of the inherent power of the revocation of
the AACS system, it is possible that the attackers may forgo
building clones or non-compliant devices and instead devote
themselves to server-based attacks where they try to hide the
underlying compromised device(s). This is progress, because
these server attacks are inherently more expensive for the at-
tackers. However, AACS found it desirable to be able to re-
spond to even these types of attacks. In one particular attack,
you could imagine the attackers building a server that dis-
tributes per-movie keys. Of course, the attackers would have
to compromise the tamper-resistance of one or more players
to extract these keys. With a compromised player, it is also
possible to get an exact in-the-clear digital copy of the movie,
with all of its extra navigation and features, and distribute
this. In these cases, the only forensic evidence availability
are the per-movie keys or the actual copy of the content. To
help defend against these types of attacks, the AACS system
adopts tracing traitors technology. The authors have been in-
volved in what we believe is the first large-scale deployment
of the tracing traitors approach.

The real user who participates in this piracy is called
equivalently either a traitor or a colluder. A traitor tracing
scheme allows to identify at least one of the traitors. In this
case the only way to trace traitors is to use different versions
of the content/keys for different users. This allows the re-
broadcasted decryption keys or contents to be linked to the
group of users who were given that version.

Unfortunately in many cases it is infeasible to send a dif-
ferent version of the content to each user. What is possible,
however, is to create a limited number of versions. For ex-
ample, each content is divided into multiple segments, some
segments are chosen to have differently marked variations.
The content with all the small variations at chosen points
in the content is bulk-encrypted and put on the disc distrib-
ute to each user. However, each user plays back the content
through a different path, which effectively creates a different
content version. We have designed a systematic way to create
these different versions [2]. However, in general, how those
different versions are created is irrelevant to the discussions
in this paper. Let us suppose there exists an ”inner code” that
creates multiple versions of the content to be distributed. To
simplify our discussion, we will use movie as a sample content
throughout the rest of the paper.

In our model, we assume that each movie comes with
multiple versions created from ”inner code”, for example, 256
versions. There will be 255 movies in the system. Traitors can
collude and use one traitor’s version for one movie and use
another traitor’s version for another movie. Unfortunately

13291­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

when a sequence of pirate movies are recovered, the sequence
could happen to belong to an innocent user. A weak traitor
tracing scheme wants to prevent a group of colluders from
thus “framing” an innocent user. A strong traitor tracing
scheme allows at least one of the colluders to be identified.

Traitor tracing problem was first defined by Fiat and Naor
in a broadcast encryption system [3]. The security threat
in that system is that a group of colluders can construct a
clone pirate decoder that can decrypt the broadcast content.
The threat model that this paper is concerned with is the
“anonymous attack”. Attackers can construct a pirate copy
of the content (content attack) and try to resell the pirate
copy over the Internet. Or the attackers reverse-engineer the
devices and extract the decryption keys (key attack). They
can then set up a server and sell decryption keys on demand,
or build a circumvention device and put the decryption keys
into the device. For content attack, it requires good water-
marking schemes that embeds different information for every
variation.

A tracing scheme is static if it pre-determines the assign-
ment of the decryption keys for the decoder or the water-
marked variations of the content before the content is broad-
cast. The traitor tracing schemes in [4, 5] are static and
probabilistic. Sequential traitor tracing is presented in [6].
All the above mentioned traitor tracing methods are designed
to trace to the individuals.

However, in real applications, sometimes the licensing
agency only wants to trace to the manufacturer/model of a
particular leak, instead of revoking an individual device. Why
is this? Certain attacks are what have been called class at-
tacks. A manufacturer may have made a mistake that makes
it easy for people to extract the keys from the device. In this
case, the key revocation mechanism might be overwhelmed by
the sheer volume of the number of compromised keys. A more
effective response might be to cooperate with the manufac-
turer to distribute firmware updates along with the content.
Alternatively, code might be distributed with the content that
“sniffs”—that is, it checks to see if it is running in the legit-
imate environment or a circumvention platform, and refuse
to play in the latter. Also, in some systems where the trac-
ing is not identify a device but instead an individual, privacy
concerns might come into play. In fact, in the case of a pre-
packaged physical media, one has to consider the question if
the licensing agency is even entitled to revoke a player if its
owner has used it to make unauthorized copies of the content.
The question is still under debate. We believe it is desirable
to have a hybrid approach that flexibly allows either tracing
to manufacturer/model or to individual device, depending on
the different needs at different times. We have designed a
practical and systematic key management approach to assign
the variation/keys to devices so that it is possible to switch
on and off the ability to trace to models or to individuals.

The rest of the paper is organized as follows. We will
present a new key assignment scheme that enables the hybrid
tracing in Section 3. We will also show how to defend against
the evil manufacturer problem in Section 4. We conclude our
work in Section 5.

2. BASIC SCHEME

Any static traitor tracing scheme has two basic steps:

1. Assign movie key versions to users.

2. Based on the observed re-broadcasted keys or contents,
trace back the traitors.

This paper will mainly focus on the key assignment scheme
used in the first step. The second step can use a straight-
forward brute-force approach. For each user we can simply
compute the number of movies that his or her assigned copies
matches with the observed pirated copies of movies. The
scheme incriminates the user who has the largest matching
with the pirated copies of the movies found.

For the first step, the movie version assignment can be
done randomly or systematically, for example, based on an
error-correcting code. Assume that each movie has q ver-
sions and that there are n movies. We represent the as-
signment of movie versions for each user using a codeword
(x0, x1, . . . , xn−1), where 0 ≤ xi ≤ q−1 for each 0 ≤ i ≤ n−1.
We call this level of code ”outer code”. For example, suppose
the inner code creates 256 versions for each movie, then the
outer code will have q set to be 256. The outer code is as-
signed from a key matrix. Columns corresponds to movie
sequences and each column corresponds to one movie. Rows
corresponds to movie key versions. Each column contains
many, even thousands, rows. For example, if there are 1024
movie key versions for each movie and there are 255 movies
in the entire sequence, then the key matrix has 255 columns
and 1024 rows. Each device is assigned a single key from each
column.

On the other hand, it needs 256 tables on the disc. One
table per movie version. Each table may contain any infor-
mation needed for one movie version, for example, the actual
encrypting keys for the movie can be put in the table. Each
table is encrypted by its corresponding movie key version for
that movie. For example, for movie #44, the table #i is
encrypted by movie key version #i for movie #44.

Each user will be assigned a unique set of keys correspond-
ing to the above outer code. Notice that this assignment has
to be done in advance at the device manufacture time be-
fore any content can be distributed. However the decision of
tracing to individual or model only is on-the-fly at content
distribution time and can vary movie-by-movie. The assign-
ment must be done in a way that, once the keys are assigned
to the devices, the authority could choose to trace back only
manufacturers/models (with low cost) or trace back end-users
(with high-cost).

3. HYBRID TRACING

In order to trace to models, one can always trace to devices
first, then find out their models. However, a class attack
might be so severe that the size of the coalition overwhelms
the tracing. If they are all in the same model, however, they
are in a coalition of size 1 for that type of tracing. Also,
since there are many fewer models than there are individual
devices, model tracing is inherently faster. Clearly, it is de-
sirable to have an approach to flexibly allow both types of
tracing to work in some attacks, and in other attacks only
allow detection of the manufacturer/model and disable the
detection of individual traitors.

Note that there are two naive ways to enable both tracings
to work. One way is to store 2 sets of 255 keys in the player.
One set of 255 keys are used in a scheme for tracing only to
manufacturer/model, the other set of 255 keys are used in
the scheme for tracing to devices. Of course, the drawback

1330

of this is that it doubles the storage requirement, which is a
cost for the device manufacturers.

The second naive way is to put in 256*256 tables instead
of 256 tables on the disc. We know that each player stores
255 movie keys that can be assigned based on the outer code.
However, note that the outer code specified above is based
on tracing to individuals. As mentioned above, when trac-
ing down to an individual, the scheme needs 256 tables on
the disc (although, as explained in the last section, we ac-
tually use more), and each table is encrypted by its corre-
sponding movie key version for that movie. For example, for
movie #44, the table #i is encrypted by movie key version
#i for movie #44. Remember, nominally, each sequence key
comes with 256 versions. When tracing only to manufac-
turer/model, for any movie, the individuals within the same
manufacturer/model should get the same movie version as-
signment. However, when the sequence keys are assigned on
the outer code specified above, they are based on tracing to
individuals. As a consequence, most individuals are not as-
signed the same movie key version for a movie. In order for
the players to be able to play back, each table needs to be du-
plicated 256 times, and encrypt each of these 256 tables using
all 256 movie key versions. This results in 256*256 tables per
movie (or much more, if you are using the flexible scheme in
the previous section). Clearly, the drawback of doing this is
the amount of space required on the disc, which is a cost to
the content owner/distributor.

In order to have a practical scheme, we must reduce the
cost for the storage requirement both in the device and on
the disc. We have designed an efficient key assignment that
enables one to perform hybrid tracing without incurring any
additional storage cost on the device and the disc.

3.1. Key assignment for hybrid tracing

In order to enable hybrid tracing, we introduce a new concept
called “slot”. Now the rows in the key matrix are grouped
into clusters. A slot is defined to be an assignment of row
clusters, one cluster for each column. At any given column,
two slots are either identical or completely disjoint. Slots can
be assigned to individual manufacturers/models and the keys
within the clusters are assigned to the devices made by the
manufacturer/model. In effect, the outer code is now itself a
two-level code. The entire system is now a three-level code.

Figure 1 shows a toy example. The first level codes assign
clusters to the manufacturer/models X and Y and the second
level codes assign keys to players A,B within model X, and
players C, D within model Y. Model X gets the slot (1,3,4,1),
which means it is assigned cluster #1 for movie #1, cluster
#3 for movie #2, and etc. Note that the second level code
is the assignment inside the cluster. For example, player A
gets (1,1,3,3) within the clusters assigned to model X, which
makes its actual key assignment be (1, 9, 15, 3) from the key
matrix.

As a more real example, suppose each movie key comes
with 512 versions. So the key matrix has 512 rows and 255
columns. We divide all 512 rows into 32 clusters, each cluster
contains 16 rows. The first level code is about the cluster
assignment throughout the 255 movie sequence. Each code-
word is a slot. So the code has q=32 and n=255. Each
slot is given to one manufacturer/model. And a given man-
ufacturer/model may get multiple slot assignments if it is

B

D

C
A

B
D

C

A

C,D

A
B

B

A

C
D

X
Y

X
Y

Y

X
Y

X
movie #1 movie #2 movie #3 movie #4

Model: cluster assignment:
X: (c1,c3,c4,c1)
Y: (c2,c4,c1,c3)

Player: within cluster assignment
A: (1,1,3,3)
B: (3,4,2,1)
C: (4,3,3,1)
D: (2,1,3,2)
Player: actual key assignment
A: (1,9,15,3)
B: (3,12,14,1)
C: (8,15,3,9)
D: (6,13,3,10)

c1

c2

c3

c4

Fig. 1. Key assignment using “slots”

producing a lot of devices. The second level code is about
the sequence key assignment within a slot. So the code has
q=16, and n=255. Each player gets the sequence key assign-
ment based on this code. After the movie keys are assigned
based on slots, the movie keys are stored inside the players.

Of course, the choices of the parameters when using the
slots also depends on how many manufacturers/models and
how many devices the system need to support. Just by way
of example, if each movie key comes with 512 versions in this
world and there are 512 movie versions created from inner
code. Suppose the system needs to accommodate at least
16000 models and at least 1 billion devices. A q=32, k=3,
n=255 code for the slot assignment allows to accommodate
about 32,000 (precisely 323) manufacturer models. And an-
other q=16, k=4, n=255 code can be used to assign movie
sequence keys to about 65536 (precisely 164) devices within
each manufacturer model. The total number of devices the
scheme can accommodate is 2 billion. If each movie key comes
with 256 versions in this world and there are only 256 movie
versions created from the inner code, we can also divide all
256 rows at each column into 16 clusters. In this case we have
to use q = 16, k = 4 code to assign slots to manufacturers,
accommodating 65k manufacturers. The same q=16, k=4
and n=255 code can be used to assign sequence keys to the
devices with the model. As a result, the scheme can totally
accommodate 4 billion devices.

3.2. Hybrid tracing

In the case of tracing only to manufacturer/model, the capa-
bility of tracing to devices can be disabled. This can be done
by sending the same movie version to the individuals of the
same model. Basically you can choose a movie version from
the cluster and its corresponding table can be duplicated to
the number of times equal to the number of devices within
each cluster. Each duplicated table is encrypted with one
of the movie keys within the cluster. In the example shown
above, the 512 rows are divided into 32 clusters and there are
16 rows in each cluster. Instead of having 512 different tables
as is the case when allowed to trace to devices, there will be
only 32 different tables, but each of the 32 tables is dupli-
cated 16 times. All the 16 devices within the same cluster
will use their own movie keys to encrypt the 16 identical ta-
bles for the cluster. Note that, when doing this, the number
of total tables for the movie on the disc is still 512, same as

1331

when tracing to devices. But some of the movie versions are
not used, only 32 version are used. Of course, when doing
this, there is no way for the tracing agency to trace down to
devices.After all, every user within the same model get the
same movie version.

This scheme allows the detection of the pirate manufac-
turer/model using less recovered movies than that needed for
tracing to devices. The reason of this is not hard to observe.
After the sequence key assignment shown above, the outer
code used for manufacturer/model tracing would be simply
be the first level code used for slot assignment. However, the
outer code used for individual tracing would be the combi-
nation of the two levels of the assignment shown above. The
property of the codes determines that it is more efficient for
tracing only to models than tracing to devices. In fact, after
the pirate model is detected, with more recovered movies, the
individual traitor can also be detected.

Our hybrid tracing scheme allows detection of both col-
lusion between manufacturers/models and collusion between
devices. Furthermore, whether the content owner chooses to
prepare the movie for the purpose of tracing individual play-
ers or of tracing the manufacturer/model is transparent to the
players, and can be a movie-by-movie decision. The number
of tables does not change based on this decision.

Apparently, with this scheme to do flexible hybrid traitor
tracing, it keeps the space requirement small both on the
disc and in the player. In fact, the storage requirement on the
player and the number of tables on the disc for hybrid tracing
are kept same as when the scheme is used only for individual
tracing. This is an advantage of our scheme compared to the
naive approaches shown in the previous section.

On the traceability side, one strong advantage of our
scheme is to flexibly allow switching on and off the capa-
bility to trace to devices. Another advantage of using this
scheme is that the scheme allows to handle collusion between
manufacturers/models as well as collusion between devices.

4. PROBLEM: EVIL MANUFACTURERS

AACS was also motivated by the need to defend against the
so-called “evil manufacturer attack” where a licensed man-
ufacturer misuses all the keys assigned to him. When this
attack happens, it is desirable to take action against that
manufacturer without harming other innocent manufactur-
ers’ devices. Interestingly enough, our key management ap-
proach can be highly resilient to the attack that many devices
within the same model line are compromised.

There are two general types of attacks. One is the ran-
dom individual hacking events. The other is the evil or sloppy
manufacturer who misuses all the keys assigned to them and
cause all those keys be exposed. To a lesser extent, attack-
ers reverse-engineer multiple devices from the same manu-
facturer/model and compromise many keys assigned to the
particular manufacturer/model. In fact, if the sequence keys
are assigned randomly from the entire key matrix, an evil
manufacturer could quickly learn all the keys in the matrix
and break the system. On the other hand, When an evil man-
ufacturer attack occurs, all those keys can be exposed, it can
be equivalent to multiple random individual attacks. It turns
out that the “slot” idea explained in the previous section is
also a very good way to defend against the evil manufacturer
problem.

It is interesting that our scheme can defend effectively
against both evil manufacturers’ attacks and random indi-
vidual attacks. Intuitively we want to minimize the over-
lap between slots. Our systematic assignment of the keys to
the devices provides a deterministic guarantees of the Ham-
ming distance, thus the maximum overlap between slots. The
Hamming distance can be so big that a collusion up to cer-
tain number (for example, m, decided by the Hamming dis-
tance) of evil manufacturer models cannot completely cover
any given innocent device’s sequence keys. In other words,
the probability that a given device’s sequence keys are cov-
ered by m manufacturer models are zero. On the other hand,
with random assignment, suppose there are q clusters, a given
device’s sequence key can be entirely covered by a device in
another manufacturer model with probability (1/q)n where n
is the number of sequence keys each device gets. This prob-
ability is small, but not zero. Similarly the probabilities that
it can be covered by multiple manufacturers are not zero.
The systematic assignment is a better option than random
assignment.

5. CONCLUSIONS

In this paper, we study the problem of tracing the legitimate
users (traitors) who instrument their devices and illegally re-
sell the pirated copies by redistributing the content or the
decryption keys on the Internet.

We have presented a key assignment approach that can
enable one to flexibly trace to individual devices or only to
the models of the devices used in the attack. The advantage
of the scheme is that the capability of tracing to the indi-
vidual device can be switched on and off based on particular
application requirement. It allows faster tracing to models
to defend against ”class” attack and protects user’s privacy
in the case devices can be tied back to users. It also defends
well against evil manufacturers. As future work, we would
like to continue focusing on overcoming the barriers to bring-
ing the traitor tracing technologies to real practice. We will
also focus on detail implementations during its deployment.

6. REFERENCES

[1] www.aacsla.org

[2] H.Jin and J. Lotspiech, ”Attacks and forensic analysis
for multimedia content protection”, ICME, July, 2005,
Amsterdam, Netherlands.

[3] A. Fiat and M. Naor, “Broadcast Encryption,”
Crypto’93, Lecture Notes in computer science, Vol. 773,
pp480-491. Springer-Verlag, Berlin, Heidelberg, New
York, 1993.

[4] B. Chor, A, Fiat and M. Naor, “Tracing traitors,”
Crypto’94, Lecture Notes in computer science, Vol. 839,
pp480-491. Springer-Verlag, Berlin, Heidelberg, New
York, 1994.

[5] B. Chor, A, Fiat, M. Naor and B. Pinkas, “Tracing trai-
tors,” IEEE Transactions on Information Theory, Vol
46(2000), 893-910.

[6] R. Safani-Naini and Y. Wang, “Sequential Traitor trac-
ing,” IEEE Transactions on Information Theory, 49,
2003.

1332

