
Complexity Analysis of H.264 Decoder for FPGA

Design

Tuomas Lindroth, Nastooh Avessta, Jukka Teuhola and Tiberiu Seceleanu

Dept. of Information Technology, Communication Systems Laboratory

University of Turku

Turku, Finland

E-mail: {tuomas.lindroth, nastooh.avessta, jukka.teuhola, tiberiu.seceleanu}@utu.fi

Abstract— A major challenge in the design of any real time

system is the proper selection of implementation and platform

alternatives. In this paper, a suitable FPGA-based design of the

H.264 decoder is presented. Since H.264 standard only

specifies the syntax and semantics of the video stream and not

the video codec itself, the selection process may be directed

based upon the temporal complexity of different parts of the

decoder. Here, we present the process flow of these parts using

basic algebraic operators. The analysis of the required logic

elements to implement the decoder, on various platforms, is

presented.

H.264 decoder; decoding block; baseline profile

I. INTRODUCTION

H.264, also known as MPEG-4 part 10 or Advanced
Video Coding (AVC) [1], is a recent video compression
technique, which is a successor to H.263 and MPEG-2
standards. Like the earlier video coding standards, H.264
does not specify a video encoder. Instead, it specifies the
syntax of a coded bit stream, the semantics of these syntax
elements and the process by which the syntax elements may
be decoded [1]. In this paper, we concentrate on the decoder.

H.264 defines seven profiles, each supporting a set of
coding functions and specifying what is required of an
encoder and decoder. The baseline profile is the basic
profile, the simplest and, at least partly, similar to MPEG-2
and H.263 [2]. It is mainly intended for videoconferencing
and wireless communications. Here we concentrate on the
baseline profile, for which we analyze the logic element
requirements needed in an FPGA implementation.

To achieve efficient development, hardware requirements
have to be reliably identified. Temporal complexity analysis
offers a possibility to envision a roadmap without delving
into the details of the implementation. As H.264 codec
design includes both the encoder and the decoder, for seven
different profiles, it is imperative to readily assess the design
specification for different alternatives.

The organization of this paper is as follows. Section II
provides an overview of the H.264 decoder and the detail
description of the complexity analysis. In Section III a
resource estimation model is presented and analyzed.
Finally, Section IV summarizes the results.

II. DESIGN PROBLEM

The design problem is to identify the amount of memory
and logic needed to implement an H.264 decoder. As shown
in Figure 1, the decoder consists of nine, basically
independent, blocks that can be considered separately. The
compressed bit stream from the NAL (Network Abstraction
Layer), after processing, is available as F'n(reconstructed)
block.

We use the terms luma and chroma rather than the terms
luminance and chrominance in order to avoid the implication
of use of linear light transfer characteristics that is often
associated with the latter terms [2].

Figure 1 H.264 decoder [1]

Each block is analyzed by determining the maximum
number of basic algebraic blocks needed to perform that
operation, for an 8 bit input. The word ROM represents all

12531424403677/06/$20.00 ©2006 IEEE ICME 2006

the constant values in memory within a certain block, e.g.
coefficients. The connotation RAM is used to denote the
changing values, e.g. inputs and outputs. We have used the
style of ‘YxX’ to represent a matrix size of Y rows and X
columns.

Entropy decoding block includes two different decoding
schemes: CAVLC (context-adaptive variable length coding)
for decoding residual data [3] and Exp-Golomb Coding for
other coded units [1]. CAVLC implementation is quite
complicated but doesn’t require many logic elements;
therefore it is simplified to look-up tables. Exp-Golomb is
shown in Figure 2.

Figure 2 Exp-Golomb Process Flow

Reorder block can be implemented in various ways. We
chose to use a look-up table, which only requires storage
elements.

Inverse quantization has three different variations: one
for residual, one for luma DC coefficients and one for
chroma DC coefficients. The 4x4 luma DC coefficient
inverse quantization is used when the macroblock is encoded
in 16x16 intra prediction mode [1]. In DC coefficient inverse
quantization we have used value 51 for QP (quantization
parameter). This is its maximum value and is used in order to
assess the worst case scenario, in terms of operational
complexity. Note that matrix operations (Hadamard
transform) are true matrix multiplications and not element-
wise. These three variations are shown in Figure 3, Figure 4
and Figure 5

Figure 3 4x4 Residual Inverse Quantization

 Figure 4 4x4 Luma DC Coefficient Inverse Quantization

Figure 5 2x2 Chroma DC Coefficient Inverse

Quantization

Inverse transform is the same for all of the different
inverse quantization modes. The rescaled 2x2 chroma
coefficients are first replaced in their respective 4x4 blocks,
which are then transformed [1]. The Inverse transform
process flow is shown in Figure 6.

Figure 6 4x4 Inverse Transform

Intra prediction has its highest operational complexity,
when 16x16 luma prediction mode 3 and 8x8 chroma
prediction mode 3 are used [1]. These modes are called
plane. (Also 4x4 luma prediction modes, total of 9 elements,
are possible.) The different implementations of all of these
modes (without possible initialization) are shown in Figure
7, Figure 8 and Figure 9.

Figure 7 4x4 Luma Prediction Mode 2

Figure 8 4x4 Luma Prediction Modes 3–8

Figure 9 16x16 Luma and 8x8 Chroma Prediction Mode 3

1254

MC (motion compensation) consists of motion vector
prediction and interpolation. Motion vector calculation is
quite simple in the terms of logic elements; therefore it is
excluded. Inter prediction (interpolation) uses quarter-pel
samples for luma and eight-pel samples for chroma [1].
Luma samples are calculated in two phases: 1) the half-pel
samples, by using six-tap FIR filter, and 2) the final values,
by linear interpolation of half-pel samples. These processes
are shown in Figure 10, Figure 11 and Figure 12.

Figure 10 Half-pel Interpolation (Luma)

Figure 11 Quarter-pel Interpolation (Luma)

Figure 12 Eight-pel Interpolation (Chroma)

Deblocking filter has its worst case scenario when Bs
(boundary strength) is 4. Then 4 five-tap and 2 four-tap
filtering are needed for luma and 2 three-tap filtering for
chroma [4]. These are shown in Figure 13 to Figure 16.

Figure 13 Deblocking Filter (Luma), Five-tap, Output p'0

Figure 14 Deblocking Filter (Luma), Four-tap, Output p'1

Figure 15 Deblocking Filter (Luma), Five-tap, Output p’2

Figure 16 Deblocking Filter (Chroma), Three-tap

III. RESOURCE ESTIMATION MODEL

We have used Altera Quartus II tools to estimate the
required logic elements of an FPGA. As product families we
have used Stratix, Stratix II and Cyclone II. Stratix II uses
ALUTs (adaptive look-up table), which are approximately
the same as 1.25 logic elements (LE) [5]. Thus all ALUTs in
simulation results are multiplied by this factor to estimate the
number of corresponding LEs. Memory bits are calculated
by evaluating the storage requirements of processes and their
respective input and output.

The simulation models are created by using the basic
operations shown in the process flow figures in Section II,
excluding the inverse transform, where we have used an
optimized 1D DCT transform VHDL code by [6].

1255

The matrix multiplications shown in the inverse
quantization are broken down to simple multiplications and
additions. Luma and chroma values are added together in the
final result to form a complete overall picture of the required
logic elements.

Table III presents the specifications of the FPGAs
obtained from Altera Quartus II that were considered in the
resource estimation model. Table I presents the results, for a
block-parallel implementation. We are using the worst case
scenario, so intra prediction, inter prediction and filter use
block sizes of 16x16 for luma and 8x8 for chroma, which are
called macroblocks. The corresponding worst case sizes for
the other four blocks are 4x4 for luma and 2x2 for chroma.

Table II outlines the logic element and memory
requirements for the serial implementation, where values
calculated are for one 1x1 block.

Table I Results for Parallel Implementation

Table II Results for Serial Implementation

Table III FPGAs Used in the Simulation Model

FPGA Logic elements Memory bits

1 – Stratix
(EP1S10F484C5)

10570 920448

2 – Stratix II
(EP2S15F484C3)

15600 419328

3 – Cyclone II
(EP2C5T144C6)

4608 119808

The above description contained only the main low-level
logic element requirements. The high-level control should be
added in a complete implementation.

It is noted that a fully parallel implementation of the
H.264 decoder will not fit in any of the considered FPGAs.
Nonetheless, as shown in Table II and Table III, a partially
serial implementation will suitably fit in all the considered
FPGAs. However, the degree of concurrency is highly
dependent on specific design requirements and constraints,
and as such is not the concern of this study.

As a comparison, [7] implements H.264 Baseline
Encoder Core (without filter) using 129000 logic gates and
[8] H.264 Baseline Video Decoder IP Core with 150000
gates. Both of these logic element requirements are less than
the upper bound we defined in Table I.

IV. CONCLUSION

In this paper we have shown that at early stages of
design, it is possible to obtain upper bounds on design
specifications. As our guideline, we have chosen the worst
case scenario, in terms of temporal complexity, to identify
the design limits.

Future work will attempt to identify the optimum design
specifications, based on project specific objectives and
constraints.

REFERENCES

[1] I.E.G. Richardson, “H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia”, John Wiley & Sons, Ltd,
pp. 159–207, 2003.

[2] Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10
AVC) Joint Video Team (JVT), Doc. JVT-G050r1, May. 2003.

[3] G.Bjøntegaard and K.Lillevold, “Context-adaptive VLC (CVLC)
coding of coefficients”, 3rd Meeting of the Joint Video Team (JVT) of
ISO/IEC MPEG and ITU-T VCEG Fairfax, VA, Doc. JVT-C028rl,
May 6–10, 2002.

[4] P. List, A. Joch, J. Lainema, G. Bjøntegaard and M. Karczewicz,
“Adaptive Deblocking Filter”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 13, No. 7, July 2003

[5] Altera Corporation, “Stratix II Device Family Data Sheet”, pp. 1-2,
2005. http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf

[6] T. Sherif, “VLSI Design and Implementation of Different DCT
Architectures for Image Compression”, B.Sc. Graduation Project,
Electronics and Communications Engineering department, Ain Shams
University, Cairo, Egypt, 2000.

[7] V. Liguori and K. Wong, “Designing A Real-Time HDTV 1080p
Baseline H.264/AVC Encoder Core”, DesignCon 2006

[8] 4i2i Communication Ltd., “H.264 / MPEG-4 Part 10 Baseline Video
Decoder IP Core”, Rev 1.0, December 2005, pp.1-7.
http://www.4i2i.com/downloads/H264BaselineIPDecoderCore.pdf

Logic elements FPGA

Block
Stratix Stratix

II

Cyclone

II

Memory

bits

Entropy

decode

16 9 14 2600

Reorder 1 1 1 180

Inverse

quantization

1199 1151 1163 1150

Inverse

transform

4664 4152 4672 500

Intra

prediction

58560 37440 56640 4000

Inter

prediction

69504 62464 67776 9900

Filter 46848 48832 45056 46000

Total 180792 154049 175322 64330

Logic elements FPGA

Block
Stratix Stratix

II

Cyclone

II

Memory

bits

Entropy

decode

16 9 14 2600

Reorder 1 1 1 180

Inverse

quantization

1199 1151 1163 1150

Inverse

transform

583 519 584 500

Intra

prediction

183 117 177 100

Inter

prediction

612 505 591 150

Filter 402 410 385 400

total 2996 2712 2915 5080

1256

