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Abstract— A major challenge in the design of any real time 

system is the proper selection of implementation and platform 

alternatives. In this paper, a suitable FPGA-based design of the 

H.264 decoder is presented. Since H.264 standard only 

specifies the syntax and semantics of the video stream and not 

the video codec itself, the selection process may be directed 

based upon the temporal complexity of different parts of the 

decoder. Here, we present the process flow of these parts using 

basic algebraic operators. The analysis of the required logic 

elements to implement the decoder, on various platforms, is 

presented.  

H.264 decoder; decoding block; baseline profile  

I. INTRODUCTION

H.264, also known as MPEG-4 part 10 or Advanced 
Video Coding (AVC) [1], is a recent video compression 
technique, which is a successor to H.263 and MPEG-2 
standards. Like the earlier video coding standards, H.264 
does not specify a video encoder. Instead, it specifies the 
syntax of a coded bit stream, the semantics of these syntax 
elements and the process by which the syntax elements may 
be decoded [1]. In this paper, we concentrate on the decoder.  

H.264 defines seven profiles, each supporting a set of 
coding functions and specifying what is required of an 
encoder and decoder. The baseline profile is the basic 
profile, the simplest and, at least partly, similar to MPEG-2 
and H.263 [2]. It is mainly intended for videoconferencing 
and wireless communications. Here we concentrate on the 
baseline profile, for which we analyze the logic element 
requirements needed in an FPGA implementation. 

To achieve efficient development, hardware requirements 
have to be reliably identified. Temporal complexity analysis 
offers a possibility to envision a roadmap without delving 
into the details of the implementation. As H.264 codec 
design includes both the encoder and the decoder, for seven 
different profiles, it is imperative to readily assess the design 
specification for different alternatives. 

The organization of this paper is as follows. Section II 
provides an overview of the H.264 decoder and the detail 
description of the complexity analysis. In Section III a 
resource estimation model is presented and analyzed. 
Finally, Section IV summarizes the results. 

II. DESIGN PROBLEM

The design problem is to identify the amount of memory 
and logic needed to implement an H.264 decoder. As shown 
in Figure 1, the decoder consists of nine, basically 
independent, blocks that can be considered separately. The 
compressed bit stream from the NAL (Network Abstraction 
Layer), after processing, is available as F'n(reconstructed) 
block. 

We use the terms luma and chroma rather than the terms 
luminance and chrominance in order to avoid the implication 
of use of linear light transfer characteristics that is often 
associated with the latter terms [2]. 

Figure 1 H.264 decoder [1] 

Each block is analyzed by determining the maximum 
number of basic algebraic blocks needed to perform that 
operation, for an 8 bit input. The word ROM represents all 
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the constant values in memory within a certain block, e.g. 
coefficients. The connotation RAM is used to denote the 
changing values, e.g. inputs and outputs. We have used the 
style of ‘YxX’ to represent a matrix size of Y rows and X 
columns. 

Entropy decoding block includes two different decoding 
schemes: CAVLC (context-adaptive variable length coding)   
for decoding residual data [3] and Exp-Golomb Coding for 
other coded units [1]. CAVLC implementation is quite 
complicated but doesn’t require many logic elements; 
therefore it is simplified to look-up tables. Exp-Golomb is 
shown in Figure 2. 

Figure 2 Exp-Golomb Process Flow

Reorder block can be implemented in various ways. We 
chose to use a look-up table, which only requires storage 
elements. 

Inverse quantization has three different variations: one 
for residual, one for luma DC coefficients and one for 
chroma DC coefficients. The 4x4 luma DC coefficient 
inverse quantization is used when the macroblock is encoded 
in 16x16 intra prediction mode [1]. In DC coefficient inverse 
quantization we have used value 51 for QP (quantization 
parameter). This is its maximum value and is used in order to 
assess the worst case scenario, in terms of operational 
complexity. Note that matrix operations (Hadamard 
transform) are true matrix multiplications and not element-
wise. These three variations are shown in Figure 3, Figure 4 
and Figure 5 

Figure 3 4x4 Residual Inverse Quantization

 Figure 4 4x4 Luma DC Coefficient Inverse Quantization

Figure 5 2x2 Chroma DC Coefficient Inverse 

Quantization 

Inverse transform is the same for all of the different 
inverse quantization modes. The rescaled 2x2 chroma 
coefficients are first replaced in their respective 4x4 blocks, 
which are then transformed [1]. The Inverse transform 
process flow is shown in Figure 6. 

Figure 6 4x4 Inverse Transform 

Intra prediction has its highest operational complexity, 
when 16x16 luma prediction mode 3 and 8x8 chroma 
prediction mode 3 are used [1]. These modes are called 
plane. (Also 4x4 luma prediction modes, total of 9 elements, 
are possible.) The different implementations of all of these 
modes (without possible initialization) are shown in Figure 
7, Figure 8 and Figure 9. 

Figure 7 4x4 Luma Prediction Mode 2 

Figure 8 4x4 Luma Prediction Modes 3–8

Figure 9 16x16 Luma and 8x8 Chroma Prediction Mode 3
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MC (motion compensation) consists of motion vector 
prediction and interpolation. Motion vector calculation is 
quite simple in the terms of logic elements; therefore it is 
excluded.  Inter prediction (interpolation) uses quarter-pel 
samples for luma and eight-pel samples for chroma [1]. 
Luma samples are calculated in two phases: 1) the half-pel 
samples, by using six-tap FIR filter, and 2) the final values, 
by linear interpolation of half-pel samples. These processes 
are shown in Figure 10, Figure 11 and Figure 12. 

Figure 10 Half-pel Interpolation (Luma)

Figure 11 Quarter-pel Interpolation (Luma)

Figure 12 Eight-pel Interpolation (Chroma) 

Deblocking filter has its worst case scenario when Bs 
(boundary strength) is 4. Then 4 five-tap and 2 four-tap 
filtering are needed for luma and 2 three-tap filtering for 
chroma [4]. These are shown in Figure 13 to Figure 16. 

Figure 13 Deblocking Filter (Luma), Five-tap, Output p'0

Figure 14 Deblocking Filter (Luma), Four-tap, Output p'1

Figure 15 Deblocking Filter (Luma), Five-tap, Output p’2

Figure 16 Deblocking Filter (Chroma), Three-tap

III. RESOURCE ESTIMATION MODEL

We have used Altera Quartus II tools to estimate the 
required logic elements of an FPGA. As product families we 
have used Stratix, Stratix II and Cyclone II. Stratix II uses 
ALUTs (adaptive look-up table), which are approximately 
the same as 1.25 logic elements (LE) [5]. Thus all ALUTs in 
simulation results are multiplied by this factor to estimate the 
number of corresponding LEs. Memory bits are calculated 
by evaluating the storage requirements of processes and their 
respective input and output. 

The simulation models are created by using the basic 
operations shown in the process flow figures in Section II, 
excluding the inverse transform, where we have used an 
optimized 1D DCT transform VHDL code by [6].  
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The matrix multiplications shown in the inverse 
quantization are broken down to simple multiplications and 
additions. Luma and chroma values are added together in the 
final result to form a complete overall picture of the required 
logic elements.  

Table III presents the specifications of the FPGAs 
obtained from Altera Quartus II that were considered in the 
resource estimation model. Table I presents the results, for a 
block-parallel implementation. We are using the worst case 
scenario, so intra prediction, inter prediction and filter use 
block sizes of 16x16 for luma and 8x8 for chroma, which are 
called macroblocks. The corresponding worst case sizes for 
the other four blocks are 4x4 for luma and 2x2 for chroma. 

Table II outlines the logic element and memory 
requirements for the serial implementation, where values 
calculated are for one 1x1 block.  

Table I  Results for Parallel Implementation

Table II  Results for Serial Implementation 

Table III  FPGAs Used in the Simulation Model 

FPGA Logic elements Memory bits 

1 – Stratix 
(EP1S10F484C5) 

10570 920448 

2 – Stratix II 
(EP2S15F484C3)

15600 419328 

3 – Cyclone II 
(EP2C5T144C6)

4608 119808 

The above description contained only the main low-level 
logic element requirements. The high-level control should be 
added in a complete implementation.  

It is noted that a fully parallel implementation of the 
H.264 decoder will not fit in any of the considered FPGAs. 
Nonetheless, as shown in Table II and Table III, a partially 
serial implementation will suitably fit in all the considered 
FPGAs. However, the degree of concurrency is highly 
dependent on specific design requirements and constraints, 
and as such is not the concern of this study. 

As a comparison, [7] implements H.264 Baseline 
Encoder Core (without filter) using 129000 logic gates and 
[8] H.264 Baseline Video Decoder IP Core with 150000 
gates. Both of these logic element requirements are less than 
the upper bound we defined in Table I. 

IV. CONCLUSION 

In this paper we have shown that at early stages of 
design, it is possible to obtain upper bounds on design 
specifications.  As our guideline, we have chosen the worst 
case scenario, in terms of temporal complexity, to identify 
the design limits.  

Future work will attempt to identify the optimum design 
specifications, based on project specific objectives and 
constraints. 
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Logic elements FPGA

Block 
Stratix Stratix 

II

Cyclone 

II

Memory 

bits

Entropy 

decode

16 9 14 2600 

Reorder 1 1 1 180 

Inverse 

quantization 

1199 1151 1163 1150 

Inverse 

transform

4664 4152 4672 500 

Intra 

prediction

58560 37440 56640 4000 

Inter

prediction

69504 62464 67776 9900 

Filter 46848 48832 45056 46000 

Total 180792 154049 175322 64330 

Logic elements FPGA

Block 
Stratix Stratix 

II

Cyclone 

II

Memory 

bits

Entropy 

decode

16 9 14 2600 

Reorder 1 1 1 180 

Inverse 

quantization 

1199 1151 1163 1150 

Inverse 

transform

583 519 584 500 

Intra 

prediction

183 117 177 100 

Inter

prediction

612 505 591 150 

Filter 402 410 385 400 

total 2996 2712 2915 5080 
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