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ABSTRACT

Systems designed to extract time-critical information from large vol-

umes of unstructured data must include the ability, both from an

architectural and algorithmic point of view, to filter out unimpor-
tant data that might otherwise overwhelm the available resources.

This paper presents an approach for data filtering to reduce compu-

tation in the context of a distributed speech processing architecture

designed to detect or identify speakers. Here, filtering means either
dropping and ignoring data or passing it on for further processing.

The goal of the paper is to show that when the filter is designed to

select and pass on a subset of the input data that best preserves the

ability to recognize a specific desired speaker, or group of speakers,
a large percentage of the data can be ignored while being able to

preserve most of the accuracy.

1. INTRODUCTION

Contemporary speech analysis systems operate over a range of op-

erating points, each with a characteristic resource usage, accuracy,

and throughput. This paper addresses the task of filtering out data to

increase the throughput (processing capacity) while trying to min-
imize the impact on accuracy and maintaining or reducing the re-

source usage for a speech based detection task, in particular, speaker

recognition. Filtering in this context means selectively dropping data

and preventing it from undergoing further analysis. The purpose is
to improve the capability to scale to analyzing higher volumes of

data with a limited set of resources. The problem formulation is

based on the fact that speaker recognition can be realized as compu-

tationally isolated algorithmic components arranged in an analysis
pipeline, wherein a sequence of speech frames, each processed in-

dividually, constitute the data stream flowing through the pipeline.

For example, when the input is compressed audio data, the various

components might include audio waveform decompression, speech
feature extraction, intermediate feature processing, and speaker de-

tection. These algorithmic components could in fact be used for

multiple tasks in this distributed architecture. Also, any component

can act as a data filter for downstream components, eliminating their
computation time for the filtered frame. As an example, if the wave-

form decompression component detects a problem with a portion of

the input bit stream, it could choose to ignore that data. Success with

respect to the goal of reducing computation and preserving accuracy

depends on the quality of the filters.

2. PROBLEM FORMULATION AND CONTEXT

For the experiments in this paper, it is assumed that phonetic la-
bels are associated with each data frame, but the technique could
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Fig. 1. Diagram of the system subcomponent for speaker recogni-
tion.

apply generally to any set of labels. Two components in the dis-

tributed architecture are studied, the filter, whose input is the set of

labeled frames, and the identification/detection component (see fig-

ure 1). Data reduction is measured in terms of the percentage of
frames dropped by the filter and accuracy is measured by identifica-

tion and verification performance. A methodology is developed to

determine target dependent filters based on the special properties of

the recognition task at handwith the goal of reducing computation
and preserving accuracy. Thus, the speaker, or group of speakers,

to be detected will determine the filter, which is characterized by a

subset of the labels and which operates by looking at the label associ-

ated with an input frame and passes it on for further processing only
if that label is within its subset. The determination of this subset is a

central component of this work. Note that phone based speaker mod-

els and phone sequence modeling [1] [2] have been used for speaker

recognition. However, here our focus is on filtering (i.e. passing or
dropping) data in a speaker or target specific manner to increase pro-

cessing capacity in a distributed framework while trying to maintain

accuracy. We do not address the issue of labeling the data, but rather

the proper construction of filters (choosing the pass subset) given a
particular set of labels. Also, it is important to point out that speaker

models are built within a text-independent system and no knowledge

of phone labels are used in the process. The filters are designed given

these models. We remark that in designing the overall system, the
complexity of the labeling should be taken into account and that in

this distributed context, it is reasonable to assume that scenarios ex-

ist where such labels are generated early on, perhaps for a different

task. Experimental support is provided as evidence of the efficacy
of the proposed methodology. The rest of the paper is organized as
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follows. In section 3 the recognition model is presented describing

how speaker models are built and evaluated. Section 4 then describes

the method for designing the target dependent filters and describes
how the discriminants are affected. In section 5, experimental eval-

uation of the methods are presented. And finally section 6 presents

discussion and conclusions.

3. RECOGNITION MODEL

The experiments are carried out on a state of the art speaker recog-
nition system, where modeling is based on transformation enhanced

models [3] in the GMM-UBM (Gaussian Mixture Model - Univer-

sal Background Model) framework [4] [5]. Data is represented as

a sequence of vectors {xi}, where i = 1, 2, 3, . . ., each element
corresponding to an observed data frame. The UBM Model MUBM is

parameterized by

{mUBM
i ,Σ

UBM
i , p

UBM
i }i = 1,...,NUBM and TUBM

,

consisting of the estimates of the mean, diagonal covariance, and

mixture weight parameters for each of the NUBM Gaussian compo-

nents in the transformed space specified by an MLLT transformation,

TUBM, which is chosen to give the optimal space for restriction to di-
agonal covariance models [3]. That is

mUBM
i = TUBMmUBM,o

i

and

Σ
UBM
i = diag(TUBM

Σ
UBM,o

i TUBM,�),

where the o in the superscript indicates parameters derived from the

original untransformed data through EM iterations. After EM, TUBM

is estimated based on the resultant parameters and is subsequently

applied to them to construct the final model. This UBM model rep-
resents the background population and is trained with data from a

large number of speakers so as to create a model without idiosyn-

cratic characteristics. Based on this reference, each speaker Mj is

parameterized by

{mj

i ,Σ
j

i , p
j

i}i = 1,...,NUBM .

The speaker dependent MLLT, Tj , is identical to TUBM, whereas

more generally it could be different. These parameters are derived

via MAP adaptation from the UBM parameters in the transformed
space [4] [5], based on speaker specific training data. Note that the

number of Gaussian components is the same as that for the UBM.

Thus the observed speaker training data {xi} is transformed into the

new space {TUBM
xi} before the MAP adaptation.

3.1. Discriminants

To evaluate a speaker model with respect to test data we use a like-

lihood ratio based discriminant function that takes into account the

added feature transformation. Given a set of vectors X = {xt}, t =
1 . . . Ntest, in Rn, the frame based discriminant function for any in-

dividual target model M j is

d(xt|M
j) = log p(TUBMxt|mj

i∗ ,Σ
j

i∗ , p
j

i∗)

− max
i

ˆ
log p(TUBMxt|mUBM

i ,Σ
UBM
i , p

UBM
i )

˜
(1)

where the index i runs through the mixture components in the model

MUBM, i∗ is the maximizing index, and p(·) is a multi-variate Gaus-

sian density. Extending to the entire test data, gives

d(X|M j) =
1

Ntest

NtestX

t=1

d(xt|M
j). (2)

When used for verification, the result is compared to a threshold. For

identification, the function is computed for all speakers j to find the

maximizing speaker score. We motivate the use of a filter as a com-
putationally significant mechanism to control resource usage by not-

ing that the above computation is required for each frame analyzed.

There is an additional final score sorting cost for identification, but

for practical purposes, the number of frames will vastly outnumber
the speakers, maintaining the significance of frame reduction.

4. FILTERING DATA

We present an approach to the task of data reduction (thereby in-

creasing throughput) while trying to maintain a high level of accu-

racy based on careful application of data filtering, where the filters

that are designed are especially suited to the detection task. Such a

reduction of data by filtering allows, for example, more audio data
to be processed in a fixed amount of time on fixed resources, i.e. an

increase in processing capacity.

The architecture for speaker recognition that is studied is a sub-

set of a larger system that includes a feature extraction component,

a feature labeling component, a filter, and a speaker detection com-
ponent. Recall again that the operation of labeling is not addressed

here. The recognition task itself encompasses two sub-tasks, that of

identification and verification (detection). The general approach de-

veloped applies to both cases, however greater benefits are realized

for the case of detection owing to the specificity of the task.

The sequence of test data frames is denoted by {xt}, t =
1 . . . Ntest. Each element of the sequence has a label, such that la-

bels and frames are in one to one correspondence. The labeling is

assumed to produce for each frame, and element l from an alphabet

of labels L. Thus,

X′ = {(xt, lt)}, t = 1 . . . Ntest,

where the prime is used to indicate the set of label augmented feature

vectors.

The speaker models are represented by the set M = {Mj}. Let

{xj

dev} be development data for model Mj and {xdev} be their union

over j. Define

FSI = {lk}, k = 1 . . . N
L
SI

to be the set of labels defining the filter independent of the speaker

being detected (The SI indicates speaker independent). NL
SI is the

total number of labels in the filter. Let {x
dev,l} be the subset of the

development data labeled l. Then

l1 = argmaxli∈L
perf({x

dev,li}),

where perf is the performance measure of interest. For the speaker

independent filter, this measure is the aggregate identification rate
computed over all target models using the development data. The

particular experiment used for optimization is a closed set identifi-

cation task among all target speakers. Continuing,

ln = argmaxli∈L−{l1...ln−1}
perf({x

dev,li}).

Similarly,

Fj = {lk}, k = 1 . . . N
L
j

which is the set of labels defining the filter for speaker j, defined

as above with {xj

dev,li} replacing {x
dev,li} (i.e. use data only from

speaker j and label li) and the individual identification rate of speaker
j replacing the aggregate rate for the performance measure.
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The discriminant with speaker independent filtering becomes

d(X′|M j) =
1

PNtest
i=1

I(li ∈ FSI)

NtestX

t=1

I(lt ∈ FSI)d(xt|M
j), (3)

and with speaker dependent filtering,

d(X′|M j) =
1

PNtest
i=1

I(li ∈ Fj)

NtestX

t=1

I(lt ∈ Fj)d(xt|M
j), (4)

where I(·) is an indicator function of the validity of its argument,

taken to mean that the vector’s label is passed by the filter.

Thus target models are associated with an optimal set of labels

with respect to recognition performance. In cases where the iden-

tity of the speaker sought is known, the data in the system can be
filtered to pass only the optimal labels, Fj , for that speaker. On the

other hand, if there is a set of speakers of interest, say the enrolled

population, then an aggregate best list of labels, FSI, can be chosen.

Silence removal, a common practice, would be a degenerate form of
this type of filtering.

The nature of the labels, e.g. the characteristics of the alphabet,
will determine the granularity with which the data can be filtered to

achieve various operating points on the performance vs. complexity

curve. In the experiments, phonetic labels are studied.

5. EXPERIMENTS

5.1. Setup

The data consisted of the audio portion of the HUB4 Broadcast News

Database. A subset of 64 speakers were selected as the target speak-

ers. The waveforms were mono 16kHz PCM. The analysis config-

uration was 19 dimensional MFCC + 1st derivative (38 dim vector)
with feature warping[6]. A rate of 100 frames per second, with 50%

overlap was used and the MFCC were computed over a 20 millisec-

ond window. For each speaker, 2 minutes of data were set aside

and used for training the final speaker models. The UBM, trained

on independent broadcast news data, contained 256 Gaussian com-
ponents. The speaker models, being MAP adapted from the UBM,

also had 256 components. The remaining data was partitioned and

used for system evaluation. No labeled data was used in training the

speaker models. Thus, we are not trying to build phone dependent
speaker models, but rather, given well trained speaker models, our

goal is to filter (or drop) test data in a speaker dependent way. There

were 683 testing cells, ranging from 306 to 2034 frames (3.06 to

20.34 seconds). These were determined by the segments of contigu-
ous speech available for each speaker in the data set.

5.2. Label Ranking

The data was labeled with an HMM based ASR system that gen-

erated alignments to available transcripts. As such, the labels are
relatively high in quality.

A set of 41 phonetic units were used:

S TS UW T N K Y Z AO AY SH W NG EY B

CH OY AX JH D G UH F V ER AA IH M DH

L AH P OW AW HH AE TH R IY EH ZH

phone rank
1 2 3

name N IH T

% data 6.21 5.74 5.69

% accuracy 72.62 68.67 64.42

top 2 % accuracy 82.43

top 3 % accuracy 85.21

Table 1. Identification performance for various filtering configura-

tions.
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Fig. 2. Baseline verification performance using all data.

The first experiment details the per phone based recognition per-

formance obtained based on the above labels using the 38 dimen-
sional MFCC based features. Note again that the final speaker mod-

els did not use any label information. Table 1 summarizes the identi-

fication performance for filtering configurations based on phonesets

determined by aggregate performance, i.e. based on the top labels in
FSI. Using all of the data, the overall identification performance was

92.53% correct. A further breakdown of the results shows, for the

top 3 phones individually, the results were: 72.62% for ”N”, 68.67%

for ”IH”, and 64.42% for ”T” representing respectively, 6.21, 5.74,
and 5.69 percent of the total data. The top phones were determined

based on ranking of aggregate performance on all speakers. Scoring

data from the top 2 phones combined, results in 82.43% accuracy on

11.96 percent of the data. The top 3 phones together give 85.21% on
17.65 percent of the data.

5.3. Detection

In the case of speaker detection, the results can be broken down

with respect to speaker independent (aggregate best) phonesets and

speaker dependent phonesets, which were determined as those for

which the recognition rates were individually maximized. The base-
line performance is given in figure 2. The equal error rate for this

case where all of the data is used is 4.39%. DCF (Detection Cost

Function: a weighted combination of false accept and false reject

rates, defined for the NIST Speaker Recognition Evaluations [7])
values are also given in the plots.
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Fig. 3. Verification performance for aggregate best phonesets.

5.3.1. Speaker Independent Filtering

Given this, the relevant question is “Can comparable performance
be achieved as data is dropped and throughput is increased assuming

constant resources?” The following results suggest that the question

can be answered in the affirmative and provide an indication of the

amount of throughput increase that can be achieved. Figure 3 shows
the verification performance for 5 phonesets, ranging from the set

with only the top performing (aggregate best) phone, to the set with

the top 5 phones. Each of these sets represents a data filter, and the

amount of data passing the filter naturally increases with the number

of elements in the set. The performance improves as well. Filtering
based on the top phone leaves 6.21% of the data with a correspond-

ing equal error rate (EER) of 10.25%. Filtering based on the top 5

phones leaves 31.91% with an EER 0f 6.35%. A similar trend can

be observed in the DCF values. We point out, that for the speaker
independent case, the performance of the top 4 is better than that of

the top 5. However, as will be seen in the next experiments, the top

5 set does indeed perform better than the top 4 set for the speaker

dependent filters.

5.3.2. Speaker Dependent Filtering

In the case of a detection problem, of which verification is an ex-
ample, the amount of data can be further reduced and performance

improved by tailoring the filters to the entity or object being detected,

in the present case a speaker. The results for this case are shown in

figure 4. In this case, filtering based on the top phone, which de-
pends on the speaker, passes only 5.7% of the data resulting in an

EER of 8.24%, while the top 5 phones select 24.20% of the data for

an EER of 5.45%. A similar trend is observed for the DCF. By hav-

ing speaker dependent filters (in general, filters tailored to the entity
being detected), less data is passed through the filters and better per-

formance is achieved, as compared to the speaker independent case.

For the present configuration, a throughput increase of 400% can be

achieved with a 1% increase in EER, as compared to the all data
case.
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Fig. 4. Verification performance for speaker dependent phonesets.

6. CONCLUSION

This paper presented a technique to reduce data flow, and thereby in-

crease processing capacity, while preserving a high level of accuracy

in a distributed speech processing environment. The task considered
was speaker recognition and the data flow in the system was reduced

by filtering out (dropping) data frames based on a target speaker spe-

cific subset of labels. The tradeoffs between the loss in accuracy and

data reduction were investigated with experimental results verifying
that data filters can be designed to preserve accuracy and pass only a

fraction of the data by optimizing target (specific) performance mea-

sures.

7. REFERENCES

[1] A. O. Hatch, B. Peskin, and A. Stolcke, “Improved phonetic
speaker recognition using lattice decoding,” in ICASSP, March

2005, Philadelphia.

[2] W.M. Campbell, J.P. Campbell, D.A. Reynolds, D.A. Jones,

and T.R. Leek, “Phonetic Speaker Recognition with Sup-

port Vector Machines,” in Proc. Neural Information Process-
ing Systems Conference, pp. 1377-1384, 8-13 December 2003,

Vancouver, British Columbia.
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