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ABSTRACT

The analysis of audio signals of popular and rock songs of the verse-
chorus form to reconstruct its original musical structures is investi-
gated in this work. We first compute the similarity degree between
any two measures in a song based on selected features and represent
these numbers in a measure-based similarity matrix. Then, we study
the similarity across a sequence of consecutive measures, which is
revealed by straight segments in parallel with the diagonal line of
the similarity matrix. Generally, chorus parts have higher similarity
values while verse parts have lower similarity values. As a result,
the verse parts are difficult to detect in the presence of the chorus
parts. To tackle this problem systematically, the Viterbi Algorithm
is adopted to find optimal paths in the lower-triangular similarity
matrix, which represent repetitive segments of both choruses and
verses. Finally, several post-processing steps are developed to de-
code the music structure into the verse, the chorus and other non-
repetitive parts. Experimental results obtained from several musical
audio data are shown to demonstrate the performance of the pro-
posed method.

1. INTRODUCTION

Automatic music structure analysis from audio signals is an interest-
ing topic that receives a lot of attention these days. The technique
can be used for music data analysis, indexing, retrieval and manage-
ment. The music structure of many songs, including modern popular
and rock songs, is of the verse-chorus form [1]. Under this form,
chorus and verse parts are two different repetitive patterns. The cho-
rus parts contain the same melody, chords and lyrics while the verse
parts have the same melody and chord but different lyrics. Usually,
the verse parts are for the story-telling purpose, and the chorus parts
are for people to sing along. The analysis of audio signals of songs
of the verse-chorus form to reconstruct its original musical structure
is the main objective of this research.

Both verses and choruses appear as repetitive parts in a song.
Accurate detection of both verse and chorus parts is a key component
to the success of automatic music structure analysis. Foote [2] used
the similarity matrix of a music piece along with its novelty mea-
sure for audio summarization and segmentation. His work aimed at
detecting the boundaries of two segments that have distinct charac-
teristics. Goto [3] examined the problem of chorus detection based
on their high similarity. However, he did not consider the extraction
of verse parts. In this work, we first compute the similarity degree

between any two measures in a song based on selected features and
represent these numbers in a measure-based similarity matrix. Then,
we study the similarity across a sequence of consecutive measures,
which is revealed by straight segments in parallel with the diagonal
line of the similarity matrix. However, as compared to the chorus,
verses tend to have weaker similarity among themselves due to dif-
ferent lyrics. This makes their robust detection more difficult.

Two techniques are proposed to enhance the detection perfor-
mance of repetitive segments here. First, relative intensities of all
pitch classes are examined. In particular, low frequency notes (lower
than A3) and high frequency notes (higher than A6) are removed
from the pitch class profile (PCP) feature calculation if they have
dominating intensities since they are primarily contributed by musi-
cal instruments rather than human voices. Second, the Viterbi algo-
rithm is used to find the optimal path in the lower-triangular part of
a similarity matrix. Even though there may exist low similarity parts
in a verse or chorus segment, the Viterbi algorithm can determine the
global optimal segment while ignoring low similarity measures lo-
cally. Finally, we introduce post-processing steps to decompose the
music structure into verses, choruses and non-repetitive parts such
as intro, bridge and outro.

The rest of this paper is organized as follows. The framework
of our music structure analysis methodology is explained in Sec. 2.
Then, the problem of feature extraction and similarity computation
for measures in audio signals is addressed in Sec. 3. Detection of
multiple consecutive segments of high similarity using the Viterbi
algorithm is discussed in Sec. 4. Experimental results are presented
in Sec. 5. Concluding remarks are given in Sec. 6.

2. FRAMEWORK OF MUSIC STRUCTURE ANALYSIS

The concept of ”similarity matrix” was introduced in [2][4] to mea-
sure the similarity degree between any two intervals of this song.
Consider a song that is uniformly partitioned into L intervals. Sim-
ply speaking, similarity matrix S is a matrix of dimension L × L,
whose element sij represents the similarity degree between interval
i and interval j, 1 ≤ i, j ≤ L. In a measure-level similarity matrix,
element sij represents the similarity between measures i and j. In
other words, the ”measure” is chosen as the basic interval unit. We
assume the time signature of 4/4 for songs in our dataset, which is
ubiquitous in popular and rock songs. The musical tempo informa-
tion about the duration of a quarter note and a measure was exam-
ined in [4]. Since a measure of a song contains an audio signal over
a period of time, we can divide it into finer sub-intervals and extract
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some feature from each interval. Then, element sij can be calculated
as

sij =
1

N

NX
n=1

xT
inxjn, (1)

where {xi1, · · · , xiN} and {xj1, · · · , xjN} are sequences of fea-
ture vectors for measures i and j, respectively. In (1), xil, l =
1, 2, ..., N , is a feature vector, and N is the number of the feature
vector in a measure. Thus, the inner product of the feature vectors
that are in the same position in a measure, say, the inner product of
the feature vectors for the 3rd note in i-th measure and j-th mea-
sure is calculated in (1). Then, all inner products are averaged. The
inner product is widely used in information retrieval systems as the
similarity measure[5]. Without loss of generality, we can normal-
ize the value of sij to lie between 0 and 1 as long as the feature
vector is an unit vector. The higher the value is, the more similar the
two measures of interest. The detailed procedure in similarity matrix
computation will be presented in Sec. 3. Please note that (1) may
not achieve the optimal similarity between two corresponding mea-
sures because their imperfect synchronization. In our [4], a dynamic
time warping (DTW) technique was used to calculate the optimal
similarity.

Given a measure-level similarity matrix, our next task is to study
the global musical structure based on the pattern analysis of the sim-
ilarity matrix. For example, we are interested in finding repetitive
parts, since they represent verses or choruses. As shown in Fig. 1, an
off-diagonal interval in the similarity matrix with consecutive high
similarity values from (i1, j1) to (iM , jM ) means that a strong sim-
ilarity between two segments in the song composed by consecutive
measures j1, · · · , jM and i1, · · · , iM , respectively. Then, the two
segments could be either a chorus, a verse or the combination of a
chorus and a verse.

(i1, j1)

(iM, jM)

i1

j1

jM

iM

Fig. 1. Illustration of two similar segments in a song composed by
two sequences of measures, j1 · · · jM and i1 · · · iM , respectively.

Generally speaking, the chorus parts have strong similarity among
themselves and show very apparent straight lines in the similarity
matrix. The similarity values between two verse parts are not consis-
tently high. They cannot constitute a solid straight but rather vague
straight or broken line with many low similarity values in between.
Therefore, the verse parts are difficult to detect and new techniques
are needed to detect them. A systematic approach to the detection
of segments of high similarity based on the Viterbi algorithm is de-
scribed in Sec. 4.

3. PCP AND FILTERED PCP FOR SIMILARITY MATRIX
COMPUTATION

In this section, we study features extracted from audio signals so as
to compute the similarity degree between two measures as given in

Eq. (1). The feature adopted in our work is the pitch class profile
(PCP) [6], which is similar to the chorma vector in [3]. Each element
in the vector represents the relative intensity of one of the 12 pitch
classes, i.e., A, A�, B, C, C�, D, D�, E, E�, F , G and G�. It is
calculated once for each basic time unit, which is selected to be the
length of one half beat. For example, for a time signature of 4/4, the
quarter note is one beat so that the duration of a one-eighth note is
the basic time unit. The PCP vector are reported to be effective in
musical key finding and identifying chord names in [6].

The calculation of PCP includes several steps. First, a Ham-
ming window is applied to the music signal and its discrete-time
Fourier transform (DFT) is calculated. Next, peaks that correspond
to dominant harmonic components are picked from the magnitude
spectrum, and their frequencies are mapped to one of the 12 pitch
classes. Third, the energy of the peaks in the magnitude spectrum is
added to the element of the PCP feature vector according to the pitch
class number. That is, energies of all the peaks that have pitch class
number i are added to the i-th element of a PCP vector. Each ele-
ment of a PCP vector represents the relative intensity of each pitch
class number. Finally, the PCP vectors are normalized to be with the
unit length since we are only concerned with the energy distribution
pattern of the PCP vector.

One main problem with the PCP feature vector extraction is
that the accompanying background music from instruments such as
basses and guitars may provide repetitive phrases all over the whole
song, and their intensities are so strong that they dominate the PCP
feature vectors. Then, the similarity matrix using PCP feature vec-
tors may not reveal the repetitive patterns of choruses and verses
properly. Instead, it shows the repetitive pattern of accompanying
phrases in form of many short segments in the similarity matrix.

To suppress the effect of repetitive accompanying musical phrases,
the intensity of each individual semitone between note A1 (55Hz)
and A8 (7040Hz) is examined for the whole song. The note number
can be computed as

Note Number for A Semitone = �12 × log
2
(

f

440
)� + 69, (2)

where 69 is the note number of A4. The middle range that lies be-
tween A3 and A6 (with A3 and A6 included) is the range where most
vocal sounds are located, and it often corresponds to the frequency
range of the main melody. Thus, if notes lower than A3 (220Hz) or
higher than A6 (1760Hz) have strong intensity as compared to that
of the middle range between A3 and A6, their frequency components
are removed from the PCP calculation. One example is U2’s Vertigo,
where notes’ intensities below A3 (note number 57) and above A6
(note number 93) are much higher than those between A3 and A6.
The similarity in the middle range is masked by the low and high
frequency components. After they are removed in the calculation of
PCP, the similarity of the verse and chorus are shown more clearly in
contrast to that of the others. The resulting PCP is called the filtered
PCP.

4. SIMILARITY SEGMENT DETECTION VIA VITERBI
ALGORITHM

4.1. Viterbi Algorithm

Once the similarity matrix is given, we would like to detect seg-
ments along its sub-diagonals that have high similarity values con-
secutively. Since the matrix is a symmetric one, we can focus on the
lower-triangular part only. To overcome the problem of weaker simi-
larity of verses, the Viterbi algorithm is used to detect these line seg-
ments reliably. The algorithm starts from the first measure of music
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signals in the bottom-left corner of the similarity matrix. Originally,
the x- and y-axes of the similarity matrix represent the measure in-
dex number of a given song. To perform the Viterbi algorithm, we
interpret the x-axis as “time”, the y-axis as the “state”, and the el-
ement sij , as the probability at time i and state j. Thus, a higher
similarity degree implies a larger probability. The Viterbi algorithm
attempts to find a more similar segment, thus, a higher cumulative
probability.

For each time index i and state index j, the Viterbi algorithm
can update cumulative probabilities of different paths along time,
and find the path with the highest probability. We use Q(i− 1, k) to
denote the largest cumulative probability from some initial time i0
to time i − 1 and state k. Then, the largest cumulative probability
Q(i, j) from time i0 to time i and state j can be written as

Q(i, j) = [max
k

PT (j, k)Q(i − 1, k)]PS(i, j), (3)

where PT (j, k) is the transitional probability from state k to state
j and PS(i, j) = s(i, j) is the probability at time i and state num-
ber j. The best previous state for time i and state j is the one that
maximizes PT (j, k)Q(i − 1, k). Thus, it can be expressed as

R(i, j) = arg max
k

PT (j, k)Q(i − 1, k), (4)

Since only sub-diagonal lines are pertinent to the similarity of
segments composed by consecutive measures, the state transition
probability PT (j, k) is selected accordingly to reflect such a pref-
erence. That is, for state j, we choose

PT (j, k) =

j
PT0, j = k + 1,
1−PT0

L−1
, otherwise,

(5)

where L is the number of measures in a song. Furthermore, we
demand

PT0 >
1 − PT0

L − 1

to guarantee the preference along the sub-diagonal line. Practically,
in the design of PT0, we may examine the ratio of PT0 to (1 −
PT0)/(L−1), which indicates the degree of preference to be placed
along the 45-degree line. The larger the ratio is, the less probable
that the optimal path will deviate from the 45-degree line.

Given appropriate initial conditions, the Viterbi algorithm recur-
sively calculates Q(i, j) and R(i, j) first for 2 ≤ i ≤ L, where L
is the number of measures of the song, and then for 1 ≤ j < i. At
time i = L (or the last measure), the maximum of Q(L, j) for all
states 1 ≤ j < L and the corresponding previous state R(L, j) can
be found via

Q∗ = max
1≤j≤L−1

Q(L, j), (6)

R∗
L = arg max

1≤j≤L−1

Q(L, j) (7)

Since the optimal path should lie in the lower triangular part of the
similarity matrix, we demand i > j for Q(i, j). Backtracking is then
applied to R∗

i in order to find the previous R∗
i−1. Then, the optimal

state sequence can be found accordingly and expressed as

R∗
2, R∗

3 , · · · , R∗
L, (8)

which is also called the optimal path in the similarity matrix. The
initial condition for Q(i, j) is Q(2, 1), which is defined to be

Q(2, 1) = PInit · s21, (9)

where PInit is an arbitrary positive constant.

4.2. Post-processing

The optimal path obtained by Viterbi algorithm as given in Eq. (8)
have the following interesting properties.

1. It includes all high similarity sub-diagonal lines in the lower-
triangular part of the similar matrix, which correspond to the
chorus part.

2. It may transverse through lines of relatively weaker similarity,
which correspond to the verse part.

3. If there are no strong similar segments, the optimal path may
stay along the best path for the i-th measure that corresponds
to the current time.

Given an optimal path, we develop several post-processing tech-
niques for verse and chorus detection. First, the detected optimal
path is segmented based on the change of similarity values, which
is similar to the method given in [2]. This method detects dramatic
changes of the average similarity which corresponds to used chords
in the music. One simple way is to compute the averaged similarity
values within two running windows, which are immediately before
and after the current position, along the optimal path. If the differ-
ence of these two values is sufficiently large, we claim that there is a
dramatic change. The similarity matrix for Nirvana’s Smell like teen
spirits is shown in Fig. 2, where the optimal path is indicated by a
sequence of black dots. The optimal path could be segmented by the
points of dramatic changes. Furthermore, if certain segment along
the optimal path has a small average similarity degree, that segment
is removed.
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Fig. 2. The similarity matrix of Nirvana’s Smell like teen spirit,
where the detected path detected by the Viterbi algorithm is shown
in black.

Second, if two similar parts of a song are overlapped, their bound-
aries have to be modified. For example, consider one detected seg-
ment starts from (i1, j1) to (iM , jM ) as shown in Fig. 1. If i1 ≤ jM ,
the two corresponding similar parts (i.e., (i1 · · · iM ) and (j1 · · · jM )
are overlapped in the interval of (i1 · · · jM ). Then, we have trim
their boundaries so that jM < i1. Suppose λ1 and λ2 are the num-
bers of measures to be trimmed for the head of (i1 · · · iM ) and the
tail of (j1 · · · jM ), respectively. We demand

jM − λ2 < i1 + λ1. (10)
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In other words, the total number of measures to be trimmed λ1 + λ2

should be no less than jM − i1 + 1. To keep the detected segment
as long as possible, we can set

λ1 + λ2 = jM − i1 + 1. (11)

Since λ1 and λ2 are both positive integers, the best combination
could be searched exhaustively using (12) so as to minimize the fol-
lowing accumulated similarity:

arg min
λ1,λ2

λ1−1X
q=0

S(i1 + q, j1 + q) +

λ2−1X
p=0

S(iM − p, jM − p) (12)

To give an example, the detected segment in Fig. 2 from (46,10)
to (101,65) corresponds to two overlapping parts in the song, i.e.
one part from the 10-th measure to the 65-th measure and the other
part from the 46-th measure to the 101-th measure. After the post-
processing, we can trim the long segment into two short segments:
(46,10)-(81,45) and (82,46)-(101,65).

Finally, to identify the verse parts, two conditions need to be
met. First, their similarity is usually detected together with the cho-
rus. The above trimmed segment from (46,10) to (81,45) in Fig. 2
actually indicates the similarity of two verse-chorus combined parts.
Since the similarity of verses is lower than that of choruses in the
combined verse-chorus part, we are able to use this property to sep-
arate the verse and the chorus structure of a song accordingly. Sec-
ond, the final segmentation points for verse and chorus are one of
the measures that dramatic change of average similarity described
earlier in the section.

5. EXPERIMENTAL RESULTS

In the experiment, the proposed music structure analysis method was
applied to a collection of 40 popular and rock songs in 80’s and 90’s.
Examples include Nirvana’s Smell like teen spirit, Oasis’ Don’t look
back in anger, Police’s Every breath you take, etc. These musical
signals are of the following format: sampled at a rate of 22,050Hz,
16 bits per sample with mono channel. For each song, the musi-
cal tempo is assumed to be available, which may be obtained using
techniques in [4] or from published musical sheets. The hamming
window has the duration of a one-eighth note. All data in our collec-
tion have the (44) time signature with the quarter-note as the beat. The
window has a length of 250msec for 120 Beats Per Minute (BPM)
tempo. The PCP feature vectors are then calculated for each win-
dowed musical signals with no overlapping.

Performance was first evaluated based on the correctness of de-
composing the music structure into verse and chorus parts. A song
can be decomposed into a sequence of repetitive elements: verse(V)
and chorus (C) and other non-repetitive elements such as intro (I),
bridge (B) and outro (O). Please note that intro, bridge and outro
are non-repetitive parts in the beginning, the middle and the end of
tested songs, respectively. For example, the structure of Nirvana’s
Smell like teen spirits is IVCVCBVCO. The total correctness rate
is 31/40 = 77.50% for the dataset. Errors are mainly due to the
complicated structure of some songs, including the difficulty in dis-
criminating verses from choruses, multiple verse patterns, etc.

Next, we test the retrieval correctness of each segment’s duration
by using the F-measure [3], [5], which is defined as the harmonic
mean of recall R and precision P as

F =
2RP

R + P
, (13)

Table 1. The performance of chorus detection in terms of recall (R),
precision (P) and F-measure (F).

R P F

Original PCP 81.4% 79.9% 80.6%
Filtered PCP 89.3% 86.4% 87.8%

Table 2. The performance of verse detection in terms of recall (R),
precision (P) and F-measure (F).

R P F

Original PCP 61.7% 58.0% 59.8%
Filtered PCP 71.2% 66.5% 68.8%

where R is ratio of the number of measures that are correctly de-
tected using our method over the number of correct measures in a
given song and P is the ratio of the number of measures that are cor-
rectly detected using our method over the total number of detected
measures. Among songs that could be correctly decomposed, the
values of R, P and F for the chorus and the verse parts are shown in
Tables 1 and 2, respectively. We see that the performance improves
due to the use the filtered PCP feature over the original PCP feature
in the similarity matrix computation.

6. CONCLUSION

A framework of automatic music structure analysis from audio sig-
nals was proposed in this work. The similarity matrix that records
the similarity degree between measures was introduced. Then, the
Viterbi algorithm was used to detect long similarity segments along
the sub-diagonals of the matrix. Several post-processing techniques
were proposed to fine-tune the decomposition procedure so that we
are able to decompose a song into repetitive parts (i.e., verses and
choruses) and non-repetitive parts (i.e., intro, bridge and outro). Per-
formance of the proposed scheme was demonstrated.
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