
ADAPTIVE ERASURE RESILIENT CODING IN DISTRIBUTED STORAGE

Jin Li

Communication and Collaboration Systems, Microsoft Research

One Microsoft Way, Bld. 113, Redmond, WA 98052

Email: jinl@microsoft.com

ABSTRACT
A challenge of peer-to-peer (P2P) storage is to build reliable

data storage from inherently unreliable P2P network, and to do so

efficiently. In this paper, we investigate the use of adaptive erasure

resilient code (ERC) which changes ERC fragment size according

to the size of the file distributed. We show that the adaptive ERC

may greatly improve the efficiency and reliability of P2P storage.

A number of design policies and strategies for the P2P storage

application are also investigated.

1 Introduction
In a P2P application, the peers bring with them resources (net-

work bandwidth and/or hard drive storage) when they join the

service. As the demand on the P2P system grows, the capacity of

the system grows as well. This is in sharp contrast to a client-server

system, where the server capacity is fixed and paid for by the pro-

vider. As a result, the P2P system is economy to run and superb

scalable.

In this paper, we are particularly interested in P2P storage (dis-

tributed storage) applications. In such systems, the peer contributes

not only the bandwidth but also the storage space to serve the other

peers. The collective storage space contributed by the peers forms

a distributed storage cloud. Data may then be stored into and re-

trieved from the cloud. The distributed storage has been widely

investigated, and is the basis of many P2P applications. The

OceanStore project [3] builds a utility infrastructure that provides

continuous access to persistent information. CAN[4] introduces

distributed infrastructure that provides hash table-like functionality

on Internet-like scales. CFS[5] designs a P2P read-only storage

system that provides guarantees for efficiency, robustness, and

load-balance. Kademlia[13] designed a P2P system with proven

consistency and performance in a fault-prone environment.

Kademlia routes queries and locates nodes using an XOR-based

metric topology that simplified the algorithm. It was adopted by

both [11] and [12] for trackerless BitTorrent implementation.

PAST[7] designs a large-scale, internet-based, global storage util-

ity that provided scalability, high availability, persistence and secu-

rity. Coral[8] creates self-organizing clusters of nodes that fetches

information from each other to avoid communicating with more

distant or heavily loaded servers.

Though the peers in the P2P network may act like servers, they

differ from commercial web/database servers in one important

aspect: the reliability. Because the peer is usually an ordinary com-

puter that supports the P2P application with its spare hard drive

space and idle bandwidth resource, it is far less reliable than the

server. The user may choose to turn off the peer computer or the

P2P application from time to time. Compulsory need, e.g., large

file upload/download, may starve the peer from the necessary

bandwidth for P2P activity. The peer computer may be offline due

to the need to upgrade and patch the software/hardware, or due to

virus attack. The computer hardware and the network link of the

peer are also inherently much more unreliable than the server com-

puter and its commercial network links, which are designed for

reliability. While commercial server/server clusters are designed

for “six nine” reliability (with a failure rate 10-6, at that rate, about

30s of downtime is allowed each year), a good consumer peer may

have only “two nine” reliability (failure rate 10-2, about 15min

downtime every day), and it is not uncommon for peers to have

only 50% (down half the time) or even 10% reliability (down 90%

of the time).

Most P2P applications, e.g., P2P backup and data retrieval,

want to maintain the same level of reliability for P2P storage as

that of the server (“six nine” reliability). The challenge is: how to

build a reliable P2P store? Can reliable P2P store be built effi-

ciently, with minimum use of bandwidth and storage resources of

the peers? It has been pointed out [2] that to store large amount of

dynamic data reliably in P2P network with unreliable peers, we

would need huge amount of cross-system bandwidth. To improve

reliability in P2P storage and improve efficiency, erasure resilient

code (ERC) is a proven technology in P2P store, e.g., [9][10]. Lin

et. al. [16], Rodrigues et. al. [17] and Weatherspoon et. al [18]

have compared ERC vs. replication in P2P storage, and demon-

strated the effectiveness of ERC in P2P. The contribution of this

paper is the proposal of an adaptive ERC scheme that switches

ERC fragment size for optimal efficiency. We have also investi-

gated into the design of proper policies that improve the perform-

ance of P2P storage and balance the contribution and benefit of the

peers.

The outline of the paper is as follows. The design of efficient

and reliable P2P storage system with adaptive ERC is described in

Section 2. We investigate the proper P2P storage policies in Sec-

tion 3. Conclusions are given in Section 4.

2 Adaptive ERC in Distributed Storage

2.1 Erasure resilient coding in P2P
The adhoc solution to bring reliability to a system with unreli-

able parts is to use redundancy. If each individual peer on the net-

work has a reliability of p, to achieve a desired reliability of p0, we

may simply replicate the information to n peers:

0log(1) / log(1),n p p= − − (1)

where n is the number of peers holding the information. Though

achieving reliability, the simple replication strategy is not efficient.

For example, with peer reliability 50%, we will need to replicate

and store the information to 20 peers to achieve “six nine” reliabil-

ity. This leads to 20 times more bandwidth and storage space to

distribute and store the information. Obviously, efficiency has been

sacrificed in exchange of information reliability.

5611424403677/06/$20.00 ©2006 IEEE ICME 2006

To improve efficiency while still maintaining the same reliabil-

ity level, ERC can be used. ERC splits the original file into k origi-

nal fragments {xi}, i=0,…,k-1, each of which is a vector over the

Galois Field GF(q), where q is the order of the field. Say we are

encoding a file that is 64KB long, if we use q=216 and k=16, each

fragment will be 4KB long, and will consist of 2K word, with each

word being an element of GF(216). ERC then generates coded frag-

ments from the original fragments, An ERC coded fragment is

formed by operation:

[]0 1 1
,

t

j i k
c x x x −= G i (2)

where cj is a coded fragment, Gi is a k-dimensional generator vec-

tor, and equ (2) is a matrix multiplication, all on GF(q). At the time

of decoding, the peer collects m coded fragments, where m is a

number equal to or slightly larger than k, and attempts to decode

the k original fragments. This is equivalent to solve the equation:

0 0

1 1 1

1 1 1

,

m m k

c x

c x

c x− − −

=

0
G

G

G

 (3)

If the matrix formed by the generator vectors has a full rank k,

the original messages can be recovered.

There are many available ERCs. We have compared different

forms of ERC and their performances in the P2P application in

[15]. A particularly interesting one is the Reed-Solomon (RS) code

[14]. RS code uses structured generator vectors, and is maximum

distance separable (MDS). As a result, any k distinctive coded

fragments will be able to decode the original fragments. Another

advantage of the RS code is that the coded fragment can be easily

identified and managed by the index i of the generator vector, thus

eases the detection of duplicate RS codes. Reed-Solomon ERC can

also be implemented efficiently, e.g., with an encoding/decoding

throughput of 200Mbps in [14]. In the following discussion, we

assume that RS code is used.

2.2 ERC: fragment size
By using ERC in P2P storage, a data/media file is distributed to

more peers, but each peer only needs to store one coded fragment

that is 1/k size of the original file, leading to an overall reduction in

the bandwidth and storage space required to achieve the same level

of reliability, and thus an improvement of efficiency. Let n1 be the

number of peers that the coded fragments needs to be distributed to

achieve a desired reliability level. Since RS code is MDS code, k

peers holding k distinctive coded fragments will be sufficient to

recover the original file. In a network of n1 peers, the probability

that there are exactly m peers available can be calculated via bino-

mial distribution:

() 11

1(,) 1 .
n mm

n
p m n p p

m

−= − (4)

We may thus calculate n1 from p, p0 and k as:

()1 0arg min 1 1 .
o mm

o
m k

o
n p p p

m

−

<

= − < − (5)

We define the replication ratio r as:

r = n1 / k. (6)

The replication ratio r is a good indicator of efficiency, as r

copies of files needs to be distributed and stored into the P2P

cloud.

We show in Figure 1 the desired replication ratio to achieve

“six nine” reliability for different ERC fragment size k. We observe

that the use of ERC greatly reduces the required replication ratio.

Comparing non ERC (k=1) and ERC of fragment size k=256, the

desired replication ratio decreases from r=132 to r=13.1 for peer

reliability of 10%, from r=20 to r=2.5 for peer reliability of 50%,

and from r=3 to r=1.05 for peer reliability of 99%. ERC may im-

prove the efficiency without sacrificing the reliability.

We also observe that larger ERC fragment size further reduces

the replication ratio. With peer reliability of 50%, going from k=8

to 16, 32, 64, 128 and 256 leads to a reduction of the replication

ratio from r=5.75 to 4.375, 3.53, 3.02, 2.68 and 2.48. The corre-

sponding efficiency improvement is 24%, 19%, 15%, 11% and

8%, respectively. This seems to suggest that we should use large

ERC fragment size for more efficiency.

However, larger ERC fragment size needs more peers to store

and to retrieve the coded fragments. Shown in Figure 2, we plot

the number of peers that need to hold the coded fragments to

achieve the “six nine” reliability. Again with 50% peer reliability,

going from k=8 to 16, 32, 64, 128 and 256 increases the number of

information storing peers from n1=46 to 70, 113, 193, 343 and

630. Each doubling of k results in 52%, 61%, 71%, 78%, 84%

more peers to store information. Doubling of k also requires at

least double number of peers during information retrieval.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

Peer Reliability

R
e
p
li
c
a
ti
o
n
 r

a
ti
o

k=1

k=8

k=16

k=32

k=64

k=128

k=256

Figure 1 Peer reliability and desired replication ratio.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

Peer Reliability

#
 o

f
p
e
e
rs

k=1

k=8

k=16

k=32

k=64

k=128

k=256

Figure 2 Number of information storing peers to achieve desired

reliability of 10-6 under erasure resilient coding.

562

In most practical P2P network, establishing connection between

the peers needs a non-trivial overhead. One part of the overhead

can be attributed to the retrieval of proper peer identity and finding

the proper routing path (e.g., via DHT[1][6]). Another part of the

overhead is due to the need to invoke certain NAT traversal algo-

rithm, e.g., STUN (simple traversal of UDP through NAT) if one

or both peers are behind the NAT. Assuming that the average

overhead to establish connection between the two peers is over-

head (set to 16KB to facilitate the following discussion), we may

calculate the overall network bandwidth needed to store a file of

size s as:

 store_bandwidth = s * r + n1* overhead. (7)

With equ (7), we recognize that larger ERC fragment size does

not always lead to the best efficiency. In stead, for small file, small

ERC fragment size or even non ERC should be used. We calculate

the optimal file size boundary between different ERC fragment size

and plot the curves in Figure 3. For example, the bottom curve of

Figure 3 shows the file size boundary below which non ERC

should be used, and above which ERC with fragment size k=2

should be used. The boundary curves shown in Figure 3 zigzag, as

the number of peers required to achieve the desired reliability de-

creases with the increase of peer reliability. An interesting observa-

tion is that the file size boundary is relatively insensitive to peer

availability, which greatly simplifies the choice of the optimum

ERC fragment parameter. In general, for file smaller than 10KB,

ERC should not be used. For ERC with fragment size k=2, 4, 8,

16, 32, 128 and 256 the most suited file size range is approxi-

mately 10-33KB, 33-100KB, 100-310KB, 310-950KB, 950KB-

2.9MB, 2.9MB-8.9MB, 8.9-26MB, >26MB, respectively.

2.3 Adaptive ERC scheme
An optimal strategy to efficiently store content in P2P reliably

is thus to adaptively choose the appropriate ERC fragment size.

Using the file boundary curve established in Figure 3, we may

adaptively choose to use non ERC, and ERC with fragment size

k=2, 4, 8, 16, 32, 64, 128, 256 for different file size. We compare

the adaptive ERC approach with fixed parameter ERC, and show

the difference in network bandwidth usage in Figure 4, where peer

reliability is 50%. Compared with using a fixed ERC fragment size

of k=1 (non ERC), 8, 32 and 256, the adaptive ERC method may

improve the efficiency by an average of 61%, 26%, 25% and 50%.

The improvement in efficiency is significant.

3 P2P Storage: Policies and Design Strategies

3.1 P2P storage cost
In this section, we compare storing a file in a P2P network to

storing the file directly in a “six nine” reliable server. The P2P

solution always requires more bandwidth to distribute the file into

the P2P storage. The increase in the upload bandwidth of the client

can be considered a cost of P2P storage system. This cost under

different peer reliability and file size can be tabulated in Table 1.

Table 1 Extra cost of increased bandwidth usage in P2P.

 File Size

Reliability 10KB 100KB 1MB 10MB 100MB

10% 332.9 79.1 29.5 16.5 12.5

50% 51.0 12.11 4.34 2.23 1.56

99% 9.4 1.87 0.65 0.22 0.09

We observe that the cost of using P2P storage is small if the

peer reliability is high and the file size is large. For example, stor-

ing 100MB of file to peers with reliability of 99% only incurs 9%

additional cost. However, when the peer reliability is low and the

file size is small, the cost can be significant.

3.2 P2P storage policies
From Table 1, we may derive the following policies of using

the P2P storage cloud:

a) We should use the unreliable peers for large files, and use reli-

able peers for small files.

The cost to the P2P storage will be smaller if we allocate large

files to the unreliable peers, and assign smaller files to the reliable

peers.

b) We should use unreliable peers for static files, and use reliable

peers for dynamic files.

We call those files that do not change as static, and call those

files that change constantly as dynamic. To efficiently store small

static files, we can bundle multiple static files into a large static file

and store the combined file in the P2P storage cloud. The same

strategy is not effective for dynamic files, as the change of a single

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10

Peer Reliability

S
u
it
e
d
 d

a
ta

 s
iz

e
 (

K
B

)

k=1

k=2

k=4

k=8

k=16

k=32

k=64

k=128

k=256

Figure 3 ERC fragment size and its suited file size for information

storage in P2P network.

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

File size (KB)

B
a
n
d
w

id
th

 u
s
a
g
e
 (

K
B

)

Server

P2P, non ERC

P2P, ERC k=8

P2P, ERC k=32

P2P, ERC k=256

P2P, adaptive ERC

Figure 4 Bandwidth usage between P2P with adaptive ERC and

fixed ERC (peer reliability=50%).

563

file requires the update of the entire combined file. As a result, it is

better to store dynamic small files in the reliable peers.

A corollary of the policy is that if we use the P2P network to

store state of the application (small and dynamic), e.g., torrent file

of BitTorrent, peer status information, etc., we should divert the

information to the most reliable peers of the network. For example,

current trackerless BitTorrent implementation [11] replicates the

torrent file to 20 peers for reliability purpose. If we restrict that the

torrent file only be placed in high reliable peers (in essence, the

high reliable peers will form a sub-network that constitute the

cores of the extended P2P network), we may greatly reduce the

replication ratio and the cost of updating the torrent, and improve

the efficiency.

c) The unreliable peers should be allowed to distribute less, and the

reliable peers should be allowed to distribute more.

d) The smaller file should be assigned a higher distribution cost,

and the larger file should be assigned a lower distribution cost.

Policies c) and d) are for P2P backup and retrieval applications.

A P2P storage network should let each peer balance its contribu-

tion and benefit. Say a certain peer with reliability p wants to store

an item of size s into the distributed storage. From the item size,

we may calculate the optimal ERC fragment size k according to

Figure 3. Then, we can calculate the replication ratio r to achieve

the desired reliability. To balance the P2P resource consumed, the

peer must host s⋅r amount of content from the other peers. Because

the peer with high reliability p requires a small replication ratio r

to achieve the same level of reliability, such policy rewards the

reliable peers so that they will be allowed to distribute more for the

same resource contributed, and punishes the unreliable peers. This

may have a positive benefit in P2P economy, as it encourages the

user to increase the peer reliability by prolonging the online ses-

sion, thus improves the overall reliability and reduces the replica-

tion ratio required in the entire P2P network. Since the small file

uses smaller ERC fragment size, which leads to an increase of the

replication ratio under the same peer reliability, the policies also

punish the distribution of small files and reward the distribution of

large files (or bundling small files into a large combined file for

distribution).

3.3 P2P storage with server component support
If server component is used in complement of the P2P network,

we may use the P2P storage for large and static files, and use the

server for small dynamic files. Since it is the large files that con-

sume most of the server resource, P2P storage complement server

well.

An interesting idea in P2P backup with server support is to let

dynamic files be backed up to server first. The client and/or the

server may then automatically detect those dynamic files that are

not changed any more and are turning into static files. These de-

tected static files may then be bundled together into a large file and

be distributed with ERC into the P2P storage cloud. This effec-

tively increases the size of the file stored in the P2P cloud. Com-

bined with ERC of large fragment size, this may improve the effi-

ciency.

4 Conclusions
We investigate the problem of storing data efficiently and relia-

bly in a P2P network. Adaptive ERC is proposed that adjusts ERC

fragment size based on the file size distributed. We also propose a

number of design policies for the P2P storage. We indicate that the

small, dynamic data should be diverted to the more reliable peers

or even a server, while the large and static files may be stored util-

izing the storage capacity of the unreliable peers. Also, for bal-

anced contribution and benefit, the peer should host the same

amount of content as it stored in the P2P network. As a result, the

unreliable peers should be allowed to distribute less, and the reli-

able peers should be allowed to distribute more. Also, smaller file

should be assigned a higher distribution cost, and the larger file

should be assigned a lower distribution cost.

5 References
[1] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, “Building

peer-to-peer systems with Chord, a distributed lookup service", in

Proc. 8th Workshop on Hot Topics in Operating Syst., (HotOS-

VIII), May 2001.

[2] C. Blake and R. Rodrigues, “High availability, scalable stor-

age, dynamic peer networks: pick two”, in Proc. 9th Workshop on

Hot Topics in Operating Syst., (HotOS-IX), (Lihue, Hawaii), May.

2003, pp.1-6.

[3] J. Kubiatowicz, et. al., “OceanStore: an architecture for

global-scale persistent storage”, in Proc. ACM ASPLOS, Nov.

2000.

[4] S. Ratnasamy, P. Francis and M. Handley, “A scalable con-

tent-addressable network”, in ACM SIGCOMM Conference. ACM

Press, San Diego (CA), August 2001.

[5] F. Dabek, et. al., “Wide-area cooperative storage with CFS”,

in Proc. ACM SOSP’01, Oct. 2001, Banff, Canada.

[6] A. Rowstron, P. Druschel, “Pastry: scalable, distributed object

location and routing for large-scale peer-to-peer systems", in Proc.

IFIP/ACM Middle-ware, 2001.

[7] P. Druschel and A. Rowstron, “PAST: A large-scale, persis-

tent peer-to-peer storage utility”, in Proc. 8th Workshop on Hot

Topics in Operating Syst., (HotOS-VIII), May 2001.

[8] M. Freedman and D. Eres, “Sloppy hashing and self-

organizing clusters”, in IPTPS’03, Berkeley, CA, Feb. 2003.

[9] Z. Zhang and Q. Liang, “Reperasure: replication protocol

using erasure-code in peer-to-peer storage network”, in Proc. of

21st Sym. On Reliable Distributed Systems, (SRDS’02), Oct. 2002.

[10] F. M. Cuenca-Acuna, R. P. Martin and T. D. Nguyen,

“Autonomous replication for high availability in Unstructured P2P

systems”, in Proc. 22nd IEEE Int. Symp. On Reliable Distributed

Systems, 2003.

[11] The Azureus page: http://azureus.sourceforge.net/

[12] The official BitTorrent page: http://www.bittorrent.com/

[13] P. Maymounkov and D. Mazieres. “Kademlia: A peer-to-peer

information system based on the XOR metric.” in Proceedings of

IPTPS02, Cambridge, USA, March 2002.

[14] J. Li, “The efficient implementation of Reed-Solomon high

rate erasure resilient codes”, in Proc. ICASSP’2005, Philadelphia,

PA, Mar. 19-23, 2005.

[15] J. Li and Q. Huang, “Erasure resilient codes in peer-to-peer

storage cloud”, in Proc. ICASSP’2006,

[16] W. K. Lin, D. M. Chiu, Y. B. Lee. "Erasure code replication-

revisited," in Proc. 4th International Conference on P2P Comput-

ing, Zurich, Switzerland, Aug. 2004.

[17] R. Rodrigues and B. Liskov. "High availability in DHTs:

erasure coding vs. replication." In Proc. IPTPS 2005, Ithaca, NY.

Feb. 2005.

[18] H. Weatherspoon and D. Kubiatowicz, “Erasure coding vs.

Replication: a quantative comparison”, in Proc. IPTPS 2002, Mar.

2002.

564

