
A Novel Data-Parallel Coprocessor for Multimedia Signal Processing 
Lai Mingche, Dai Kui, Lu Hong-yi, Wang Zhi-ying 

School of Computer National University of Defense Technology 
Changsha, P. R. China. 

mingchelai@chiplight.com.cn

ABSTRACT

Realizations of demanding embedded applications particularly in 
the field of signal processing often require high processing 
performance and low energy consumption which are far beyond 
what can be delivered by DSPs nowadays. A novel data-parallel 
coprocessor basing on the Transport Triggered Architecture 

TTA  is presented in this paper. The coprocessor consists of 
two powerful arithmetic clusters, the stream memory as well as the 
optimized data transport network, and is good at exploiting the 
data parallelism in the computation intensive multimedia 
applications. Also, the solution of the clock-gating in a gradual 
way is advanced for the low power dissipation. Then, a SoC chip 
involving the coprocessor is implemented using 0.18 m CMOS 
process. Experimental results show that this coprocessor has good 
performance improvement for multimedia applications. 

Index Term -- Data-parallel Coprocessor, Multimedia Signal 
Processing, Transport Triggered Architecture. 

1. INTRODUCTION 

Today, with the increasing computational complexity of the 
developing algorithms and the real-time constraints due to the 
increasing data rate, the relative importance of some embedded 
applications especially in the field of the multimedia signal 
processing continues to increase. These applications exhibit large 
amounts of parallelism, and specifically data level parallelism. But 
most embedded processors nowadays do not have enough 
hardware resources or performance to support these applications. 
Thus, many modern computer systems are designed to exploit data 
level parallelism to achieve high performance. These data-parallel 
architectures execute similar or identical operations concurrently 
on multiple data elements, allowing them to achieve high 
execution rates while tolerating high hardware complexity, low 
flexibility and configurability. On the other hand, another critical 
problem puzzling the designers still remains. The energy 
consumption that accompanies the high performance is often 
orders of magnitude beyond typical embedded power budgets. 
Obviously, it has already become the bottleneck of the 
development of the microprocessor nowadays.  

Given the requirement of the high performance and the low 
energy consumption, a more reasonable approach to keep up with 
the real time requirement of sophisticated signal processing 
applications seems to use a high performance coprocessor in 
conjunction with a low power host processor. In this paper, we 
present our data-parallel coprocessor (DPC) which follows the 
TTA [1]. Thereby, the relative design space exploration and cost 
estimation of the TTA have been provided before the design, and 
the DPC core only represents the optimized architecture which is 

characterized by the high computational performance, low energy 
consumption and flexible programming ability. 

The paper is organized as follows. Section 2 describes the TTA 
architecture. Section 3 presents the coprocessor including the 
function units, interconnect and the stream memory system. Then, 
the SoC implementation is presented in section 4. In section 5, we 
present experimental results with a set of benchmarks, illustrating 
the advantages of high performance and low power consumption. 
Finally, the paper concludes with section 6. 

2. TRANSPORT TRIGGERED ARCHITECTURE 

TTA proposed by Henk Corporal [1] can be viewed as a superset 
of traditional VLIW architecture. The major difference between 
TTA and traditional operation triggered architecture is the way that 
the operation is executed. Instead of triggering data transports, 
TTA operations occur as a side effect of data transports. At the 
time that the data is written into the register, the execution just 
begins. This means that there is only one data move operation in 
the TTA programming. Moreover, any instruction in TTA usually 
consists of several moves, depending on the interconnection 
network. By adding inner busses, more move operations can be 
executed in parallel and thus the execution time is reduced. 

Fig.1. TTA architecture
The structure of the TTA core is organized as shown in Fig.1. 

There are an abundance of functional units (FU) and register files 
(RF) which are connected to the interconnection network by 
sockets. Every FU or RF has one or more operator registers, result 
registers but only one trigger register. Data being transferred to the 
trigger register will trigger the function unit to work. All 
operations, including load/store and branch/jump/link occur solely 
through moves. FUs operate concurrently and may incorporate 
pipelined execution. Thus, compared with the traditional VLIW 
architecture, TTA makes parallelism more fine-grained and 
flexible, which suits to the more efficient schedule in the 
instruction level as well as the data level. 

3. COPROCESSOR 

In the following sections, an overview of the DPC architecture is 

3691424403677/06/$20.00 ©2006 IEEE ICME 2006



proposed. Thereby, we start from the system view and then to the 
component level. 

3.1 System view 

The core of the data-parallel coprocessor is depicted in Fig.2. It 
consists of a coprocessor control unit (CCU), an instruction cache, 
two arithmetic clusters as well as the stream memory system. The 
DPC core has three interfaces, the control interface (Control IF) 
for control and synchronization tasks which are handled by the 
CCU, the 64bits instruction interface (Instruction IF) for the 
microinstructions and the 64bits data interface (Data IF) for the 
data exchanges between the local memory and the off-chip 
memory. Then, the DPC core is deployed with an 8KB pipelined 
instruction cache with the support of the DMA, which is 
responsible for the prefetch of the microinstructions [2]. Moreover, 
for the data-intensive characteristic of the stream data in the 
multimedia application [3], the DPC core also provides four local 
data memories, which comprise in total 16KB, to exploit the 
stream-like access patterns. The usage of the scratch-pad ram is to 
protect the processor state or to store some scalar and array 
variables from the off-chip memory to minimize the total 
execution time, while the stream caches which support the 2-way 
configurable prefetch technique are introduced for the regular 
array access patterns. Thereby, these four local memories can be 
used in a flexible way to minimize the memory accesses, which 
results to the good performance improvement for the multimedia 
applications.

As shown in Fig.2, the heart of the core consists of two 
arithmetic clusters, which follow the TTA to satisfy the high 
performance requirement in the data density applications. 
Moreover, each cluster has seven parallel SIMD data paths and an 
abundance of the computational resources, comprising four integer 
ALUs, three multipliers, one float units, one compare unit and one 
specific CORDIC unit (only in the first cluster). In each cycle, the 
specified data transfer in the transport network can trigger the 
operations of these functional units with the effective support of 
the 64-bits load/store unit. This allows for an extremely high 
utilization of the silicon area and suits for the different signal 
processing algorithms ranging from mobile communication 
systems to stream media applications. 

Fig.2. DPC Core Overview 

3.2 Function Units 

The arithmetic clusters in the core adopt the TTA, where the 
operation is triggered by the data transfer. In general, the typical 
function unit contains three types of the registers: the operand 
register (OR), the trigger register (TR) and the result register (RR). 

The computation is done by transferring values to the operand 
register and starting an operation implicitly via a move targeting 
the trigger register associated with the command. The generic 
function unit follows the organization shown in Fig.3. The 
operands may arrive from the input sockets or the shadow register 
(SR) which serves as the OR’s shadow. In addition, the operands 
may be the output of its final stage or neighbors. Note that the data 
paths from the neighbor or the output are used as the bypass which 
is controlled by the compiler. Several cycles later after the 
triggered operation, the result will be written into the result 
register. 

Several key function units are studied in the following. 
1. Integer ALU performs the common operations including the 

arithmetical and logical ones. Then, it also supports the
sub-word parallelism on byte or half-word entities with an 
extensive instruction set optimized with respect to media 
processing. This arrangement results to the operations in 
parallel and achieves to a high media processing throughput.

2. Pipelined multiplier supports 32-bit integers multiply 
operations with 2 cycle latency. Typically, it also performs the 
2-way 16x16-bit or 4-way 8x8-bit multiplication. 

3. FPU performs operations on single precision floating-point 
operands. All operations are IEEE-754 compliant. The FPU is 
fully pipelined and a new operation can be started every clock 
cycle. The only exceptions are the FDIV and FSQRT which 
require between 15 and 24 clocks, and which are not pipelined. 

4. Compare unit not only supports compare operations but also 
returns a result, which can be used to predicate the conditional 
transfers by the condition codes. This makes if-conversion and 
conditional data flows [4] possible. 

5. Sine/cosine unit bases on the parallelization of the original 
CORDIC algorithm and adopts a relatively simple prediction 
scheme through an efficient angle recoding. The proposed 
implementation, a pure combined logic without pipeline 
operation, has a delay of 27 clocks. 

Fig.3. Function Unit Architecture

As shown in Fig.3, another distinguishing feature of the unit is 
that the CCU can manage its activity cycle by cycle with the 
support of the clock-gating. By the way, the clock-gating in Fig.3 
works in a gradual way to reduce the inductive noise. During the 
normal operation mode, each stage gets the same clock. When the 
unit needs to be turned off, the enable signal travels down the 
flip-flops chain and each stage get clock-gated one per cycle. Then, 
this scheme also requires less hardware overhead in terms of the 
enable gates and shutdown controller. Once the function units are 
gated off, it involves less cycle-to-cycle current variation which 
could introduce large transient power. 

370



3.3 Interconnect and Communication 

For the core, a data transport network approach is proposed to 
exploit the parallelism between the abundant resources and to 
simplify the control logic in the CCU. As shown in the Fig.4, each 
cluster is deployed with seven 32-bits data paths. The connections 
between the units and the data transport network go through the 
input and the output sockets. By the way, a functional unit can 
connect several registers to one socket, but any socket can transfer 
only one data item each cycle. 

Fig.4. Optimized interconnect in the core 

Note that the data transport network in the clusters is not 
necessarily fully connected. Although the fully connected network 
holds the maximal capacity of the data transfer, it complicates the 
CCU design and widens the microinstruction, which degrades the 
system performance on the reverse. Thus, the proposed scheme is 
to reduce the redundant connections in terms of the observation on 
some multimedia processing applications, but keeping a high 
connectivity. Then, assuring the sufficient parallelism in the 
targeted applications, the connectivity in the DPC core is 
optimized to shorten the microinstruction. In addition, one 
common occurrence is that some transfers are so frequent that they 
exclusively occupy the data path for a long time and lead to the 
interconnect conflicts. In such case, the network also supplies 8 
bypasses controlled by the compiler to attain feasible schedule. 
However, only two bypasses are allowed every cycle. 

Fig.5. Shared register address for communication

Then, the DPC uses shared register address for communication, 
and the registers corresponding to the shared address can be both 
read and written in the two clusters. As shown in Figure.5, the 
function units read the shared registers from the local copy 
registers via the connection network, whereas the writes to the 
shared registers are lead to another cluster. Besides the 4 global 
registers, each cluster also deploys 176 local registers, consisting 
of 4 register sliding windows. Moreover, the two implementation 
issues here were to complete the communication behavior in only 
one cycle and solving the problem of the critical path on the one 
hand and on the other hand to restrict the number of writes to the 
shared register per cycle to ease the pressure of write ports on the 
global registers. 

3.4 Stream Memory System 

The stream memory system in the core comprises a 4KB 
scratch-pad ram, an 8KB normal data cache supporting the 
write-back scheme and two specific stream caches as well. The 
stream memory architecture and its non-uniform address space are 
illustrated in the Fig.6. The separated memory address segments 
are mapped into different memories, and any access request from 
the clusters is routed to one of the memories based on the mapped 
address. As we known, the usual data access patterns in the 
multimedia applications involve a lot of vectors, matrixes and 
scalar elements. In general, the frequent cross-interferences 
between them are inevitable no matter in the normal 
direct-mapped or set-associative caches. However, the relative 
problem can be solved elegantly if we include a scratch-pad ram in 
the architecture. It can be used to store some scalar variables or 
array variables with high frequency, i.e. the loop index or the small 
array frequently accessed. In addition, the scratch-pad ram can 
also supply the space for the state protection. As a result, it not 
only reduces the access to the off-chip memory but also eases the 
pressure of the register allocation in the compiler [5]. 

Fig.6. Stream memory architecture and its non-uniform space 

Considering the regularity of the access pattern, DPC is also 
deployed with two stream caches to suit for the characteristic of 
the stream data in the multimedia applications. Each stream cache 
module is parameterized by 2 banks with 32B line size, which are 
determined by the memory access pattern analysis. Moreover, each 
bank supports its own prefetch which can be configured through 
its stride register inside the stream controller. If a memory access 
occurs to a stream cache, the stream cache controller issues a 
prefetch request of the next address that is the sum of the current 
address plus the stride value. Thus, one of the advantages of the 
stream caches is that it supports the flexible prefetch towards to 
the regular patterns.

If hit in bank0 or bank1 {
Return data and prefetch next;} 

else { 
if (previous == 1) { 
fill the bank0 and prefetch bank0; 
previous = 0; } 
else { 

fill the bank1 and prefetch bank1;  
previous = 1; } 

}

Fig.7. Scheme of the stream cache 
As illustrated in Fig.7, the stream cache adopts a reasonable 

scheme to arrange the two banks to support the n-way cross access 
patterns. Where, the flag previous indicates which bank is used 
previously. Followed the scheme above, our stream caches can 

371



support for the 4-way array access at the same time. Therefore, 
with the combination of the cross-conflict reduction and the 
configurable prefetch scheme, the stream memory system can 
improve the processing performance significantly. 

4. IMPLEMENTATION 

The first implementation has been fabricated in 0.18 m six-metal 
CMOS with a clock frequency of 250 MHz. The DPC is integrated 
into a LEON-based SoC with a complete set of peripherals for the 
multimedia applications. Figure.8 shows a die photo of the SoC, 
which results in the area of 4.6×4.6mm2. Note that LEON is nearly 
1.64mm2, while the area of the DPC is 6.62mm2.

Fig.8. die photo of the SoC 

5. EXPERIMENT AND PERFORMANCE 

Each instruction of the core allows 14 data transfers and 2 
bypasses to exploit the sub-word parallelism. Supposing the clock 
frequency of 250MHz, the core can provide a peak performance of 
14GOPS on 8-bit operations or 7GOPS on 16-bit ones. 

The benchmarks listed in Table.1 are selected from application 
areas ranging from image processing, audio, and signal processing. 
Some of the benchmarks are kernels, and others are applications 
for which only a portion can be executed in the DPC. Table.1 
presents the performance numbers, assuming a 1-cycle and a 
14-2-cycle memory access timing (1 cycle for ram, 14 cycles for 
the first 64-bits access to the SDRAMs, but 2 cycles thereafter). 
Thus, the results highlight the ability of the processor to achieve 
the significant speedup with the realistic memory systems.  

Table.1. Performance comparisons on benchmarks cycles

Algorithm LEON LEON + DPC Speedup
IDCT 10,992 1,104 10.0 
FFT 30,130 2,204 13.7 
FIR 127,659 5,857 21.8 

JPEG encode 16.8 106 2.33 106 7.2
MPEG4 encode 13.2 106 3.23 106 4.1
IDCT: IEEE 118-1990 compliant, 8×8 block of 16-bits pixels 
FFT: A 64-points complex FFT, 16b/input, normally ordered 
FIR: 128-sample, 32taps, 16b/input complex FIR 
JPEG encode: QVGA 320 x 240 Frame size
MPEG4 encode: QCIF 176x144 Frame size, on average 

Our benchmark effort consists of running code on LEON 
processor by itself, profiling the code and then programming or 
compiling the kernels running on the DPC. Especially, with the 

utility of the scratch-pad ram and the stream cache, the 
coprocessor decouples from the off-chip memory to a certain 
extent, which results to an overhead reduction of the processor. As 
shown in Table.1, compared to LEON alone, LEON with our DPC 
coprocessor achieves a speedup in the range of approximately 
10-22 to kernels and 4-7 to applications. In most cases, the 
speedup is ultimately limited by the fractions that are data 
parallelism in nature and can be accelerated on the coprocessor. 

In addition, using the Spice simulations of the 0.18 m
technology, the implementation (Fig.9) is evaluated as follows. 
Fig.9 shows the synergistic effect of introducing the gated clock in 
the 250MHz frequency. This graph shows that on average this 
saves 16.3% power when compared to the 0.49 Watts dissipation 
without clock gating. Then, it can be also concluded typical power 
consumption of the processor is nearly 0.41 Watts. 

0.
54

0.
44

0.
38

0.
53

0.
46

0.
46

0.
45

0.
35 0.

45

0.
4

0
0.2
0.4
0.6
0.8

IDCT FIR FFT JPEG MPEG

Po
w

er
 W

at
ts

not clock gated clock gated

Fig.9. Impact of the gated clock 

6. SUMMARY 

This paper advanced a novel data-parallel coprocessor for 
multimedia processing. The DPC core not only provides an 
abundance of parallel computational resources, but also introduces 
the gated clock to reduce the power dissipation. The core is 
realized in the 0.18 m technology and operates at 250MHz. Its 
powerful processing ability comprising 14 data paths and 2 
bypasses in parallel as well as the sub-word parallelism can 
achieve a satisfactory performance. In the future, it is possible to 
enlarge the level of parallelism from 2 to 8 clusters if needed. Also, 
a second-generation implantation in 90nm is underway in order to 
further improve the performance. 

ACKNOWLEDGMENT 

The authors would like to thank Andrea Cilio and his colleagues in 
Delft technology university of Netherlands for their great help. 

REFERENCES 

[1]. H. Corporaal. Microprocessor Architectures, From VLIW to 
TTA. John Wiley, 1998. 

[2]. H. Sbeyti, S. Niar, L. Eeckhout, "Adaptive Prefetching for 
Multimedia Applications in Embedded Systems." DATE'04, 
EDA IEEE, Paris, France, 16-18, February 2004.

[3]. Y. Wu and EY Chang, Optimal Multimodal Fusion for 
Multimedia Data Analysis, ACM International Conf. on 
Multimedia (MM), pp.572-579, New York, October 2004.

[4]. Ujval J. Kapasi, William J. Dally and Scott Rixner, 
"Efficient Conditional Operations for Data-parallel 
Architectures," Proc. Intl. Symp. on. Microarchitecture, pp. 
159-170, Dec. 2000. 

[5]. Lian Li, LinGao and Jingling Xue, Memory coloring: a 
compiler approach for automatic scratchpad memory 
management. PACT'05, page 329--338, Saint Louis, 2005. 

372


