AN EFFICIENT MEMORY CONSTRUCTION SCHEME FOR AN ARBITRARY SIDE
GROWING HUFFMAN TABLE

Sung-Wen Wang, Shang-Chih Chuang, Chih-Chieh Hsiao, Yi-Shin Tung and Ja-ling Wu

CMLab, Dept. CSIE NTU, Setabox Corporation, Graduate Institute of Networking and Multimedia NTU
E-mail:{song,peiz,chchhsiao,tung,wjl} @cmlab.csie.ntu.edu.tw

ABSTRACT

By grouping the common prefix of a Huffman tree, in stead of
the commonly used single-side rowing Huffman tree (SGH-
tree), we construct a memory efficient Huffman table on the
basis of an arbitrary-side growing Huffman tree (AGH-tree)
to speed up the Hufman decoding. Simulation results show
that, in Huffman decoding, an AGH-tree based Huffman table
is 2.35 times faster that of the Hashemian’s method (an SGH-
tree based one) and needs only one-fifth the corresponding
memory size. In summary, a novel Huffman table construc-
tion scheme is proposed in this paper which provides better
performance than existing construction schemes in both de-
coding speed and memory usage.

1. INTRODUCTION

Traditional entropy coding in data compression applications
widely relies on Huffman codes. Thus, most software ap-
proaches of entropy decoding are limited to sequential decod-
ing because the representation of each symbol is variable in
size. References [7]-[8] show that entropy decoding occupy-
ing a major portion of decoder’s timing profiles. To speed up
entropy decoding, however, is not as easy as to speed up the
other modules of a decoding process by issuing several inde-
pendent instructions simultaneously. Hashemian [1] proposed
a method to construct memory efficient look-up-table (LUT)
by clustering several bits together to speed up bit stream de-
coding. However, the binary tree associated with a Huffman
code (i.e. the Huffman tree) grows sparser and sparser from
the root because of the geometrical distributions of various
media sources. This sparsity either causes the problem of
memory waste or enlarges the latency of locating a leaf sym-
bol. For a high sparsity Huffman tree, such as SGH-tree,
Hashemian [2] proposed a condensed Huffman table (CHT)
that represents the original Huffman table losslessly and com-
pactly. In addition to Hashemian’s methods, Jiang et al. [4]
exploited the idea of [3] to partition an SGH-tree on the basis
of pattern-matching and constructed a memory-efficient LUT.

This work was partially supported by the National Science Council and
the Ministry of Education of ROC under the contract No. NSC 94-2752-E-
002-006-PAE, NSC 94-2622-E-002-024, NSC 94-2213-E-002-078.

1-4244-0367-7/06/$20.00 ©2006 IEEE

141

Specifically, the growth of SGH-tree is right- or left-side ori-
ented, and it has regular leading bit-patterns 0,1 (or 1,,0). The
bit-pattern 0,1 (or 1,,0) means there are x consecutive 0’s (or
1)’s and ending by a O (or 1). By counting the number of
leading O’s or 1’s, they partition an SGH-tree into numbers of
sub-trees. For each sub-tree, a small LUT is then constructed.
The above-mentioned techniques perform the SGH-tree par-
titioning well. Nevertheless, most of nowadays video codecs
elaborating Huffman tables to estimate each symbol precisely
for dealing with realistic cases. As a result, the corresponding
Huffman trees are often arbitrary-side growing and are more
complicated than previously addressed ones. Thus, the ap-
proaches which are designed on the basis of SGH-tree may
not work well now. To take both memory-efficient LUT and
achieve high-speed locating of each symbol into account, we
propose a new partitioning method for arbitrary-side growing
Huffman table in Section 2. Section 3 demonstrates our sim-
ulation results. Finally, Section 4 concludes this write up.

2. ARBITRARY-SIDE GROWING HUFFMAN TABLE
(ASHT)

We introduce two operations to partition a Huffman tree: The
Hashemian cut (HC) and the bits-pattern-xor (BPx). These
two operations are motivated by the Hashemian’s method [1]
and the bits-pattern matching scheme [4], respectively. HC
is an operator that clusters the common length symbols to-
gether (c.f.: Fig.1 (b)). The HC behaves very similar to the
scheme given [1] but the length of clusters is various. BPx is
an operator that indexes each symbol by the number of lead-
ing common bits with a certain bits-pattern (c.f.: Fig.1(c)).
The scheme given in [4] simply counts the leading 1’s of sym-
bols, so it is inefficient for an AGH-tree; therefore, a better
memory usage can be expected.

More specifically, as shown in Fig.1(a), we take a Huff-
man tree [5]', T, as an example to illustrate the operations
of HC and BPx. HC partitions a tree by cut-lines. As shown
in Fig.1(b), T} is partitioned by 3 cut-lines: x-x, y-y, and z-z.

IThis Huffman tree associates with a Huffman table is used in Windows
Media Video 9, which estimates the probability of occurrence of different
transform types at high bit-rate.

ICME 2006

Root Root

Fig. 1. The rectangular boxes represent the codeword values
and the circle nodes represent the values of symbols. (a)A
Huffman tree with 16 symbols, (b)An example of applying
the HC method, (c)An example of applying the BPx method
in which the boldface line represents one of the bits-patterns
and (d)An example of ASHT clustering.

There is a LUT for each cluster which memorizes every value
of symbols and every code length of symbols within the clus-
ter. HC introduces memory waste because it duplicates the
symbols that are not of the same length as the cluster size. For
example, in Fig.1(b), symbol 7 in Fig. 1(b) will be duplicated
four times in the second cluster. For a BPx, we index symbols
by counting the largest number of common leading bits of a
given bits-pattern. For (1001), and (1011),, the largest num-
ber of common bits is two. In practice, the above operation
can be realized by counting the number of leading zeros after
bitwisely XORing with a given bits-pattern. Consider the ex-
ample in Fig. 1(a), given the bits-pattern ”(101111000000);”
(as shown in boldface line in Fig. 1(c)), if we cluster all sym-
bols of T} by BPx, the number of zeros of {3, 6}, 0, 7, {8, 5},
4,1, 2, {15,11}, 10, 9, 14, and {12,13} are O, 1, 2, 3, 4,
5,6, 7, 8,9, 10 and 11, respectively. Likewise, we need
small LUTs to distinguish the symbols that are of the same
number of leading zeros, such as {3, 6}, {8,5}, {15,11}, and
{12,13}.

Due to the hardware consideration, the instruction for count-
ing the leading zeros and bitwise-XORing are limited in length,
we can not apply any length BPx onto a Huffman tree haphaz-
ardly. Meanwhile, if the symbols are of equal probability, the
code lengths of them are the same after Huffman code con-
struction. HC will perform better than BPx do, in this case.
In the next section, we consider the two operations, HC and
BPx, together to provide an even better Huffman tree parti-
tioning.

2.1. ASHT Construction

Assume the length limit of instructions for counting leading
zeros is 4 bits. For each root of a sub-tree one of the two pre-
scribed operations can be applied. Fig. 1(d) gives an example
in which an ASHT is constructed by combining HC and BPx
together.

Intuitively, T is first cut by an HC with length-2, because
there is a length-2 full sub-tree at the top of the Huffman
tree. The remainder of T beyond the cut-line, x-x, forms an-
other sub-tree rooted at codeword 2. For simplicity, we here-
after name the sub-tree rooted at codeword cw by sb(cw). As
for sb(2), however, there is no apparent partitioning method.
Because, if sb(2) is again partitioned by an HC with longer
length or shorter length, the memory waste problem or the
memory access time increasing problem will be introduced,
respectively. If sb(2) is partitioned by a BPx with bits-pattern
(1111), the memory waste problem is solved but there still
needs an extra memory access for sb(10). Here we apply
an HC with length 3 to sh(2) because we are willing to uti-
lize extra memory size for decreasing memory access. Simi-
larly, sb(23) and sb(188) are respectively partitioned by bits-
patterns (1011), and (0000),, because there is no memory
waste problem and needs no extra memory access.

To put ASHT into practical usage, the memory space as-

142

mi

mi

val

cl

sign

len 3

pat 11 0

bl 4 4

0s 2 1 3

(a)

m | O|1[2]3[4]5|6|7]|8[9|10[11]12(13]14|15|16|17[18[19 (20|21
valipat | 3| 6 fNtf O | 7| 77| 7|85 |41 1|2f0f15|11{10|9 [14]13]12
cllen |2 (2|3 (21|11 |3]3]3]4]]1 4141412344
sign [OO [1]|O[O[O|O[O]O]O|O[L]OfO]L|O0O]O]O[O]O|O]fO
[2 1 3

(b)

Fig. 2. (a)The memory space associates with a given ASHT,
and (b)The condensed memory space associates with (a).
Where 'mi’ denoted memory index while val, cl, sign, len,
pat, bl, and os are defined in Section 2.1

sociated with ASHT needs to be considered. As shown in Fig.
1(d), if the symbol appears in the current cluster, ASHT needs
only to memorize the symbol value and the symbol code-
length. We use val-field to represent the value of a symbol
and cl-field the codelength of a symbol. For the symbols that
are not in the current cluster, we have to record the kinds of
partitioning method that are applied. We use a sign bit 1 to in-
dicate that the symbol is not in the current cluster. Meanwhile,
it is necessary to record the length of HC or the bits-pattern
of BPx. For an HC, we denote its length by len-field. As
for BPx, we use pat-field to represent bits-pattern and bi-field
the corresponding codelength. We also use the offset-field,
denoted as ’0’, to represent the offset of memory address be-
tween the current cluster and the next one. An example of the
memory space associated with an ASHT is shown in Fig.2(a).

For the purpose of condensing LUT, as shown in Fig.
2(b), we combine those fields together which do not function
simultaneously. The functionalities of len, and bl are simi-
lar and they do not activated simultaneously, so we combine
these two fields together. Similarly, we can combine val and
pat together and use a sign bit to distinguish between them.
To remove the ambiguity between a BPx with length j lead-
ing zeros and an HC with length j, we set val as Nil or not to
distinguish them.

3. EXPERIMENTAL RESULTS

In this section, we compare the performance (in terms of exe-
cution speed and memory usage) of the proposed ASHT with
that of the Hashemian’s work [1]. Four tested Huffman trees

143

Huffman tree with 188 symbols

0 200 400 600 800 1000 1200
Rate (size of LUT)

Fig. 3. For a given Huffman tree with 188 symbols, if the rate
is set in the range of 800 to 875 Bytes, ASHT based approach
can lessen the average memory access time from 2.35 to 1.90.
On the other hand, if we fix the penalty ranging from 2.8 to
2.25, ASHT based approach decreases the required LUT size
from (875 £ 37.5) to (520 £ 10) bytes.

are taken from [5], and they respectively have 188, 135, 73
and 16 symbols. The small set Huffman tree is exactly the
one shown in Fig. 1(a). The curves shown in Figs. 3, 4, 5 and
6 are the convex hulls drown on the basis of the randomly gen-
erated ASHTSs respectively for the four tested Huffman trees.
The corresponding Hashemian curves are generated similarly.
Notice that the penalty function (i.e. the vertical axis) and the
rate (i.e. the horizontal axis) depicted in the above figures are
the average time of memory access (which is proportional to
the execution speed) and the LUT size(which is proportional
to the memory usage), respectively. From the figures, the
ASHT-based approach performs much better, both in terms
of execution speed and memory usage, than that of the con-
ventional (i.e., Hashemian’s) one.

4. CONCLUSION

As shown in previous sections, the AGH-tree prevails over
the SGH-tree in variable length codec design, which makes
most of nowadays SGH-tree based code table construction al-
gorithms improvable. Therefore, we investigate a new code
table construction scheme, called ASHT, which provides bet-
ter memory usage and needs less memory access. ASHT con-
struction consists of two simple functions: HC and BPx. The
characteristics of HC make it suitable for partitioning equal
probability symbols; on the other hand, BPx performs better
for symbols with geometrical distributions. By properly com-
bining HC and BPx, ASHT results in the most efficient mem-
ory access and usage in the literature. However, we noticed
that the number of possible ASHT structures are quite large
for a Huffman tree with a large number of symbols. Thus, an
optimization scheme for finding the best ASHT structure is

Huffman tree with 135 symbols

0 500 1000 1500 2000 2500 3000
Rate (size of LUT)

Fig. 4. For a given Huffman tree with 135 symbols. If we fix
the penalty to be 2.4, the ASHT based approach decreases the
LUT size 5 times (i.e., from 1900 down to 380 bytes).

very critical for designing the best code table and this is, of
course, one of our future research directions.

5. REFERENCES

[1] R. Hashemian, “Memory Efficient and High-speed
Search Huffman Coding,” IEEE Trans. on Comm., Vol.
43, No. 10, Oct. 1995, pp. 2576-2581.

[2] R. Hashemian, “Condensed Table of Huffman Coding, a
New Approach to Efficient Decoding,” IEEE Trans. on
Comm., Vol. 52, No. 1, Jan. 2004, pp. 6-8.

[3] S.B. Choi et al., “High-Speed Pattern Matching for a Fast
Huffman Decoder,” IEEE Trans. on Consume Electron-
ics, Vol.41, No. 1, Feb. 1995, pp. 97-103.

[4] JH. Jiang et al., “An Efficient Huffman Decoding
Method Based on Pattern Partition and Look-up Table,
"APCC/OECC’99, Vol 2, Oct. 1999 pp.904-907

[5] SMPTE VC-1 Video coding expert group (VCEG), ITU

[6] Sridhar Srinivasan et al., “Windows Digital Media Di-
vision, Microsoft Corporation, Windows Media Video
9: overview and applications,’Signal Processing: Image
Comm., Oct 2004.

[7]1 X. Zhou, et al., “Implementation of H.264 Decoder on
General-Purpose Processors with Media Instructions”,
Proc. of SPIE Con. on IVCP, vol. 5022, Jan. 2003.

[8] Wang, S.-W., et al., “The optimization of H.264/AVC
baseline decoder on low-cost TriMedia DSP processor,
”Photonic Devices and Algorithms for Computing VI
Proc. of the SPIE, Vol. 5558, pp. 524-535 (2004)

144

0 100 200 300 400 500 600
Rate (size of LUT)

Fig. 5. For a given Huffman tree with 73 symbols. If the rate
is set in the range of 336 to 556 bytes, ASHT based approach
can lessen the average memory access time from 2.35 to 1.90.
On the other hand, if we fix the penalty to be 2.19, the ASHT
based approach decreases the required LUT size from 556 to
194 bytes.

Huffman tree with 16 symbols

—+— ASHT —*= Hashemian with s-tree

7
g1s
g
E 1

0 50 100 150 200 250 300 350 400 450

Penalty (aver

Rate (size of LUT)

Fig. 6. For a given Huffman tree with 16 symbols, if the rate
is set in the range of 90 to 192 bytes, ASHT based approach
can lessen the average memory access time from 2.15 to 1.61.

