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ABSTRACT

Finding faces in visually challenging environments is crucial to
many applications, such as audio-visual automatic speech recog-
nition, video indexing, person recognition, and video surveillance.
In this study, we investigate several algorithms to improve face
detection accuracy in visually challenging environments using the
IBM appearance based face detection system. The algorithms con-
sidered are trainable skintone pre-screening, Hamming windowing
of the face images, DCT coefficient selection, and the AdaBoost
technique. When these methods are combined, an up to 68% rela-
tive reduction in face detection error is observed on visually chal-
lenging datasets.

1. INTRODUCTION

Robust face detection is the first and indispensable step for many
applications, such as audio-visual automatic speech recognition
(AVASR), video indexing, user interfaces, and video surveillance.
Robust face detection is a difficult problem, especially in visually
challenging (realistic and non-ideal) environments. Such cases are
of particular interest to our work on AVASR, as we target the prac-
tical deployment of this technology [1, 2]. Visual speech has been
shown to improve ASR in noise for “visually clean” data [1, 3],
however obtaining such data is not always feasible [4]. Indeed, real
applications often encounter visually challenging environments,
where variations in the speaker’s head pose and appearance, envi-
ronment lighting and background, as well as in the video acquisi-
tion sensor’s quality degrade the AVASR system accuracy. For ex-
ample, the visual-only speech recognition error rate of connected
digit strings increases significantly from studio-like environments
(29.5%) to the more challenging office (46.1%) and moving-car
(66.7%) domains (see [4] for details on the datasets and results).
Such effects can be mostly attributed to poor face detection, thus
motivating our work in this paper. Towards this end, we aim at
improving face detection accuracy by investigating several algo-
rithms to augment the current IBM face detection system. Clearly,
we are particularly interested in the performance of these tech-
niques in visually challenging domains.

There exist two main approaches for face detection [5, 6]: Ge-
ometric feature based matching and appearance based matching
Most systems belong to the second category and can be further
classified into color segmentation and statistical modeling based
systems. The first rely on skin color modeling, using for exam-
ple Gaussian-like distributions [7], or empirical skintone tables
[8]. Examples of statistical modeling techniques include neural

�Work performed while on internship at the IBM T.J. Watson Center.
Jintao Jiang is currently with the House Ear Institute, Los Angeles, CA
90057, USA. The authors would like to acknowledge contributions to this
work by Andrew W. Senior, Harriet Nock and Chalapathy Neti.

networks [9], dynamic link matching [10], Fisher’s linear discrim-
inant analysis (LDA) [1, 8], support vector machines [11], eigen-
faces [12], hidden Markov models [13], embedded Bayesian net-
works [14], and Gaussian mixture model (GMM) classifiers [15].
The above use so-called “strong learners” for face detection. An
alternative technique, first proposed by Viola and Jones [16], em-
ploys a quite different but very fast face detection algorithm based
on AdaBoost [17] and feature selection (“weak learner”).

The face detection approach in this paper is based on the exist-
ing IBM face detection system that has evolved from using LDA
to employing GMMs for classification, as described in prior work
[2]. There, we demonstrated large improvements when consider-
ing GMMs instead of LDA both in face detection and in the result-
ing AVASR accuracy. Such improvements were achieved without
adding significant modeling and computational complexity over-
head. In this paper, we incorporate several additional algorithms
into the GMM based system, namely a Gaussian based trainable
skintone model and the AdaBoost approach [17]. Furthermore,
we introduce 2-D Hamming windowing applied on the candidate
face images, and we propose a new selection algorithm of the dis-
crete cosine transform (DCT) coefficients employed in our face
detection system, that is a combination of the Bayesian informa-
tion criterion [18] and a two-class correlation method. We then
benchmark the proposed algorithms on three face detection tasks.

The paper is organized as follows: Section 2 describes the
baseline face detection system [2], whereas Section 3 is devoted
to the algorithms proposed to augment it. Section 4 describes the
databases used in this study, with results presented in Section 5.
Finally, a brief summary is given in Section 6.

2. THE BASELINE FACE DETECTION SYSTEM

Fig. 1 schematically depicts the baseline system, used for face de-
tection in [2], and already being an improved version of the system
in [1, 8]. Given an image, a pyramid is built to generate candidate
face regions at different scales, so as to cover a variety of face
sizes, since the face size is unknown in advance. Each such can-
didate generates a face vector that consists of the grey-level pixel
values of its region, normalized to a rectangular template of size
M�N pixels (typically 11�11), and in the case of the system in
[2], projected to a lower dimension using a two-dimensional DCT.
The resulting vector is scored by a two-class GMM classifier, or
by an LDA in the original system of [8] – see the dotted lines in
Fig. 1. If the score is high, a subsequent “distance from feature
space” (DFFS) is applied to eliminate false faces [2, 8].

Training face samples are extracted from a limited number of
video images that are manually annotated. To minimize mismatch
between training and test data, the face selection box is slightly
translated and rotated to produce additional samples (a total of ten
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Fig. 1. The baseline IBM face detection system [2].

variations for each annotated face). The non-face samples are ran-
domly chosen from the video images (but located away from the
annotated faces), and ten random non-faces are generated for each
image. For the GMM method, up to 50 mixture components are
trained on 50-dimensional DCT face vectors.

3. FACE DETECTION ALGORITHMS

This section describes the algorithms considered in the paper for
improving face detection robustness. In sequence, they are a train-
able skintone model, Hamming windowing of the face candidate
region, DCT coefficient selection of the face vectors, and the Ada-
Boost technique. All are considered on top of the baseline system
of Section 2.

3.1. A trainable skintone model

The objective of skintone pre-screening is to limit the face search
space and thus improve speed and accuracy. Although skintone
varies across people, in general human skin color is different from
most other objects. In [8], a simple color based thresholding scheme
was used to detect skintone. The following range was first defined
as the skintone region: Hue (35 to 240), chromaticity (6 to 240)
and intensity (60 to 766). These values were mapped to a lookup
table in the RGB space using specific rules [8]. As a result, for
any given (G,B) pair, RG;B

min and RG;B
max were derived to define a

skintone region as depicted in Fig. 2(a). This skintone table is not
trained from a specific dataset and is preset for all camera condi-
tions. As a result, it does not work well when there is image color
distortion due to varying camera transfer functions. Of course, the
table could be trained from data, however the model by default will
still include non-skintone RGB points, in order to guarantee that
all real skintone RGB points are inside the “polygon” region.

In this study, we follow a different approach to skintone mod-
eling, motivated by work in [7]. There, it is demonstrated that the
skintone distribution in the RGB space is Gaussian-like. We there-
fore consider a trainable 3-D Gaussian skintone model. Given
a training set of skintone pixels, a 3�3 RGB covariance matrixP

rgb and a 1�3 RGB mean vector Mrgb are obtained. Note that
the effect of outliers (non-skintone pixels) is minimized automati-
cally by the statistical processing. An additional advantage of the
model is that it allows for easy adaptation by statistical techniques.

During testing, any given pixel is considered as skintone-like,
if its RGB vector Prgb satisfies

[Prgb �Mrgb ]
�X

rgb

��1
[Prgb �Mrgb ]

T � 6:0 : (1)

The RGB space region defined by (1) is depicted in Fig. 2(b), and
it is notably different from the table based distribution of Fig. 2(a).
Face candidate regions containing less than 30% of skintone-like
pixels (i.e. pixels that satisfy (1)) are classified as non-faces.

Fig. 2. Skintone distribution in the RGB space as (a) a table and (b) a
Gaussian distribution. Data selection for Gaussian training of the skintone
is depicted in (c).

Fig. 2(c) depicts typical input data used for training the Gaus-
sian skintone model. The data selection box is centered at the nose
with sides approximately 80% of the eye separation. Pixels inside
that box are treated as skintone-like during the training phase.

3.2. Hamming windowing

The Hamming windowing technique helps smooth the boundaries
of face candidate images that are obtained from a larger image.
The face area covers eyes, nose, mouth, eyebrows, etc., and thus
sometimes has sharp intensity changes. When face candidates are
“cut” from an image, the boundaries usually are not smoothed,
resulting in an un-smoothed 2-D DCT spectrum. Such spectrum
could contain information about face identity or other conditions
that are not of interest to person-independent face detection. There-
fore, and similarly to ASR, a Hamming windowing technique is
applied to the 2-D face candidate pixel intensities Ii;j , as

Ii;j Ii;jH
M
i H

N
j ; where HK

k = :54 +:46 cos

 
�
k � K�1

2

K + 2

!

for k = i; j and K = M;N .

3.3. DCT coefficient selection

In our face detection system, a 2-D DCT is applied on each face
candidate, in order to produce a compressed image representation.
In the baseline system [2], the resulting matrix of DCT coefficients
is organized into a vector using a zig-zag scan, with only its first
50 coefficients used in classification (the energy term is excluded).
This method guarantees that the low-frequency terms are selected,
while ignoring the high-frequency components. However, such
arbitrary selection of DCT coefficients may not be optimal, since,
for example, human faces have special structure and thus result in
specific DCT component distribution patterns. Here, we propose a
combination of the Bayesian information criterion (BIC) [18] and
a two-class correlation method for DCT coefficient selection.

3.3.1. BIC based DCT coefficient selection

The BIC is a well known statistical measure of separability be-
tween two classes, often employed for acoustic change detection
[18], for example. Since face detection is a two-class problem,
the BIC can be used to measure how well the face and non-face
classes are separated. Here, the two classes are denoted by F=f; f ,
respectively, each having NF samples. The BIC is then

BIC = N log
���X����Nf log

���X
f

����Nf log
���X

f

��� ; (2)

where N = Nf +Nf , and
P

,
P

F
denote the covariances of all,

or only the class-specific data vectors. Clearly, the larger the BIC
value, the more separated the two classes are. However, the BIC
value also depends on the spread magnitude of the two classes, as
depicted in Fig. 3. There, the left case would result to a larger BIC
value than the right one, even though the two classes are better
separated in the right case.



Fig. 3. Two classification cases.

3.3.2. Two-class correlation method

Another separability measure is the two-class correlation, which
depends less on the magnitude of the two classes than the BIC.
The method is similar to an LDA projection. As shown in (3), face
and non-face vectors are placed together into a matrix and subse-
quently projected to one-dimensional vectors, ideally consisting of
+1’s for the face samples, and -1’s for non-faces, namely:h
Dct

f
1:N

f
;1:MN Dct

f
1:Nf;1:MN

i
P1:MN;1!

h
�1f

1:N
f
;11

f
1:Nf ;1

i
: (3)

Multilinear regression is used to define the projection vector P.
Of course, such a projection may not necessarily be successful.
Therefore, we derive the correlation coefficient r between the ac-
tual projection (the left side of (3)) and the expected projection
(the right side of (3)). In Fig. 3, the right case would have a
larger correlation coefficient than the left one. The disadvantage
of this method is that we may end up choosing many small-spread-
magnitude components, vulnerable to noise.

3.3.3. Combination of BIC and two-class correlation

As stated in Sections 3.3.1 and 3.3.2, using only BIC values may
result in inseparable DCT components selected, whereas using
only two-class correlation may help choose small-spread-magnitude
DCT coefficients. As a compromise, in this work, we propose
to combine the two methods. For each DCT component i =
1;:::; MN , we define its significance value Si as

Si = (BICall � BICallni ) � ( rall � rallni ) ; (4)
where BICallni and rallni are computed as in (2) and (3), respec-
tively, but using (MN�1)-dimensional data vectors by excluding
DCT component i. Assuming independence between the DCT co-
efficients, (4) is further simplified as

BICall � BICallni � BICi

rall � rallni � ri

�
! Si = BICi � ri : (5)

Based on (5), allMN values of Si are computed and the top 50 are
selected as the face vector elements fed into the GMM classifier.

3.4. AdaBoost

AdaBoost is a general algorithm that attempts to improve the per-
formance of any classifier with more than 50% initial accuracy
[17]. Under the AdaBoost framework, a series of learners are
trained incrementally, each trying to handle “difficult” to classify
samples by the previous learner, by assigning more weight to them.
At the end, all learners are combined by weighting, in order to pro-
vide a stronger learner. The method is summarized below:

Given: (x1; y1) ; � � � ; (xm; ym) ;xi 2 X; yi 2 f�1; 1g
Initialize with equal weighting D1(i) = 1=m:
For t = 1; � � � ; T :
� Train weak learner using distribution Dt:
� Get weak hypothesis ht : X ! <:
� Choose �t 2 <:
� Update: Dt+1(i) = Dt(i) exp [��tyiht(xi)] =Zt

where Zt is a normalization factor (chosen
so that Dt+1 will be a distribution):

Final hypothesis: H(x) = sign
�PT

t=1 �tht(x)
�

(6)

Fig. 4. Images from databases (a) CNN, (b) OFFICE, and (c) TREC.

In this work, five learners are trained for AdaBoost (T=5). A
minor modification is made in the calculation of the weighting pa-
rameter �t of (6), which is now given by

�t = .5 log

�
1� "t
"t

�
! �t = .25 log

�
1� "t
"t

�
: (7)

In (7), "t denotes the training error of each weak learner, with the
distribution weighting considered. Such a modification is deter-
mined empirically, and it produces a less aggressive distribution
updating. This may be due to the fact that the initial weak learner
is already very good (typically "1 < 0:15).

4. DATABASES

Three databases representing different visually challenging envi-
ronments are used in this paper to benchmark the proposed face
detection algorithms. The first corpus consists of video recordings
of CNN programs, and will therefore be referred to as the “CNN”
set. Such data have frequent scene changes and non-frontal or tilt-
ing faces. The second database has been recorded using a lap-
top based audio-visual data collection prototype with a USB 2.0
inexpensive web-cam, originally for AVASR experiments [1, 4].
The 109 database subjects were recorded in their own offices with
varying lighting, background, and head-pose. This set will be re-
ferred to as “OFFICE”. The third database contains mostly CSPAN
broadcast news programs with some ABC and CNN segments, and
it is part of the “TREC” corpus. Thus, this set also includes non-
anchor speakers with tilting, small, or non-frontal faces. Repre-
sentative frames from all sets are depicted in Fig. 4.

For each database, two sets of face images are manually anno-
tated for training and testing. Their details are depicted in Table
1, together with information on the frame and average face sizes,
the latter expressed by the eye separation. Notice that the TREC
database is the most challenging in terms of face size. Concerning
head pose (not quantified in the table), TREC is again the most
challenging set, followed by CNN. On the other hand, face images
in the OFFICE corpus are rather upright, however they have the
largest color distortion due to the web-cam used.

5. RESULTS

We now proceed to benchmark the performance of the discussed
face detection algorithms on the test sets of the three visually chal-
lenging databases of Section 4. A number of experimental results
are depicted in Table 2, given in terms of face detection accuracy.
A face is considered detected if the location error is within 20% of
the annotated eye separation. In case of multiple detected faces in a
frame, only the one with the highest statistical score is considered.
Table 1. Comparison of the three databases (E: eye separation in pixels).
Numbers in parenthesis are for training and testing, respectively.

Database Image size Faces mean(E) min(E)
CNN 704�480 (1227, 303) (70,70) (28,40)
OFFICE 320�240 (1368, 253) (50,50) (30,33)
TREC 352�240 (1345, 292) (26,29) (20,25)



Table 2. Face detection accuracy (%) on the three database test sets using
the algorithms discussed in this paper: ST: skintone table; TS: trainable
skintone; HW: Hamming windowing; BST: AdaBoost; DS: DCT coeffi-
cient selection. Two slightly different face template sizes are considered,
depicted inside parentheses.

Algorithm Dataset! CNN OFFICE TREC
LDA (11x11) 75 91 46
GMM (11x11) 83 97 78
GMM+ST (11x11) – Baseline 89 71 81
GMM+TS (11x11) 90 98 82
GMM+TS (14x11) 89 99 82
GMM+TS+HW (14x11) 92 97 87
GMM+TS+HW+DS (14x11) 92 96 96
GMM+TS+HW+BST (14x11) 94 100 91
GMM+TS+HW+DS+BST (14x11) 92 99 94

We first compare the LDA and GMM based approaches. In
line with experiments reported in [2], GMMs dramatically outper-
form LDA consistently across all sets. For example, on TREC, the
accuracy improves from 46% to 78%, an approximately 60% rel-
ative reduction in error. Results further improve on the CNN and
TREC sets using the skintone lookup table, however the method is
not appropriate for the OFFICE set, because of color distortion in
the data. We consider the best of the two results (with or without
the table lookup) as the face detection accuracy of the “baseline”
system.

Following the presentation sequence of the algorithms dis-
cussed in this paper for face detection, we first consider the train-
able skintone model. We notice that although it barely improves
performance over the best “baseline” accuracy, it is robust across
all sets. Next, we slightly adjust the template face size, from
11�11 to 14�11 pixels. This follows our work in [2], where the
rectangular template was deemed beneficial to AVASR. Although
there is no significant benefit to the face detection accuracy in the
three sets, in the remaining of the results we consider only the
larger template.

Adding Hamming windowing to the system improves perfor-
mance significantly for the TREC and CNN sets, with some degra-
dation in the OFFICE case. Furthermore, DCT coefficient selec-
tion (after Hamming windowing) works extremely well for the
TREC database that is the most visually challenging, with no ma-
jor difference observed in the other two sets. AdaBoost, on the
other hand, consistently improves on Hamming windowing for all
three databases. Finally, combining all the algorithms described
in Section 3 produces robust face detection on all three databases,
with significant improvement over the baseline. In particular for
the TREC set, we obtain a 94% accuracy, which corresponds to a
68% relative reduction in error, as compared to the 81% accuracy
of the baseline.

6. SUMMARY

This work focuses on robust face detection in visually challenging
environments. Reported results indicate that the trainable skintone
model and Hamming windowing are effective and simple to im-
plement. The DCT component selection works well with the most
challenging TREC set, suggesting that zig-zag coefficient selection
is indeed not optimal and that various faces have different patterns
of important DCT components. The results also show that Ada-
Boost, when used with Hamming windowing, results in further
improvements. Combining all the discussed algorithms produces

a face detection system with satisfactory accuracy and significantly
better performance than our baseline.

It is interesting to note that when AdaBoost is combined with
the DCT coefficient selection algorithm, the system can function
as a feature selection procedure similar to the one in [16]. This
way variations in the face samples can be better accounted for,
with each weak learner possibly using specific patterns of DCT
components, and thus having a specific representation of training
face images.

The proposed system can be further evaluated by comparing it
to other popular face detectors such as the ones in [9, 16], and by
testing on a standard set such as the combined MIT/CMU database.
It would also be interesting to investigate whether the reported im-
provements translate to better AVASR, especially in the broadcast
news domain.
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