
EFFICIENT HARDWARE SEARCH ENGINE FOR ASSOCIATIVE CONTENT
RETRIEVAL OF LONG QUERIES IN HUGE MULTIMEDIA DATABASES

Christophe Layer, Hans-Jörg Pfleiderer

Department of Microelectronics, University of Ulm,
Albert-Einstein-Allee 43, D-89081 Ulm, Germany

christophe.layer@e-technik.uni-ulm.de

ABSTRACT

Due to the enormous increase in the stored digital contents, search
and retrieval functionalities are necessary in multimedia systems.
Though processor speed for standard PCs (Personal Computers)
is experiencing an almost exponential growth, the memory sub-
system handicapped by lower frequencies and a physical I/O (In-
put/Output) limitation reflects the bottleneck of common computer
architectures. As a result, many applications such as database
management systems, remain so dependent on memory through-
put that increases in CPU (Central Processing Unit) speeds are no
longer helpful. Because average bandwidth is crucial for system
performance, our research has focused especially on techniques
for efficient storage and retrieval of multimedia data. This paper
presents the realization of a hardware database search engine based
on an associative access method for textual information retrieval.
It reveals the internal architecture of the system and compares the
results of our hardware prototype with the software solution.

1. INTRODUCTION

Information retrieval has changed considerably with the expan-
sion of the WWW (World Wide Web) and the advent of modern
and inexpensive mass storage components. With the large ubiq-
uity and mobility of multimedia enabled devices, UMA (Universal
Multimedia Access) [4] emerges as an fundamental part within
new applications, for which text search in mass data has become
a functionality of growing importance. As a matter of fact, dig-
ital documents have become nowadays one of the most common
and practical means of communication and memorizing informa-
tion [1]. But as their quantity has dramatically increased, finding
them rapidly has become a real challenge of the utmost importance
that search engines intend to overcome. Hence their goal is to di-
rect a user to a small selection of documents that simply contain
words that match a set of searched terms. Even though millions of
documents may be returned, the search engines also try to sort the
results so that only a handful of the most relevant matches are pre-
sented first. Searching through always cheaper modern electronic
storage media like magnetic or optical disks involves the moving
of an enormous quantity of data between the memory and the pro-
cessor, and therefore implies a very long query time.

The solution is to provide a hardware support for the error
tolerant storage and retrieval of electronic objects described by a
set of binary features. Depicted in Figure 1, our system is a high
performance database search engine bound to the main processor
of a computer and thus releasing it for intricate query tasks. The

I/F
PC

Interface

Original Database

User

(P
C

I/U
S

B
/IE

E
E

13
94

)
A

va
ila

bl
e

co
nn

ec
tio

n

High Bandwidth Memory Bus

Results

Query
Core

Associative Computing Engine

BAM (Coded Database)

ACE

Fig. 1. The hardware solution proposal for a query accelerator is
able to offload data processing onto a dedicated daughter board.

ACE (Associative Computing Engine) presented here is based on a
unified approach that applies to different data structures databases,
ranging from multimedia applications to Internet data. Based on
a textual paradigm, queries are performed locally inside a coded
database known as BAM (Bit Attribute Matrix) [5, 8] which is
an image of an original multimedia container. Following this in-
troduction, Section two gives an overview of the query procedure
and reviews the associative computation method. Section three
presents the internal architecture of the ACE that makes it so fast.
The last Section discusses the performance of our hardware proto-
type compared to the software solution.

2. TRIGRAM BASED ASSOCIATIVE MATCHING

2.1. Retrieval Process

Created by hashing texts extracted from the original database which
it refers to, the BAM [8, 9] contains textual properties of each
page in form of binary signatures. Those are generated by hash-
ing each trigram within a confined text to a single bit position in
the bit string. Hashing techniques are used to significantly reduce
the memory overhead associated to the operation with large sparse
matrices. Moreover, they permit a non exact pattern matching and
an extremely flexible retrieval suitable for many object types. In
our database system, textual documents are segmented in pages
and their contents are analyzed and stored as a set of binary fea-
tures in the BAM. A row of the matrix formed by repeating this
procedure for all the text pages corresponds to a page signature.
Each column index codes the availability of one or a group of bi-

0-7803-9332-5/05/$20.00 ©2005 IEEE

Result
List

Final

Matching
Exact

List

Provis.

Query
Image

Approx.
Matching

Result

Text
Query

Fragmentation
Query

Filtering
ASCII

Query signature

Assoc. weights
Encoding

&Weighting

Trigram

 slots

 signature

1st Phase Matching 2nd Phase Matching

Query Encoding

Textual DB
BAM

Fig. 2. The two searching phases of the retrieval process after the
signature encoding of the query string.

nary features with a “1” or its absence with a “0” [8]. The length
of the bit string and the hash function are chosen so that approxi-
mately half of the bits are set to “1”, maximizing the entropy of the
matrix since this is theoretically the most efficient arrangement.

Depicted in Figure 2, the retrieval algorithm includes two com-
plementary phases (approximate and exact matching) which are
performed after the preprocessing of the query text, including frag-
mentation, trigram encoding into query-slots (which form the que-
ry signature) and the weighting of important words in a sentence.
Partitioning long queries into fragments permits a better matching
at the string level and allows to recover documents in which parts
of the original query appear. The approximate search phase, in
which the query signature is compared with the attributes of the
BAM to identify the records having a high probability to contain
the desired query information [5], is a rough but very fast proce-
dure. It is used in connection with the BAM to exclude a large
number of non-relevant documents from the search. Afterwards,
the remaining candidates are sorted in descending order of rele-
vance and passed on to the second stage. Having for purpose to re-
fine these results, the second phase is much more complex but can
be very short if the previous one was selective enough. Records
from the first phase matching at the bit attribute level are then fil-
tered using more rigid pairing procedures.

2.2. Accelerated Matching Computations

Since the first phase is the longest one considering the enormous
amount of page-entries in the BAM which all have to be treated,
there is a particular need to optimize the memory accesses as well
as the processing method. Therefore we decided to implement a
hardware accelerator performing the approximate matching com-
putations which correspond to calculation of the distance between
two strings, giving an appreciation of their similarity. Based on
the information present in the page-signatures of the BAM (the
availability of a certain trigram in the page), we punish bad match-
ing pages more or less badly, according to the weights given to
the different words composing a query fragment. A “mismatch
penalty” is assigned if a page does not have a binary feature which
is present in the query. A “switch penalty” is given when features
appear or disappear along the searching procedure, because as the

query-slots are processed sequentially, when successive features
are found in the page-signature, there is a fair chance that they be-
long to the same sequence in the original page, and the opposite
applies. The smaller a penalty, the bigger the amount of similar-
ities to one query fragment found in the BAM page. Over the
processing of one fragment i, the pealty yields

PFi =
X

s

(switch + mismatch) ×Ws (1)

where Ws is the weight associated to the query-slot s. The penal-
ties acquired for one BAM-page are combined together in order to
provide an overall rating. The score SPage is adjusted after each
query-fragment i by summing up the logarithm of the penalty PFi

complemented to a constant K as in

SPage =
X

i

`

K − log (PFi)
´

. (2)

The purpose of the logarithm is to sum up big values only for very
small fragment penalties. In case of a linear function, large penal-
ties of bad matching fragments would impact the result and sup-
press the small penalties of good matching fragments [8]. The
remaining processing in phase one is the sorting of all the pages
according to their score SPage and the selection of the best ones.

3. ASSOCIATIVE COMPUTING ENGINE

The development of a new kind of hardware search engine was mo-
tivated by the advantages offered by associative processors having
a high system scalability, without being bounded by the range of
the address bus [7]. In such implementations, the processors par-
ticipate in an operation only on the basis of the data they hold.

3.1. Internal Hardware Architecture

Data parallelism is a basic concept used for associative search-
ing [12] applied to the ACE extending the data parallel paradigm
to a complete computational model. The regular matrix shape of
the BAM, as seen in Figure 3, allows an efficient access to the
data, in form of a bit vector, which is read vertically [5]. For each
access, the basic information is then one bit per BAM page. In
other words, reading N bits from the BAM affords the processing
of N pages at the same time by the ACE. If the evaluation of the
data afterwards can be rapid enough, the bottleneck of the system

0
1
1
0
1
0
1

1

Data Bus
N−bit BAM

0 0 00Query Signature = 1 11{ }... ... Memory Address
Associative Access (column address)

0

Page 1

Page X

One Page Signature

bu
rs

t o
rie

nt
ed

 re
ad

N bits
Page X+1

Page X+N

Bit Attribute Matrix

Pa
ge

 E
nt

rie
s

Fig. 3. Vectorized data accesses to the Bit Attribute Matrix.

FIFO

FIFO

FIFO

FIFO

Bubble
Merger

Result Sorting Unit

RSU Decoder

FIFO Depth

1

Sorter
Bitonic

Bitonic
Sorter

M

1

M

S
er

 M
:1

M
ul

tip
le

xe
r P

:1

S
er

 M
:1

P

1
Acc.

Page Score 1µALU

Page Score N

Acc.
µALU

SCU Decoder

@PageN

@Page1

FIFO Depth

Acc.

Acc.

Fragment Penalty 1

Fragment Penalty N

Penalty Calculating Unit

µALU

µALU

PCU Decoder

Score Calculating Unit

16bit Instruction Bus from Global Scheduler

N−
bi

t v
ec

to
r f

ro
m

 B
AM

Instr. Decoder

BAM Interface

Addr.
Gene. Ctrl.

Burst

Addr. Bus

Data Bus

Ctrl.

1

1

N
w
r

mode

upload

max

R
es

ul
t L

is
t

min

S
ta

nd
ar

d
M

em
or

y
S

ub
sy

st
em

Fig. 4. Internal hardware architecture of the ACE showing the 3 modules (PCU, SCU and RSU) performing the first phase of the search
algorithm plus a BAM interface that ensures efficient data exchanges, independent from the type of memory used.

will remain at the BAM interface. Therefore, we had to design a
processing unit able to handle the data as quickly as possible, thus
ensuring a maximization of the BAM throughput.

As seen in Figure 4, the core of the ACE is made of a very
regular structure of small µALUs (micro-Arithmetic and Logic
Units) allowing a vertical scalability among N parallel sections.
Each section processes one bit of the BAM vector and follows the
equations related to the pattern matching arithmetic described pre-
viously. It performs the first phase of the search algorithm, the
realization of which is divided into many sub-stages correspond-
ing to the parallel processing of slots, fragments and pages, i.e.
respectively the PCU (Penalty Calculating Unit), the SCU (Score
Calculating Unit) and the RSU (Result Sorting Unit).

The BAM interface is responsible for fetching the correct lines
and rows of the matrix from the memory subsystem into the pro-
cessing units. Depending on the mode set, it allows either a rapid
transfer of the data from the host computer to the BAM container
bypassing the hardware accelerator in write configuration (mode
w) or a burst oriented associative access to the BAM for the query-
ing activities in read configuration (mode r). Moreover, it serves as
an interfacing adaptor between a physical memory system and an
abstract scalable associative computing engine. The PCU calcu-
lates the penalties yielded for each query-fragment and actualizes
the result in its accumulator, according to equation (1). At the end
of each fragment, the result consisting of N fragment-penalties of
the query in N pages is passed to the next processing unit. The
SCU converts these penalties into N page-scores for all the frag-
ments in the query string, according to equation (2). The accumu-
lation of the logarithms calculated sequentially with a very com-
pact hardware circuit as in [11] occurs during the processing of
the next fragment by the PCU. When PCU and SCU calculate the
scores of N new pages, the RSU, last unit in the processing chain,
keeps the best matching pages from the N previously calculated
ones and merges them in the result list.

3.2. Lower Bounds on Modular Parallel Processing

As depicted in Figure 4, the highly pipelined internal architec-
ture of the ACE allows a very fast parallel processing of the data
read from the BAM. Because many physical media are suitable
for storing the BAM, the ACE has been designed very flexibly,
so that it can interface different memory types. Therefore, the
FIFO (First-In First-Out) buffers inserted between the processing
units are meant to handle burst accesses performed by the mem-
ory subsystem. Moreover, they synchronize the data exchanges

and permit an efficient scheduling referenced to the PCU. They al-
low, without any input multiplexer, to reuse the same computing
hardware in the PCU and in the SCU with time-multiplexed uncor-
related data. Let BL be the length of a burst. Considering that the
PCU has to read data from the BAM continuously, we must have
the execution time t in clock cycles such that

tSCU ·BL ≤ tPCU ·BL and tRSU ·BL ≤ tPCU ·BL. (3)

As seen in Figure 4, the sorting method of the RSU is partially
based on a recursive implementation of an M input parallel Bitonic
sorting algorithm [2, 6] with a complexity of O(log2

2
M), followed

by a serial Bubblesort merger of depth R with a linear complexity
of O(R). Using P serializers (with P = N/M) and one multi-
plexer, the merger inserts a new value from the output list of each
bitonic sorter only if it is larger than the minimum score in the
result list. Moreover, the RSU has the possibility to slow down
the PCU if it needs more time to sort the results in order to avoid
an overflow in the FIFOs. But this case occurs only at the very
beginning of the search process when the result list is empty.

When the result list is full, no new pages from the SCU are
likely to be inserted. This is a probabilistic remark that allows
us to design a much simpler system which has the ability, at very
low costs in terms of delay and latency, to adapt the calculation
intensive starting phase on a reduced architecture. With these con-
siderations, the time for the RSU module converges to

tRSU = BL ·
`

log2

2
M + P

´

(4)

after a small amount of time. Thus, two parameters play an im-
portant role from the hardware point of view: i) the increasing of
the width N of the architecture, which slows down the RSU, in-
creases the core area of the ACE but reduces the overall search
time. ii) the length BL of the burst accesses, which increases the
depth of the FIFOs, but makes the ACE suitable for more media
types. By setting the depth of the FIFO to one, the architecture
might only support direct addressing memory devices, though its
area would be significantly reduced.

4. PERFORMANCE MEASUREMENT

For testing the architecture and the hardware implementation, we
used a prototyping platform for a reconfigurable SoC (System on
Chip) design. The board is equipped with generic components
providing the required communication infrastructure to link the
ACE to a personal computer through a PCI interface. It includes

128K 1M 4M 8M 16M 128M 256M64M32M2M512K256K

BAM size in bytes

PIII@933MHz, data in SDRAM−133
PIII@933MHz, data in IBM ATA−HDD

ACE, Xilinx VirtexE FPGA, 100MHz

Speedup ~x100

Speedup ~x8

100

10

1

.1

10m

1m

100µ

10µ

Saturation

Q
ue

ry
 ti

m
e

in
 s

ec
on

ds

Fig. 5. Performance graph of the search algorithm running on a
PC with the BAM is located in SDRAM or in HDD compared to
the ACE implemented in a Xilinx FPGA.

an FPGA from the Xilinx Virtex-E series which can emulate cir-
cuits with a complexity of four million system gates and 128 MB
of SDRAM (Synchronous Dynamic Random Access Memory) ac-
cessible over a 32 bit bus. The model works with a 100 MHz clock
frequency and can process 32 pages per clock cycle. On the other
hand, the software model runs under Linux with a PentiumTMIII
with 256 MB SDRAM. For the simulation of queries in databases
of different lengths, the PC encountered problems for BAMs big-
ger than the available memory space. Dynamic allocation failed
and the search process was aborted.

Figure 5 shows the time needed for the searching of one sen-
tence of text for both the PC and the ACE. It appears clearly as
expected that the search time varies linearly with the size of the
BAM. The saturation zone on the left part of the figure reflects
some side-effects for the queries performed on the PC only, where
the BAM was stored on the HDD (Hard Disk Drive) and in the
RAM. On the one hand, the operating system needs to administer
some tasks with a higher priority than the search in a multi-tasking
environment. On the other hand, the access time to a hard disk is
quite long, most of all because of the positioning of the heads at
the right disk sector. This intrinsic constraint leads to the fact that
the simulated HDD-based queries could not run under 100 ms.

Further measurements proved the linearity of the method to
the length of the query as well as the size of the BAM. The sec-
ond phase of the search – dealing with an exact matching of the
retrieved documents, as explained in Section 2 in this paper – was
not considered in our benchmark. Its duration is very short and

depends exclusively on the amount of matching entries returned
by the first phase of the search. Nonetheless, it has been experi-
enced that, depending on the quality of the feature engineering, the
second phase might even be entirely omitted.

5. CONCLUSIONS

We proposed here a fast scalable architecture for the computing
of search algorithms based on approximate matching. With its
100MHz clock frequency, the ACE brings a speedup factor of two
and three orders of magnitude compared to the actual processor
implementation where data is read from the SDRAM and from the
HDD of the PC respectively.

The performance of the ACE is directly linked to the band-
width of the BAM interface. Increasing the throughput of the
memory device would consequently diminish the searching time.
Compared to a previous work described in [10], the system pre-
sented in this paper proposes an architecture suitable for burst ori-
ented storage-media types.

In addition, the ACE offers an extremely low power consump-
tion compared to a PC running at many GHz. Due to its low cost
and very reliable high speed design, the ACE is meant to be used
in multimedia applications devices with reduced or limited power
supply, requiring efficient and fast data mining.

6. REFERENCES

[1] R. Baeza-Yates, B. Ribeiro-Neto, “Modern Information Re-
trieval”, Addison Wesley, 1999, ISBN: 0-201-39829-X.

[2] K. E. Batcher, “Sorting Networks and Their Applications”,
AFIPS Proc. Spring Joint Comp. Conf., pp. 307-314, 1968.

[3] K. E. Batcher, “Bit-Serial Parallel-Processing Systems”,
IEEE Trans. on Comp., Vol. C-31, No. 5, pp. 377-384, 1982.

[4] P. van Beek, J. R. Smith, T. Ebrahimi, T. Suzuki, J. Askelof,
“Metadata-Driven Multimedia Access”, IEEE Signal Pro-
cessing Magazine, Vol. 20, No. 2, pp. 40-52, 2003.

[5] S. Berkovich, E. El-Qawasmeh, G. M. Lapir, “Organization
of Near Matching in Bit Attribute Matrix Applied to Asso-
ciative Access Methods in Information Retrieval”, Proc. 16th

IASTED Conf. on Applied Informatics, pp. 62-65, 1998.
[6] D. E. Knuth, “The Art of Computer Programming, Vol. 3,

Sorting and Searching”, 2nd Edition, Addison Wesley, 1997.
[7] A. Krikelis, C. C. Weems, “Associative Processing and Pro-

cessors”, IEEE Computer, Vol. 27, No. 11, pp. 12-17, 1994.
[8] G. M. Lapir, “Use of Associative Access Method Informa-

tion Retrieval Systems”, Proc. 23rd Pittsburgh Conf. on Mo-
deling and Simulation, Vol. 23, No. 2, pp. 951-958, 1992.

[9] G. M. Lapir, H. Urbschat, “Associative Memory”, Interna-
tional Patent, IPN. WO 02/15045A2, WIPO, 2002.

[10] C. Layer, H.-J. Pfleiderer, P. Ruján, G. Lapir, “High Per-
formance System Architecture of an Associative Computing
Engine”, Proc. IFIP WG10.5 VLSI, pp. 74-79, 2003.

[11] C. Layer, et al., “A Scalable Compact Architecture for the
Computation of Integer Binary Logarithm Through Linear
Approximation”, Proc. ISCAS, pp. 421-424, 2004.

[12] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun,
C. Asthagiri, “ASC: An Associative Computing Paradigm”,
IEEE Comp.: Associative Proc., pp. 19-25, 1994.

	Index
	ICME 2005

	Conference Info
	Welcome Messages
	Venue Access
	Committees
	Sponsors
	Tutorials

	Sessions
	Wednesday, 6 July, 2005
	WedAmOR1-Action recognition
	WedAmOR2-Video conference applications
	WedAmOR3-Video indexing
	WedAmOR4-Concealment & information recovery
	WedAmPO1-Posters on Human machine interface, interactio ...
	WedAmOR5-Face detection & tracking
	WedAmOR6-Video conferencing & interaction
	WedAmOR7-Audio & video segmentation
	WedAmOR8-Security
	WedPmOR1-Video streaming
	WedPmOR2-Music
	WedPmOR3-H.264
	WedPmSS1-E-meetings & e-learning
	WedPmPO1-Posters on Content analysis and compressed dom ...
	WedPmOR4-Wireless multimedia streaming
	WedPmOR5-Audio processing & analysis
	WedPmOR6-Authentication, protection & DRM
	WedPmSS2-E-meetings & e-learning -cntd-

	Thursday, 7 July, 2005
	ThuAmOR1-3D
	ThuAmOR2-Video classification
	ThuAmOR3-Watermarking 1
	ThuAmSS1-Emotion detection
	ThuAmNT1-Expo
	ThuAmOR4-Multidimensional signal processing
	ThuAmOR5-Feature extraction
	ThuAmOR6-Coding
	ThuAmSS2-Emotion detection -cntd-
	ThuPmOR1-Home video analysis
	ThuPmOR2-Interactive retrieval & annotation
	ThuPmOR3-Multimedia hardware and software design
	ThuPmSS1-Enterprise streaming
	ThuPmNT1-Expo -cntd-
	ThuPmOR4-Faces
	ThuPmOR5-Audio event detection
	ThuPmOR6-Multimedia systems analysis
	ThuPmOR7-Media conversion
	ThuPmPS2-Keynote Gopal Pingali, IBM Research, "Ele ...

	Friday, 8 July, 2005
	FriAmOR1-Annotation & ontologies
	FriAmOR2-Interfaces for multimedia
	FriAmOR3-Hardware
	FriAmOR4-Motion estimation
	FriAmPO1-Posters on Architectures, security, systems &a ...
	FriAmOR5-Machine learning
	FriAmOR6-Multimedia traffic management
	FriAmOR7-CBIR
	FriAmOR8-Compression
	FriPmOR1-Speech processing & analysis
	FriPmSS1-Sports
	FriPmOR2-Hypermedia & internet
	FriPmOR3-Transcoding
	FriPmPO1-Posters on Applications, authoring & editi ...
	FriPmOR4-Multimedia communication & networking
	FriPmOR5-Watermarking 2
	FriPmSS2-Sports -cntd-
	FriPmOR6-Shape retrieval

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	1 SIGNAL PROCESSING FOR MEDIA INTEGRATION
	1-CDOM Compressed Domain Processing
	1-CONV Media Conversion
	1-CPRS Media Compression
	1-ENCR Watermarking, Encryption and Data Hiding
	1-FILT Media Filtering and Enhancement
	1-JMEP Joint Media Processing
	1-PROC 3-D Processing
	1-SYNC Synchronization
	1-TCOD Transcoding of Compressed Multimedia Objects
	2 COMPONENTS AND TECHNOLOGIES FOR MULTIMEDIA SYSTEMS
	2-ALAR Algorithms/Architectures
	2-CIRC Low-Power Digital and Analog Circuits for Multim ...
	2-DISP Display Technology for Multimedia
	2-EXTN Signal and Data Processors for Multimedia Extens ...
	2-HDSO Hardware/Software Codesign
	2-PARA Parallel Architectures and Design Techniques
	2-PRES 3-D Presentation
	3 HUMAN-MACHINE INTERFACE AND INTERACTION
	3-AGNT Intelligent and Life-Like Agents
	3-CAMM Context-aware Multimedia
	3-CONT Presentation of Content in Multimedia Sessions
	3-DIAL Dialogue and Interactive Systems
	3-INTF User Interfaces
	3-MODA Multimodal Interaction
	3-QUAL Perceptual Quality and Human Factors
	3-VRAR Virtual Reality and Augmented Reality
	4 MULTIMEDIA CONTENT MANAGEMENT AND DELIVERY
	4-ANSY Content Analysis and Synthesis
	4-AUTH Authoring and Editing
	4-COMO Multimedia Content Modeling
	4-DESC Multimedia Content Descriptors
	4-DLIB Digital Libraries
	4-FEAT Feature Extraction and Representation
	4-KEEP Multimedia Indexing, Searching, Retrieving, Quer ...
	4-KNOW Content Recognition and Understanding
	4-MINI Multimedia Mining
	4-MMDB Multimedia Databases
	4-PERS Personalized Multimedia
	4-SEGM Image and Video Segmentation for Interactive Ser ...
	4-STRY Video Summaries and Storyboards
	5 MULTIMEDIA COMMUNICATION AND NETWORKING
	5-APDM Multimedia Authentication, Content Protection an ...
	5-BEEP Multimedia Traffic Management
	5-HIDE Error Concealment and Information Recovery
	5-QOSV Quality of Service
	5-SEND Transport Protocols
	5-STRM Multimedia Streaming
	5-WRLS Wireless Multimedia Communication
	6 SYSTEM INTEGRATION
	6-MMMR Multimedia Middleware
	6-OPTI System Optimization and Packaging
	6-SYSS Operating System Support for Multimedia
	6-WORK System Performance
	7 APPLICATIONS
	7-AMBI Ambient Intelligence
	7-CONF Videoconferencing and Collaboration Environment
	7-CONS Consumer Electronics and Entertainment
	7-EDUC Education and e-learning
	7-SECR Security
	7-STAN Multimedia Standards
	7-WEBS WWW, Hypermedia and Internet, Internet II

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Christophe Layer
	Hans-Jörg Pfleiderer

