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Abstract

The challenge faced by content-based publish/subscribe
systems is the ability to handle a vast amount of dy-
namic information with limited system resources. In current
p/s systems, each subscription is processed in isola-
tion. Neither relationships among individual subscriptions
are exploited, nor historic information about subscrip-
tions and publications is taken into account. We believe
that this neglect limits overall system efficiency. In this pa-
per, we represent subscriptions using modified binary
decision diagrams (MBDs), and design an index data struc-
ture to maintain distinct predicates and manage associ-
ated Boolean variables. Our MBD-based approach can
address, in a unified way, publication routing and sub-
scription/advertisement covering and merging. We propose
a novel covering algorithm based on MBDs. The algo-
rithm can take historic information about subscription and
publication populations into account and exploits rela-
tions between subscriptions. We explore merging, especially
imperfect merging, and discuss an advertisement-based op-
timization applicable to subscription merging.

1. Introduction

A publish/subscribe (p/s) system is comprised of infor-
mation producers who publish and information consumers
who subscribe to information. The p/s system matches or
routes relevant information to interested subscribers. There
has been great interest in p/s over the past few years. In
academia, the focus has been on developing efficient match-
ing algorithms for centralized p/s [9] and on content-based
routing [6, 11, 8] for distributed p/s architectures. In indus-
try, several standards have emerged that define common ap-
plication programming interfaces for p/s-style interactions,
such as the CORBA Notification Service, the OMG Data
Dissemination Service specification, and, partially, the Java
Messaging Service. Applications of p/s technology range
from selective information dissemination, location-based

services, network management, to workload management
and scheduling.

For Internet-scale adoption of p/s, one of the main chal-
lenges that still have to be overcome, is the ability to handle
large amounts of dynamically changing information content
and interest specifications (i.e., publications and subscrip-
tions) at the p/s broker. A publication arriving at a broker
has to be correlated against the entries in the routing table
to identify the proper forwarding targets [6]. The larger the
routing table, the more expensive this routing decision be-
comes.

Subscription covering and merging have been proposed
to alleviate this problem [11]. However, current approaches
propose fragmented solutions that are either able to do effi-
cient routing [8, 12], compute cover relations [6], or deter-
mine perfect merging relations [11].

All existing covering approaches must compute for each
subscription two relations in the worst case (i.e., is-covering
and is-covered-by). Moreover, in many current p/s systems,
each subscription is processed and stored independently.
That is neither historic information about subscriptions and
publications, nor semantic or logic relationships between
individual predicates in subscriptions is taken into account
in processing. Historic information, for example, may re-
veal popular predicates and popular combinations of pred-
icates, which can serve to optimize routing, covering, and
merging (e.g., a plane ticket always has a source, destina-
tion, and price predicate (semantic relationship)). Logic re-
lationships can serve to infer the truth/falsehood of individ-
ual predicates, if the relationship between such predicates is
tracked. Existing approaches cannot take full advantage of
this kind of information.

We propose novel data structures and algorithms for
the design of a p/s broker that unifies routing, covering,
and merging in one model and can take advantage of the
above mentioned auxiliary information (i.e., statistics on
predicate popularity, etc.). The contributions of this paper
are threefold. First, we present data structures for manag-
ing subscriptions based on modified binary decision dia-
grams (MBD). Our data structures support in a unified man-



ner publication routing, subscription covering and merging.
Moreover, our underlying predicate data structure ensures
that only distinct predicates are assigned different Boolean
variables. Thus, overlap at the predicate level is avoided
and only unique predicates are stored and evaluated by
the system. This stage also ensures that related predicates
can be placed in favorable proximity in the variable order-
ing underlying the MBDs, which demonstrates performance
gains. Second, we propose an optimized one-phase covering
algorithms to detect covering relations among subscriptions
and a merging algorithm to identify mergers1. Third, we dis-
cuss merging-based routing and explore the characteristics
of imperfect merging. Finally, an advertisement-based opti-
mization is proposed to enhance imperfect merging.

This research is part of the Toronto Publish/Subscribe
System research efforts [14, 10, 4, 13, 16] and specifically
part of the PADRES project. The PADRES project is a
content-based p/s middleware platform, with features in-
spired by the requirements of workflow management and
business process execution systems. PADRES consists of a
set of brokers connected by a peer-to-peer overlay network.
Clients connect to brokers using binding interfaces such as
Java Remote Method Invocation (RMI) and Java Messag-
ing Service (JMS). Message routing in PADRES is based
on the advertise-publish-subscribe model.

The paper is organized as follows. Section 2 combines
the presentation of background material and related work,
as they are closely coupled in our discussion. Section 3 pro-
poses our MBD-based architecture for the p/s broker de-
sign. Section 4 presents our novel subscription covering al-
gorithm. In Section 5, we discuss merging-based routing
and explain how to create a new merger based on perfect
and imperfect merging rules. In Section 6, we experimen-
tally validate our approach and compare the performance of
perfect merging, imperfect merging, and our covering tech-
niques with common alternatives.

2. Background and Related Work
To keep this paper self-contained, we provide an

overview of key concepts used in the reminder of this pa-
per. This includes content-based routing, covering, merg-
ing and binary decision diagrams. We also discuss related
work along these dimensions.

Content-based Routing: The goal of content-based
p/s systems is to direct messages from source to des-
tination based entirely on the content of the mes-
sages. In a content-based p/s system, a publication P
is a set of attribute-value pairs. Formally, P has a set
of attributes {a1, a2, ..., ai, ...an}, and is described as
P = {(a1, v1), (a2, v2), ..., (an, vn)}. A subscription

1 With one-phase, we mean that our algorithm computes all covering re-
lations at once

S is specified as relations between attributes and val-
ues. It is a conjunction of a set of predicates which
are also often called attribute filters. A predicate (at-
tribute,operator,value) is a constraint on the value of the at-
tribute. In advertisement-based p/s systems, a publisher
issues an advertisement before it publishes. An advertise-
ment has the same format as a subscription. An advertise-
ment allows the publisher to issue a set of matched pub-
lications. Fig. 1 shows a scenario of advertisement-based,
content-based routing. Advertisements are used to avoid
broadcasting subscriptions in the network, since subscrip-
tions are only routed to the publishers who advertise what
the subscribers are interested in. In the brokers the sub-
scription routing table (SRT) is used to route subscriptions.
Publications will trace back along the path setup by sub-
scriptions to interested subscribers. The publication routing
table (PRT) maintains the path information.
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Figure 1. Advertisement-based Content-
based Routing

We call a subscription or an advertisement a filter in
the later part of this paper. P(S) refers to all publications
that match S. Two versions of content-based routing are
known, simple routing, for example Gryphon [12], and
covering-based routing which is discussed in SIENA [6]
and JEDI [8]. In this paper, we propose an efficient p/s bro-
ker design based on MBDs that unifies routing, covering
and merging. Existing approaches, either do not perform all
these operations together, or use different algorithms and
data structures for each one of these operations.

Covering Definition: The goal of covering-based rout-
ing is to remove redundant subscriptions from the network
in order to maintain a compacted routing table and re-
duce network traffic. In Fig. 1, if s1 covers s2, we can
safely remove s2 on Broker 2. The concept of covering in-
cludes predicate covering and filter covering. For predicate
f1 = (a1, op, v1) and f2 = (a2, op, v2), we say f1 cov-
ers f2, denoted as f1 � f2, if and only if a1 = a2 and
all attribute-value pairs matching f2 also match f1. A fil-
ter F1 covers another filter F2 if the publication set match-
ing F2 also matches F1, that is, P (F1) ⊇ P (F2). The for-
mal definition of the covering relation is as following: Sup-



pose F1 = f1
1 ∧ f1

2 ∧ ...∧ f1
n, and F2 = f2

1 ∧ f2
2 ∧ ...∧ f2

m,
where n≤m. F1 � F2 if and only if ∀f1

i ∃f2
j , f1

i � f2
j [11].

The covering relationship defines a partial order on the set
of all filters. SIENA [6] and JEDI [8] exploit covering-based
routing. Unfortunately, they restrict the expressiveness of
content-based routing, and do not consider merging tech-
niques. Subscriptions in SIENA [6] are represented in a par-
tially ordered set (poset), and the partial order is defined
by the covering relations. However, the poset is expensive
to maintain because of the nested covering relations. We
propose an index data structure to ensure that only distinct
predicates are stored and evaluated. Covering rules for pred-
icates of various data types are discussed in REBECA [11].
REBECA uses two separate covering algorithms: one to de-
tect whether a subscription is covered by the given routing
table or not, and the other to identify what subscriptions in
the routing table are covered by the inserted subscription. In
this paper, we develop a novel covering algorithm based on
MBDs which combines these two functions.

Merging Definition: The merging technique is used for
further minimizing the routing table size and the network
traffic overhead in a content-based network. It is an ex-
tension of covering. If s1 and s2 in Fig. 1 have no cov-
ering relations but largely overlap with each other, they
can be merged into a more general subscription on Bro-
ker 2. A new filter FM , which covers the original ones, that
is P (FM ) ⊇ P (F1) ∪ P (F2) ∪ ... ∪ P (Fn), is called a
merger of Fi(i = 1, ..., n). There are two kinds of merg-
ers. If the publication set of the merger is exactly equal to
the union of the publication sets of the original filters, i.e.,
P (FM ) = P (F1)∪P (F2)∪ ...∪P (Fn), then FM is a per-
fect merger; if ⊃ holds, that is the merger is larger than the
union, it is an imperfect merger. Imperfect merging can re-
duce the number of subscriptions. On the other hand, it may
allow publications being forwarded into the network that do
not match any of the original subscriptions. REBECA [11]
presents an evaluation of several routing algorithms, in-
cluding covering-based routing and merging-based routing,
however, it only focuses on perfect merging. No details for
imperfect merging are given. Crespo et al. [7] study the
complexity of the query merging problem and show that the
n-query merging problem is NP-complete. They also dis-
cuss and compare several optimal and heuristic algorithms
to try to find an optimal merging pattern. In this paper, we
discuss merging-based routing, especially imperfect merg-
ing, define the imperfect degree for an imperfect merger,
and propose an advertisement-based optimization to reduce
the number of false positives introduced by an imperfect
merger.

BDD-based Approach for Matching: Ordered Bi-
nary Decision Diagrams (BDDs) are abstract repre-
sentations of Boolean functions [3]. The key idea of
BDDs is that by representing a Boolean function as

a rooted, directed acyclic graph, Boolean manipula-
tions become computationally simpler. BDDs are widely
used in a number of areas, such as digital system de-
sign, finite-state system analysis and artificial intelli-
gence [3]. In the BDD-based approach to p/s, each pred-
icate is assigned a Boolean variable, which is a symbol
representing the predicate. A subscription is expressed us-
ing a BDD as a Boolean function of those variables based
on a predefined order. Fig. 2 shows a subscription ex-
pressed in a BDD with variable order x≺y≺z. Each
non-terminal node v has two children: low(v) if the vari-
able is assigned 0, and high(v) if the variable is assigned 1.
The labelled values of non-terminal nodes indicate the vari-
able ordering with respect to ≺. A terminal node denoted
by a rectangular box is labelled 0 or 1. Each node repre-
sents a Boolean function f = x̄ · low(v) + x · high(v),
denoted as ITE(x, low(v), high(v)).
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Figure 2. A Subscription BDD

Campailla et al. [5] proposed a matching algorithm for
p/s systems using Binary Decision Diagrams. Since BDDs
can be used to represent arbitrarily complicated Boolean
functions, an expressive subscription language can be nat-
urally supported. However, this approach did not demon-
strate how the Boolean variables used by the BDDs are or-
ganized. Also, the impact of the choice of the variable or-
der on the BDD representation was ignored. The approach
was only applied to solving the matching problem for cen-
tralized p/s systems, and the evaluations were limited, not
showing scalability results at large subscription workloads.
In this paper, we use MBDs, an extension of BDDs, to rep-
resent routing state for content-based p/s (i.e., distributed
p/s), and discuss unified routing, covering and merging
techniques and their experimental evaluation.

3. MBD-based Architecture

3.1. Global Predicate Index

The number of distinct predicates in Internet-scale p/s
systems is extremely large. We build a predicate index to
manage all distinct predicates in a broker efficiently, which
is shown in Fig. 3. At system start the index is empty. For
each predicate of a given subscription, we traverse the in-
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Figure 3. Boolean Variable Index

dex, if we find the predicate, it means the predicate already
exists in the broker and an existing variable has already been
assigned to it; if the predicate is not found in the index,
we insert it as a new one and assign a new Boolean vari-
able to it. After all the predicates have been assigned vari-
ables, a BDD for this subscription is build based on these
Boolean variables. Using the indexing data structure, we as-
sign Boolean variables to distinct predicates. All the pred-
icates are organized according to data type, attribute, op-
erator, and value in the index. This organization speeds up
the process of finding a particular predicate and maintains
the predicates more efficiently by storing distinct predicates
only once in the broker.

Considering that there maybe a large number of com-
mon predicates among subscriptions, we represent several
subscriptions using a Modified Binary Decision Dia-
gram (MBD), instead of a single BDD for each subscrip-
tion. An MBD is an extension of a BDD, which has multi-
ple roots and can represent multiple-output functions [15].
An MBD can be used to express a set of subscrip-
tions that share common predicates. For example, in Fig
3, subscription S1=(price,=,150)∧(time,eq,‘July 20,2004’)
∧(destination,eq,‘Ottawa’) and S2=(price,<,150)∧(time,eq,
‘July20,2004’)∧(destination,eq,‘Ottawa’) share two predi-
cates. They can share the common predicates in one MBD
with two output nodes, which is denoted as MBD(o1,o2).
Generally, an MBD represents a set of subscriptions, de-
noted as MBD(o1,...,oi,...on). As a result, in a broker, the
routing table of subscriptions can be organized as a set of
MBDs. Fig. 4 shows the algorithm of inserting a subscrip-
tion into a set of MBDs.

Using MBDs to represent subscriptions has several ad-
vantages. First, subscriptions are stored more efficiently by
sharing the same predicates among each other. Second, the
matching algorithm can be transformed into the evaluation
of MBDs, which has a time complexity of O(n), where n
is the size of the MBD. Third, during the evaluation of an
MBD, the evaluation result of an internal node, which is

Input: New subscription s, a set of MBDs Ω

Output: Ω with s inserted
1: Build a BDD for s; insert := false;
2: For each MBD ω ∈ Ω, which has n outputs
3: If (insert == true) Break;
4: If (s.output has the same child nodes as ω.oi)
5: Insert s into ω as on+1;
6: insert := true ;
7: If (insert == false) Add s in ω;
8: Return Ω;

Figure 4. MBD Insertion Algorithm

shared by several output nodes, can be reused. Since shared
nodes are evaluated only once, redundant computation is
eliminated. The matching algorithm can be improved sig-
nificantly in this way. The same applies to the covering al-
gorithm. Fourth, subscriptions organized in an MBD have
more common predicates. Two output nodes in an MBD
which have the same child nodes have a higher chance of
being merged. In Fig. 5, for instance, two output nodes can
be merged as (price,≤,150). Since we chose candidates of
merging among output nodes of an MBD, instead of the
whole routing table, the merging process is simplified. We
interpret a BDD as an MBD with only one output node in
the later part of this paper.

3.2. Variable Ordering

It is well known that the variable ordering problem is
NP-complete [2], and a reasonable ordering of the variables
can avoid the exponential growth of the number of nodes in
a BDD. We order Boolean variables in two ways. One is the
order of attributes, the other is the order of variables cor-
responding to the same attribute. For attribute ordering, a
proper order may lead to more subscriptions sharing a com-
mon predicate pattern among each other. We can design
an order of attributes based on the knowledge of histori-
cal subscriptions. There are three main criterions that can be
used for attribute ordering. First, the frequency of attributes
based on the analysis of historic data. We can get the at-
tribute set which includes all attributes in a particular ap-
plication. The frequency of each attribute indicates the pop-
ularity of this attribute. We prefer to place attributes with
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high frequency in the bottom of the MBDs in order to share
it with other subscriptions. Second, distribution of an at-
tribute. If predicates of an attribute are focused in a certain
range, they are more likely to be shared. As a result, this at-
tribute should be placed in a lower position as well. Third,
application related semantics are also useful for variable or-
dering. For instance, a subscription about plane tickets al-
ways contains attributes destination and price. The two at-
tributes can be placed close to each other in the order. The
attribute ordering is key for sharing variables among single
BDDs. For variables with the same attribute, however, the
ordering among them is not so important to the MBD’s size
because each attribute appears once in a subscription. Our
evaluation shows that proper attribute ordering can greatly
reduce the number of MBDs. In other words, an MBD may
have more output nodes representing more subscriptions,
while the order of variables corresponding to the same at-
tribute does not show significate changes over random or-
dering.

3.3. MBD-based Matching Algorithm

A publication matches a subscription if for each predi-
cate in the subscription there is an attribute-value pair in the
publication that satisfies the attribute constraint. The match-
ing algorithm has two steps. First, for each attribute-value
pair in the publication, the algorithm traverses the global
predicate index and computes a truth assignment to all ex-
isting variables corresponding to the same attribute. Default
value 0 is assigned to a variable whose attribute is not con-
tained in the publication. Second, each MBD in the routing
table is evaluated with respect to the truth assignment. The
number of MBDs effects the matching time, instead of the
subscription number. If an output node oi in MBD(o1,...,on)
has value 1, it means the subscription corresponding to oi is
matched by the publication. Since BDD-based matching ap-
proach for p/s has been discussed in [5], we do not repeat
the MBD computation algorithm in this paper, which is sim-
ilar to the BDD evaluation method.

4. Covering-based Routing

4.1. Basic Idea of Covering

The goal of covering-based routing is to guarantee a
compact routing table without information loss, so that
the performance of a matching algorithm can be improved
based on the concise routing table and no redundant in-
formation is forwarded into the network. When a broker
receives a new subscription from a neighbor node, it will
do the following steps to determine whether to forward it
or not. First, it searches the routing table to determine if
the subscription is covered by some existing subscription
from the same neighbor. If it is, the new subscription can
be safely removed without inserting it into the routing table

and, of course, without forwarding it further. If the new sub-
scription is not covered by any existing subscriptions, the
broker needs to check if it covers any existing subscriptions.
If it does, those subscriptions which are covered should be
removed. ACK messages are used to ensure that all the cov-
ered subscriptions are removed completely. Before remov-
ing them from the routing table, the broker informs its next-
hop neighbors about the deletion by sending unsubscrip-
tion messages to them, and waits for ACK messages back
from these neighbors. If a neighbor broker finishes process-
ing the unsubscription message, it will send back an ACK
message. The unsubscription message is sent periodically
with a timeout value of t1 ms until its ACK is received. If
the ACK does not arrive within an interval of time t2 ms,
we assume the neighbor broker has failed. A fault tolerant
module is called to recover SRTs/PRTs. The details are be-
yond the scope of this paper. After the broker receives all the
ACK messages, it can safely remove the subscriptions from
its routing table2. Finally, the broker inserts the new sub-
scription into its routing table and forwards it to its neigh-
bors. These steps guarantee an atomic transaction based on
the ACK messages for unsubscriptions. In this way, the rout-
ing tables remain consistent throughout the p/s system. If
this protocol is not used unsubscriptions may lead to incon-
sistency in routing tables. To summarize, a subscription is
not forwarded to the next-hop node in the network if it has
been covered by an existing subscription.

Processing an unsubscription message is not trivial, since
covering actions may have removed subscriptions from a
broker. If a subscriber wants to unsubscribe a removed sub-
scription, it may cause a “no subscription found” error.
Therefore we cannot simply forward unsubscriptions into
the broker network. In the context of covering, an unsub-
scription, unsub(S), is processed as following: if S is cov-
ered by another subscription, the node simply sends an ACK
back without forwarding it. If S is not covered, the node
should forward unsub(S) to its next-hop neighbors, and re-
cover those subscriptions which previously were covered
by S until the broker receives all ACKs from its neighbors.
Last, S is removed from the routing table and an ACK is
sent.

In advertisement-based p/s systems, since advertise-
ments have the same structure as subscriptions, the adver-
tisement covering can be solved in the same way.

4.2. MBD-based Covering

For subscription covering, we need to identify whether
a subscription is covered by existing subscriptions, or what
existing subscriptions it covers. There are four covering re-
lations between two subscriptions S1 and S2: (0) denoting

2 ACK messages are parameterized by unsubscription message IDs to
not confuse multiple concurrent messages
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no relationship between them; (1) denoting S1 is covered by
S2; (2) denoting S1 covers S2; and (3) denoting the equal-
ity between S1 and S2.

Generally, an MBD can be used to solve N-value func-
tions. Consider a finite set of elements V , where |V | = N .
We can encode each element in V as a vector of n bits,
where n = �log2N�. Suppose function Γ : V → {0, 1}n

maps each element of V to a distinct n-bit vector. In our
case, N=4. We define Γ as following: Γ(0) = [0, 0],Γ(1) =
[0, 1],Γ(2) = [1, 0],Γ(3) = [1, 1]. Boolean operations ∨∗

and ∧∗, are defined as:
X ∨∗ Y = [Xa,Xb] ∨∗ [Ya, Yb] = [Xa ∨ Ya,Xb ∨ Yb]
X ∧∗ Y = [Xa,Xb] ∧∗ [Ya, Yb] = [Xa ∧ Ya,Xb ∧ Yb]

A pair of MBDs can be used to identify the cover-
ing relations, as shown in Fig. 6. For example, with the
new subscription (price,=,80)∧(time,eq,‘July 20,2004’)
∧(destination,eq,‘Ottawa’), the assignment of X is [0,1],
Y is [1,1], and Z is [1,1]. After evaluation, the left-hand
side MBD is 0 and the right-hand side MBD is 1. So
the new subscription is covered by the existing subscrip-
tion. An MBD has a left-hand side MBD and a right-hand
side MBD. For an output node in an MBD, if its eval-
uation result in the LHS MBD is 1, it means a new
subscription covers or equals the subscription corre-
sponding to the output node; if the evaluation result in
the RHS MBD is 1, it means a new subscription is cov-
ered by or equal to this subscription. The evaluation
results of the output node in the two MBDs together deter-
mine the covering relationship.

4.3. Covering Algorithm

Existing approaches use two covering algorithms: one
algorithm to decide whether a new subscription is covered
by existing subscriptions, and another algorithm to deter-
mine a set of subscriptions that are covered by the new sub-
scription. In the covering-based context, if a newly arriv-
ing subscription is covered by an existing subscription, the
new subscription could not cover any subscriptions in this
routing table. On the other hand, if a new subscription cov-

Input: A variable assignment Γ,A set of MBDs Ω

Output: cover, subscription set (R) covered by a new subscription
1: cover = false; RHS = true; R = Φ;
2: For each MBD ω ∈ Ω
3: If (RHS)
4: ComputeMBD(ωR, Γ(R));
5: If (∃ value(oi) == 1)

then cover = true; R = Φ; return;
6: ComputeMBD(ωL, Γ(L));
7: For each output node oi;
8: If value(oi) == 1

then RHS = false; R = R ∪oi

9: Return cover and R;

Figure 7. Covering Algorithm

ers an existing subscription, it could not be covered by any
subscriptions in the routing table. Based on the above two
facts, we propose a completely novel algorithm which com-
bines the functionality of these covering relation determi-
nation operations into one single algorithm. Our algorithm
scans the routing table only once to determine the cover-
ing relations.

Our algorithm has three main steps. First, when a new
subscription arrives, we go through the index checking if all
its predicates have been assigned a variable. If there is a new
predicate, we insert it into the index and assign a new vari-
able to it. As a result, all the predicates have a variable. We
need to identify the covering relations among predicates us-
ing values in {0,1,2,3}, which have the same meaning as
subscription covering. Instead of assigning 0 or 1 as we do
in the matching algorithm, we assign a value in format of
[vl, vr] to variables, where vl, vr ∈ {0, 1}. For example, a
value [0, 1] indicates the new predicate is covered by ex-
isting predicates. The new subscription gives an assignment
to all Boolean variables. Second, with the truth assignment,
we can evaluate the pair of MBDs to determine the cover-
ing relation. If there is an output node in a RHS MBD that
has value 1, then this means the new subscription is cov-
ered by the routing table, we do not need to evaluate the re-
maining MBDs, and the algorithm stops. Similarly, if there
is an output node in a LHS MBD that has value 1, then this
means the new subscription covers an existing subscription
and, from this point forward, we do not need to evaluate the
RHS MBDs of the remaining MBDs. In this way, we can
speed up the covering algorithm. Fig. 7 shows the details
of step 2. In the worst case, the algorithm has a time com-
plexity of O(mn), where m is the number of MBDs in the
routing table and n is the average size of an MBD graph.
Third, if the subscription is not covered by the routing ta-
ble, we need to remove all the subscriptions it covers, which
we can get from step 2, and insert it into the routing table.
To insert the subscription, we build a BDD for the subscrip-
tion based on its variables, and decide which MBD it should
be inserted into. If in an MBD there exists an output node



which has the same child nodes as the new BDD, we insert
the BDD into the MBD by adding an output node on the
child nodes. We can benefit from the insertion in the merg-
ing algorithm, which will be discussed in Section 5.2.

4.4. Variable Dependency Optimization

In the covering algorithm, we need to check the covering
of predicates repeatedly when a new subscription arrives.
Those redundant checking can be eliminated by caching the
variable dependencies. For example, if x1=(price,≥,10) is
true, then x2=(price,≥,8) must be true, denoted as x1 →
x2. In the indexing data structure, the two predicates are
represented by different variables, but there is a variable de-
pendency between them. To make the cache more efficient,
we maintain a concise variable dependency table, which is
complete and minimal in size. For example, if there is an-
other variable x3=(price,≥,5), then we also have x2 → x3

and x1 → x3. However, x1 → x3 is redundant since we
can deduce it from the other two variable dependencies. As
a result, the table with the first two dependencies is com-
plete and minimal. Fig. 8 shows the algorithm for comput-
ing the minimal closure for variable dependencies. For the
worst case, the time complexity of the algorithm is O(n2),
where n is the number of variable dependencies. Caching
these variable dependencies can improve the performance
of the covering algorithm, especially when the index grows
large.

5. Merging-based Routing
Subscriptions which are not in any covering relation can

be merged into a new subscription thus creating a more con-
cise routing table. The efficiency of the p/s system can be
further improved by merging-based routing which takes ad-
vantage of this merged routing table. Advertisements can
be merged in the same way. We prefer to do perfect merg-
ing for advertisements in order to not route subscriptions
to wrong destinations, as would be the case of imperfect
merging-based advertisement merging.

5.1. Basic Idea of Merging

The three core problems of merging in p/s systems are
when to do the merging, what should be merged and how

Input: New variable v, A set of v.d.’s VD
Output: Minimal closures of variable dependencies

1: Add all the variable dependencies of v → u in VD,
where u∈ existing variable set

2: Do until VD does not change
3: For each v.d. vi → ui in VD do
4: If VD - {vi → ui } |= vi → ui

then remove vi → ui from VD
5: Return VD

Figure 8. Minimal Variable Dependencies

to do the merging. It is not wise to try to merge every sub-
scription when it is received, as it would cost too much time
and system resources, thereby degrading the efficiency of
the whole system. We need some merging policies to de-
cide when to do the merging. For example, we can simply
do merging periodically, or start the process when the rout-
ing table size has reached a certain threshold. The incoming
rate of new subscriptions and the usage of network band-
width can also be considered as merging policies. In our
evaluation, we start merging when the average number of
output nodes in an MBD reaches a given value.

5.1.1. Creation of a Merger Given a routing ta-
ble, there are many ways to combine a set of subscrip-
tions into merged ones. For example, three subscrip-
tions could be merged pairwise, merged to one sub-
scription, or not merged at all. As a result, we have to
consider all the possible ways for subscription merg-
ing, which has been proven to be NP-complete. Merging
rules are used for what and how to merge. Two subscrip-
tions that come from the same broker can be merged, if they
satisfy merging rules. There are two kinds of rules, per-
fect merging rules and imperfect merging rules. For exam-
ple, it is a perfect merger if we merge two output nodes in
Fig. 5 into (price,≤,150).

Imperfect merging will introduce false positives, that is
some publications that do not match any of the original
subscriptions will match the imperfect merger. The false
positives increase the network traffic overhead. Since we
only merge subscriptions coming from the same broker, the
false positives only occur in the broker network. Clients will
not receive any unwanted publications. Although imperfect
merger may cause some unnecessary publications to be for-
warded into the broker network, thus increasing the net-
work traffic overhead, an imperfect merger is useful in some
situations in which a perfect merger is hard to compute.
For instance, there are several subscriptions which have
only one predicate different from each other:(price,>,150),
(price,=,145), (price,=,147) and (price,=,148). It is diffi-
cult to find a perfect merger for them. In this situation, an
imperfect merger is a good compromise. We can merge the
different predicates into (price,≥,145). Although we intro-
duce false positives, we reduce the routing table size. An
imperfect merger is created by imperfect merging rules.
Tab. 1 shows some rules which are suitable to subscriptions
that have the same attribute set and have only one differ-
ent predicate. More rules can be applied, for example, some

p1 p2 Conditions Merger
(attr,<,v1) (attr,>,v2) v1 < v2 (attr,isPresent,0)
(attr,<,v1) (attr,=,v2) v1 < v2 (attr,≤,v2)
(attr,>,v1) (attr,=,v2) v1 > v2 (attr,≥,v2)

Table 1. Some Imperfect Merging Rules
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Figure 9. Merge-based Routing

subscriptions which have one or two predicates are differ-
ent can be merged together by simply dropping the different
predicates.

5.1.2. Cancellation of a Merger A merger may be re-
moved in the following situations: if an unsubscription for
a part of the merger is received, or there is a new subscrip-
tion which covers the new merger.

We explain this with the following example. Suppose
subscription S1 and S2 have no covering relations, but they
can be merged into a new merger S3, as shown in Fig. 9 (a).
The new merger will be cancelled if there is an unsubscrip-
tion message of part of the merger that arrives from node 3,
say unsub(S1), then S3 needs to be unmerged and decom-
posed into the original smaller subscriptions. The message
unsub(S3) is forwarded instead of unsub(S1). Meanwhile
the remainder of the merger (S2) should be recovered, as
shown in Fig. 9 (b). A merger may be removed because of a
covering relation. For instance, in Fig. 9 (c), a new S4 is re-
ceived by node 4 which covers the merger S3, and node 4
will remove S3 from its routing table.

5.2. MBD-based Merging Algorithm

To merge subscriptions in a given routing table, we need
to select proper candidates among subscriptions in the rout-
ing table. The candidates should have similar structures, for
instance, their predicates are based on the same attribute set,
and have only one or two different predicates. It is not triv-
ial to select such candidates for merging, especially when
the routing table is extremely large and subscriptions are
not organized properly. In our routing table, subscriptions
are grouped by MBDs. Only subscriptions that share most
of their predicates can be built in the same MBD. This re-
quirement is similar to the criteria of selecting candidates
for merging. In other words, subscriptions built in the same
MBD have a better chance to be merged. Two output nodes
corresponding to the same attribute in an MBD have the
same child nodes means that subscriptions represented by
the two output nodes have only one predicate different from

each other. Therefore the two output nodes can be merged if
some merging rule is satisfied. If two subscriptions are build
in different MBDs, we do not merge them by assuming
that they have less chance to match the merging rules. Our
merging algorithm is described in Fig. 10. A new merger
may cause new covering relations, before inserting the new
merger into the routing table, we need to remove all sub-
scriptions it covers.

5.3. Imperfect Merging

Imperfect merging is a way to further reduce the rout-
ing table size based on perfect merging. The goal of per-
fect merging is to reduce the routing table size by compact-
ing highly overlapping subscriptions, and at the same time
avoid introducing false positives of matched publications. It
is an ideal way to do merging. If a system can allow a cer-
tain degree of false positives, we can apply imperfect merg-
ing rules to those subscriptions that can not be merged per-
fectly. The routing table size can be reduced significantly
by imperfect merging. On the other hand, the network traf-
fic would be increased because of the false positives intro-
duced. To avoid sending false positives to clients, we merge
subscriptions with the same last-hop broker. Only the net-
work traffic overhead of the internal broker network would
be increased. In Fig. 9 (a), for instance, merger S3 is created
on node 4. If S3 is an imperfect merger, the false positives
exist between node 4 and node 3. Node 3 would not forward
these unwanted publications to its next-hop brokers. There
is a tradeoff between routing table size and network traffic.
We define the imperfect degree, which measures the imper-
fectness of an individual new merger, to balance this trade-
off. A formal definition is given below.

Definition 1 Suppose FM is a merger of F1, F2,...,Fn, the
imperfect degree of FM is :

Dimperfect =
|P (FM ) − ∪n

i=1P (Fi)|
|P (FM )|

Intuitively, this means that the imperfect degree of FM

is the ratio of the shaded area to the whole square in
Fig. 11 (a). Whether or not two subscriptions can be merged
depends on what imperfect degree the system allows. The
bigger the imperfect degree allowed, the more subscriptions
will be merged. The imperfect degree of a perfect merger is
0.

The imperfect degree itself is not enough to balance the
tradeoff between routing table size and network traffic. For
example, given two imperfect mergers M1 and M2, at M1’s
imperfect degree be smaller than M2’s, then the number of
publications matching M1 may be larger than that match-
ing M2 considering the distribution of publications in the
system. In other words, even though M2 has a larger imper-
fect degree it may introduce fewer false positives than M1.
Thus, we prefer merging M2 instead of M1, although M1’s



Input: A set of MBDs Ω

Output: A set of merged MBDs Ω

1: For each MBD(o1,...,on) ∈ Ω

3: If (|n| > 1)
4: Divide output nodes into groups. Output nodes which have

different attributes and child nodes are put into the same group;
5: For each group
6: check the perfect/imperfect merging rules;
7: If there is a rule can be applied
8: create a merger;
9: remove subscriptions covered by the new merger;
10: insert the merger into Ω;
11: Return Ω

Figure 10. Merging Algorithm

imperfect degree is smaller. We define a new parameter to
quantify this effect, the imperfect merging threshold (IMT).
The IMT is derived from the imperfect degree by multiply-
ing the probability of a merger and its imperfect degree. A
merger is created if its IMT is smaller than a specified value.
The IMT considers the distribution of the publications and
the number of predicates of a subscription. It is a more ac-
curate way to ensure that the number of unwanted publica-
tions introduced by imperfect merging is as little as possi-
ble.

5.4. Advertisement-based Optimization

Imperfect merging can be improved if we take advantage
of knowledge of advertisements in the broker. For instance,
in a broker there are three subscriptions for plane tickets
with different predicates (price,>,150), (price,=,130), and
(price,=,120), and an advertisement (price,>,150). From
this we know that all the publications coming to this bro-
ker have a price value larger than 150. So we generate an
imperfect merger (price,≥,120) for the three subscriptions.
Although the merger is an imperfect merger, it does not in-
clude any false positive because no publications in the range
of 120 ≤ price ≤ 150 will come to this broker. With
the knowledge of advertisements, the imperfect degree of
a merger can be modified as:

Definition 2 Suppose FM is a merger of F1, F2,...,Fn, and
A1, A2, ..., Am are the advertisements available in the same
broker, then

Dimperfect =
|(P (FM ) − ∪n

i=1P (Fi)) ∩ (∪m
j=1P (Aj))|

|P (FM ) ∩ (∪m
j=1P (Aj))|

Intuitively, this means that the shaded area in Fig. 11 (b)
represents the publications that would introduce false posi-
tives. The new imperfect degree is the ratio of the shaded
area to the publications being advertised. Under the new
definition, the imperfect degree of some imperfect merger
maybe 0, since there is no advertisements for the publica-
tions that would cause the false positives.

P(F1) ... P(Fn)

P(FM) with Adv
P(FM)

P(F1) ... P(Fn)

(a) (b)

Figure 11. Imperfect Degree of a Merger

6. Evaluation

We implement the algorithms in Java with JDK1.4.2 us-
ing the JavaBDD package [1]. All our experiments are per-
formed on a computer with an Intel Xeon 3GHz processor
2GB RAM, of which 1GB RAM is allocated to the JVM.
Subscriptions and publications were generated by a work-
load generator which produces the data randomly by select-
ing attributes from a list of twenty pre-ordered attributes and
selects values from given value ranges. We assume that the
value of each attribute in a publication is uniformly selected
from its value range. We vary the range of values, number
of predicates and type of operators in a subscription to ob-
tain data sets with different number of distinct predicates.
These workloads represent different application scenarios.
In order to simplify the calculation of IMT, we choose in-
teger as the experimental data types. The performance met-
rics we take includes routing table size, publication routing
time, and IMT in a single broker.

Routing Table Size (RTS): Our algorithms exploit the
covering and merging relations among subscriptions. To
verify this fact, we generate two data sets which have
200,000 subscriptions each. Set A is based on 2,000 dis-
tinct predicates, and Set B is based on 5,000 distinct predi-
cates. The subscriptions in A have a higher degree of over-
lap. Intuitively, the algorithm should perform better on A,
due to the higher degree of overlap. The routing table size
is the number of subscriptions in the table. For each data set,
we compare the results of covering, perfect merging and im-
perfect merging with the original system without these tech-
niques. The routing table size of Set A is reduced dramat-
ically by covering (see Fig. 12). About 75% subscriptions
are covered by other subscriptions in Set A; while the cov-
ering rate of Set B is about 45%. Perfect merging can fur-
ther reduce the routing table size, so does imperfect merg-
ing. The less the number of distinct predicates in the data
set, the more subscriptions we can merge. With a compact
routing table, we can improve the routing of publications
and reduce the network traffic.

The attribute ordering effects the number of MBDs in the
routing table. As the number of MBDs increases, the aver-
age number of output nodes in an MBD will decrease. As
a result, less subscriptions can be merged. We use a ran-
dom attribute order to do perfect merging, Fig. 12 shows
that the routing table size of the random attribute order is
higher by 6,076 subscriptions than the pre-defined order.
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Figure 12. Routing Table Size

Publication Routing Time: We compare MBD-based
routing time with a naive approach, which linearly scans
the routing table, using two data sets. Tab. 2 shows the rout-
ing time of publications against 200,000 subscriptions. The
measurements were obtained by averaging the time taken
to route 50,000 publications. Without covering, the MBD-
based routing time of Set B is longer than Set A, because
the number of MBDs in B is larger than A due to over-
lap, which effects the routing time. After applying covering
and merging algorithms on subscriptions, the matching time
of Set A is reduced by 85.7%. Obviously, the MBD-based
routing is much faster than the naive approach, because dis-
tinct predicates are evaluated only once. Since the two data
sets have different covering rates, routing time of the two
data sets exhibit different benefits. The benefits are derived
from subscription covering and merging.

Because subscriptions are used to build up the index
and MBDs, adding a subscription is the most time-intensive
operation. Each data point in Fig. 13 is the average time
of processing 2,000 subscriptions. Processing a subscrip-
tion in a covering-based context consists of two steps. For
the first step, the algorithm checks the covering relations
among predicates using the index. When the index grows to
about 5,000 predicates, it takes 23.41ms to traverse the in-
dex, which can be improved by caching the predicate cov-
ering relations. However, if a predicate is new to the in-
dex, more time is spent to maintain the minimal cache ta-
ble. It happens during the buildup of the index. When the
number of subscriptions is less than 50,000, MBD-CwC(with
cache) is higher than MBD-C(without cache). After the in-
dex is build up, that is no new predicate arrives later, the

Set A(ms) Set B(ms)Method
MBD Naive MBD Naive

No Covering 68.73 300.71 82.28 300.92
Covering 19.16 73.41 38.15 165.38
Perfect Merging 13.31 49.89 33.37 152.21
Imperfect Merging 9.96 43.83 29.19 141.06

Table 2. Publication Routing Time
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Figure 13. Subscription Insertion Time

MBD-CwC is lower because the algorithm can get the cov-
ering results from the cache table, which speeds up the pro-
cessing and uses 2.46 ms. For the second step, the algorithm
evaluates the MBDs. At system start, the number of MBDs
grows with the number of subscriptions, and the process-
ing time increases accordingly. The number of MBDs in-
creases much slower later on, since most of the subscrip-
tions can share an MBD with already processed subscrip-
tions or be covered. This results in a decrease of process-
ing time. The results also clearly show that detecting cov-
ering with two separate covering algorithms is slower than
our optimized covering algorithm.

Imperfect Merging Threshold (IMT): If the system
allows a larger error tolerance, more subscriptions can be
merged when doing imperfect merging. For a real-world
data set, we could analyze its probability distribution and
get a more accurate IMT for a particular merger. Unfortu-
nately, no p/s workloads are available in the literature. In
our experiments, we assume that all publications are uni-
formly distributed on each attribute so that the probability
of a merger is easy to compute. As we show in Fig. 14,
after covering and perfect merging, where IMT equals 0,
all 100,000 subscriptions have been compacted to about
32,852. With increasing IMT, the results show that the rout-
ing table size is further reduced. For imperfect merging, the
IMT varies theoretically from 0 to 1, while the reduction
of the routing table size is not evenly distributed along this
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range. In our experiments, most mergers are generated with
IMT ranging from 0 to 0.15. With IMT larger than 0.15,
the routing table size reduces only slightly. Fig. 14 also
shows the advertisement-based optimization for imperfect
merging. The results show that more subscriptions can be
merged without increasing the false positives. Some imper-
fect mergers, if based on the knowledge of advertisements,
will not yield false positives, and can thus be considered as
“perfect ”. These mergers will then further reduce the rout-
ing table size.

A larger IMT means the system allows more false pos-
itives. We show the relation between IMT and false posi-
tives in Fig. 15. The black bar shows the number of publi-
cations that match the original subscriptions. In other terms,
these publications are what subscribers want. The larger the
IMT is, the greater the number of matched publications,
among which some are false positives introduced by im-
perfect mergers. If the system tolerates up to 2.5% of false
positives, an IMT with value less than 0.1 can satisfy the re-
quirement.

7. Conclusion
In this paper we have proposed novel data structures and

algorithms that unify publication routing, subscription cov-
ering and subscription merging. The algorithms are based
on modified binary decision diagrams. We have shown that
knowledge derived from statistics about the popularity of
predicates in subscriptions and semantic as well as logic re-
lationships among predicates can be of advantage. For ex-
ample, publication routing with merging technique, which
is based on past statistic information, improves the routing
time by 85.5%. Unlike existing approaches, our covering
algorithm computes all covering relations for a newly ar-
riving subscription in one pass, leading to a speed up of
45.8%, as compared to alternate approaches. Since adver-
tisements have the same semantics as subscriptions, cov-
ering and merging for advertisements can be solved in the
same way, thus further emphasizing the unified character of
our solution.
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