
An Accurate Energy Estimation Framework for
VLIW Processor Cores

Sourav Roy, Rajat Bhatia, Ashish Mathur
India Design Center, Freescale Semiconductors

sourav.roy@freescale.com; rajat.bhatia@freescale.com; ashish.mathur@freescale.com

Abstract— In this paper, we present a comprehensive energy
estimation framework for software executing on Very Long
Instruction Word (VLIW) processor cores. The proposed energy
model is used as an average energy estimator coupled to the
instruction set simulator (ISS) of the processor. The base energy
of an execution set is computed as the NOP energy added with
incremental energies of each instruction in the execution set.
The inter execution-set energy is accurately modeled with a new
approach as a linear equation of three factors - functional to
functional instruction switching; functional to NOP or prefix
instruction swithing; and variability in the length of the execution
set. This reduces the characterization complexity of the model
to O(N), where N is the total number of instructions in the
instruction set of the processor. We have introduced the concept of
“functional separability” in the energy model, wherein the energy
of each high-level function of the processor core is distinctly
mapped to only one component in the model. The model is also
capable of handling control codes with branches and predicated
execution. The average error magnitude of the framework when
applied on the StarCore processor with a large suite of DSP and
control benchmarks is 2.5%, whereas the maximum error is less
than 6.0%.

I. INTRODUCTION

Low power is an inherent requirement for hand-held devices
like cell phones, PDAs and a host of other mobile apparatus.
The digital signal processor (DSP) has inceasingly become
an integral component of these mobile devices. Most of the
state-of-the-art DSPs are VLIW in nature, e.g. StarCore from
Freescale Semiconductors, TigerSHARC from Analog De-
vices, TMS320C64X from Texas Instruments, etc. Hence en-
ergy estimation of the DSP software on these VLIW machines
is key to designing low power systems. Different implementa-
tions of the same software can consume significantly different
amounts of energy in the active mode. This variation in energy
can be due to the computational complexity of the algorithm
employed, usage of different compilers and compiler options,
and structuring and hand-optimization of the C and assembly
codes. Energy or power variation is more prominent in a
VLIW processor than a simple single-issue processor due to
the availability of high degree of instruction-level-parallelism.
Once the energy consumed by the software is estimated, the
software programmer can use several software techniques to
reduce the power consumption. Also energy estimation permits
software design-space-exploration based on cycles, code-size
and energy. Moreover accurate average energy prediction can
help us to perform battery life estimation of the portable
system. While energy is important for portable devices, power

is important from a thermal stability perspective.
There are several approaches to estimate the energy of a pro-

cessor viz., gate-level [1], microarchitectural level [2], [3] and
instruction level. The instruction level model is the most useful
for the software programmer, since he can clearly identify the
energy consumption with each individual instruction. It is also
easy to integrate with an ISS. The pioneering work in this field
is from Tiwari et.al [4]. In this work the authors identified
a base energy cost with each assembly level instruction of
the processor. Apart from this, the energy of an instruction
is also influenced by the instructions preceding it. This is
termed as inter-instruction effect. In [5], the inter-instruction
energy for RISCs and DSPs is modelled as a table look-up
between each pair of instructions. To reduce the complexity,
the instructions are clustered to form a few groups and the
table is calculated between pairs of these groups. Based on
this work, several models for single-issue processors have
been proposed. However inspite of the fact that multiple-issue
machines like the VLIW core is more prone to higher degree
of power variation, energy models for multiple-issue machines
have not been investigated thoroughly. Sami et.al. [6], [7] have
proposed a basic model for VLIW processors. However this
model has several limitations when applied on practical VLIW
processors, as we discuss later.

In this paper, we propose a novel energy model for VLIW
processor cores which is accurate, comprehensive and easier
to implement in practice. This model is generic in nature as
it can be applied to most of the VLIW processor cores. The
proposed methodology is used in building an accurate energy
estimator from circuit-level simulation of post-layout netlist of
the DSP core with Nanosim [8]. An accurate pre-silicon energy
model is very useful for the embedded software developers as
they generally start application development well before the
silicon arrives. It is also useful for software developers who
do not have access to the silicon or the instruments needed
to accurately measure power. This energy model is primarily
meant to be used at run-time with the ISS of the DSP core.
With small modifications it can also be applied in non-runtime
environment, but with lower accuracy. In our methodology, the
energy for the memory sub-system as well as other peripherals
is separately calculated. The reason for separately reporting the
core and memory power is to provide the software programmer
better insight into the energy consumption of the embedded
DSP platform. In many cases, the user can trade-off between
memory and core energy consumptions. Further a separate

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

energy model for the DSP core will also enable reuse as the
same core is used in several platforms with different memory
organizations. In this paper we particularly concentrate on
estimating energy of the DSP core. The paper is organized
as follows - in section II, a generic VLIW DSP is described
in brief. In the next section III we describe the energy model
for the VLIW DSP. Later we describe our characterisation
methodology to obtain the energy tables. Finally we discuss
the results and compare it with previous works.

II. THE VLIW DSP

In a VLIW DSP, several instructions that execute simul-
taneously are grouped into an “execution set” (which is the
very long instruction word). The execution set can have fixed
or variable number of instructions. The former is a fixed
length VLIW processor, whereas the latter is referred as a
variable length VLIW processor. Fixed length processors use
no-operation (NOP) word padding to equalize the length of
all execution sets. In a variable length processor, the grouping
of individual instructions into an execution set is generally
done either with separate prefix words or with a few bits
in each instruction to form a serial chain. VLIW DSPs have
multiple execution units for parallel execution of instructions.
For example the StarCore SC140e DSP [9] packs upto four
arithmetic instructions and two move like instructions in
a single execution set. The core typically interacts with a
memory sub-system comprising of the instruction cache, the
data cache and an optional SRAM memory.

III. THE ENERGY MODEL

Let us consider a VLIW processor core V. A group of
instructions, which are executed in parallel on V constitute
an execution set. We consider an assembly program P of m

execution sets. The energy of an individual execution set i is
denoted by Ei. Further let us assume that V has q different
types of pipeline stalls due to the memory sub-system - e.g.,
cache misses, memory contention etc. Let the energy per cycle
of stall type j be given by Ej

s . Let the number of cycles due
to stall type j while executing P be cj . If the total number of
stall cycles due to the memory-subsystem while executing P
is k, then

∑q

j=1
cj = k. The total energy while executing P

on V is then given by:

Etot =

m∑

i=1

Ei +

q∑

j=1

cj ∗ Ej
s (1)

The execution set energy Ei can be further decomposed into a
base energy component Ei

b and an inter-execution set energy
component Ei

ies . The base energy of an execution set is the
energy consumed by the execution set itself, while the inter-
execution set energy is due to its change from/to neighboring
execution sets. Hence equation 1 can be refined as:

Etot =

m∑

i=1

(Ei
b + Ei

ies) +

q∑

j=1

cj ∗ Ej
s (2)

Next we model the base energy of an execution set. Let the
ith execution set consist of Ni individual instructions denoted
by the set {I1, I2, . . . , INi

}, which are executed in parallel.
The background energy of the execution set is defined as the
energy consumed by an execution set consisting of only NOP
instructions executing on V. This NOP background energy
of the execution set is primarily dependent on two factors
- the position of the execution set (si) and the length of the
execution set (Ni). It is denoted as ENOP (si, Ni). Examples
of position s are straight-line, normal hardware loops, special
hardware loops without instruction fetches operating from L0
buffer etc. Over and above the background energy, each of
the Ni individual instructions in the execution set contributes
an incremental energy per cycle denoted by ∆Ek for k ∈
{I1, I2, . . . , INi

}. The incremental energy ∆Ek is the average
energy of that instruction. For implementation ease it is
computed in such a way as to average out the energy variation
due to the data values of the instruction operands. For a more
accurate energy estimate, ∆Ek is a function of instruction
operand values and other parameters like instruction modes.
Let the execution time of the kth instruction be nk cycles.
Then the total execution time of the execution set is given by
max(nI1

, nI2
, . . . , nINi

) = p cycles (say). The base energy
is then modeled as the summation of the background NOP
energy of the execution set and the incremental energies of
the execution set.

Ei
b = p ∗ ENOP (si, Ni) +

∑

k

nk ∗ ∆Ek (3)

If the VLIW processor V supports predicated execution,
then equation 3 needs to be further modified. For predicated
instructions, if the condition is true (i.e. the instruction is
executed) then the incremental energy is the same as given
by ∆Ek. But if the condition is false (i.e. the instruction is
not executed) then the incremental energy reduces to ∆Ekr ,
where ∆Ekr = reduced incremental energy of the instruction.
Further the execution time of the predicated instruction with
false condition should be considered as 1 cycle instead of nk

cycles.

Let δk = 1, if kth instruction is a predicated
instruction with false condition

= 0, otherwise.

Then the modified execution time and incremental energy of
the kth instruction can be represented as:

n′

k = δk ∗ 1 + (1 − δk) ∗ nk (4)
∆E′

k = δk ∗ ∆Ekr + (1 − δk) ∗ ∆Ek (5)

Hence the base energy of the ith execution set is given by:

Ei
b = p′ ∗ ENOP (si, Ni) +

∑

k

n′

k ∗ ∆E′

k (6)

where p′ = max(n′

I1
, n′

I2
, . . . , n′

INi

).
The inter-execution set energy Ei

ies is due to the change
of the execution sets in the controller part of the processor

like fetch, decode, and dispatch units. Actually there is also
an inter-execution set energy due to change of operand values
at the functional unit inputs. But we consume this data part of
the inter-execution set energy in the base energy calculation
of instructions. This is done by either averaging out the
change in operand values while computing the incremental
energy numbers or using a mathematical function based on
the operands to represent the incremental energy. Hence we
just concentrate on the control part of the inter-execution set
energy Ei

ies. The instructions in an execution set are executed
in parallel along several ”lanes” or ”ways” in the VLIW
processor. We divide the functional instructions into a few
clusters based on functional units like say multiply, ALU,
load/store, shifter and control. The NOP and prefix instructions
form a separate special cluster of non-functional instructions.
Let the energy consumed when an instruction of functional
cluster c changes to another instruction of functional cluster
d in a lane of V, be denoted by k1(c, d). Also when an
instruction of functional cluster c changes to a NOP or prefix
instruction in a lane of V, let it consume an energy given
by k2(c). For execution set i let, yi

1
(c, d) be the number of

changes from one instruction in functional cluster c to another
instruction in functional cluster d in all lanes of V; and yi

2
(c)

be the number of changes from one instruction in functional
cluster c to a NOP or prefix instruction in all lanes of V.
Then the inter-execution set energy of the execution set i can
be modeled as:

Ei
ies = k0 +

∑

c,d

k1(c, d) ∗ yi
1
(c, d) +

∑

c

k2(c) ∗ yi
2
(c) (7)

Here the constant k0 primarily models the variability in length
of execution sets. In majority of VLIW processors the inter-
execution set energy is much smaller compared to the base
energy of an execution set. In such cases, with limited loss
of accuracy the inter-execution set energy model of equation
7 can be further reduced as follows: For all combinations
of functional clusters c and d, k1(c, d) = constant = k1.
Similarly for all functional clusters c, k2(c) = constant = k2.
Then equation 7 reduces to:

Ei
ies = k0 + k1 ∗

∑

c,d

yi
1
(c, d) + k2 ∗

∑

c

yi
2
(c)

= k0 + k1 ∗ xi
1

+ k2 ∗ xi
2

(8)

where for execution set i, xi
1

= total number of changes from
one instruction in a functional cluster to an instruction in
another functional cluster in all lanes of V; and xi

2
= total

number of changes from one instruction in a functional cluster
to a NOP/prefix instruction in all lanes of V. Depending on the
implementation on the processor controller, in some processors
clustering based on functional units do not work well. In such
a case equation 8 can still be applied with xi

1
= total number

of changes from one functional instruction to any another
functional instruction in all lanes of V; and xi

2
= total number

of changes from one functional instruction to a NOP/prefix
instruction in all lanes of V.

So finally the energy consumed by the assembly program P
on the VLIW processor V is given by using equations 6 and
7 [or 8] in equation 2.

IV. MODEL CHARACTERIZATION

The model characterization step involves creating the NOP
energy table, the incremental and reduced incremental energy
tables, the stall energies and the inter-execution set energy
coefficients. Our methodology involves circuit-level simulation
of post-layout netlist of the DSP core with Nanosim [8].
Specific assembly routines are used and the vectors corre-
sponding to these routines are used to excite the Spice netlist
in Nanosim. This gives very accurate energy numbers. In this
section we describe the methodology of creating the energy
values and coefficients.

A. The NOP energy

The NOP energy signifies the background energy consumed
while executing a series of NOP instructions on the processor.
It includes clock energy, leakage energy and instruction fetch
and decode energy. But since it fetches and decodes only NOP
instructions, it is only a part of the fetch and decode energy.
The NOP energy significantly varies depending on its position
in the program. For a short hardware loop operating from a L0
buffer, the DSP does not fetch the instructions after the first
time. The long hardware loop has much higher energy as it
involves fetch of execution sets. The NOP energy in a straight
line sequence is similar to that of the long hardware loop, but is
slightly less as there is no control overhead and change-of-flow
of the program. The NOP energy also increases with increasing
length of the execution set. This is primarily due to increased
rate of program address generation, as the processor has to
fetch more number of program words in the same number of
cycles. Since the program words are all virtually NOPs there
is no switching happening on the program data bus. In table I,
we plot the NOP energy of the SC140e processor as a function
of position and length of the execution set. For short hardware
loops, we have ignored the length effect as it is very small. We
compute the NOP energy table of the processor by running a
sequence of NOPs (packed in specific numbers corresponding
to the length of the execution set) placed in a specified position
like hardware loops or straight line.

B. The Incremental Energy

Computing the incremental energy of each instruction is
the most important aspect of energy estimation. The most
common approach is to execute the same instruction in a
hardware loop for a large number of cycles, ensuring that
there are no pipeline stalls due to the memory sub-system.
The average current during the loop execution is measured
and converted to an energy value. If available, special short
hardware loops should be used for better accuracy as they
do not require a program fetch after the first time. For some
instructions that permanently change the destination register
at the first time (e.g., CLR R0), we still use a loop to keep the

TABLE I
NOP ENERGY(PJ) PER CYCLE ON SC140E

NOP Position VLES length
1 2 3 4 5 6 7 8

short loop1 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3
short loop2 109.0 109.0 109.0 109.0 109.0 109.0 109.0 109.0
long loop 109.4 112.8 114.8 116.1 118.5 119.2 118.8 119.0

striaght line 105.1 107.1 112.1 112.0 115.8 116.6 117.6 118.0

processor pipeline filled up with the same instruction. However
we measure the current during the first execution cycle only.

The other important issue here is that for incremental energy
calculation of most instructions, we need to consider the effect
of the operands that are dispatched to the functional units.
During a normal program flow, the inputs to a functional unit
in the DSP will normally change every time its instruction is
executed. This is what we term here as the inter-instruction
data energy, as it involves the datapath of the processor. In
most modern day processors, the inputs to the datapath only
change when it is required. Hence the input switching on the
adder can be due to two ADD instructions located very far
apart in the program. Calculating inter-instruction data effects
can be done only at run-time, with detailed energy models
of each datapath unit of the DSP. This is not practically
feasible. Also it can make the simulator very slow. Hence
as an engineering trade-off for normal DSP programs we
propose an average model for incremental energy where we
consume the inter-instruction data effect in the base energy
calculation. We can activate the instruction with random data
for a large number of cycles and measure the incremental
energy value. However, we have followed a different approach
by using two or more precomputed sets of inputs vectors for
each datapath instruction. The switching between these two
input vectors is 50%. i.e. for 16 bit words 8 bits toggle. Also
we account for the datapath characteristics by assuming 50%
effect. For example, 50% of the bits during addition generate
a carry. For 16 bit multiplication with radix-4 Booth recoding,
all 8 combinations of multiplier bits during Booth recoding
occur once. We further incorporate both positive and negative
numbers equally to account for the extra switching due to sign
changes. There are several advantages of using this strategy
instead of random inputs.
1. Most modern DSPs are load-store processors. Hence if we
use random values they have to be loaded from memory into
internal registers so that they can be used as inputs to the
datapath units. This somewhat complicates the incremental
energy calculation due to extra load instructions used with
the datapath instruction being characterized.
2. If we use pre-computed pair of input vectors, we need to run
the loop only a few times (say 20) to characterize the energy.
We just need to wait for the pipeline to fill up completely with
the instruction to be characterized; then observe the average
energy for a few cycles. However if we use random values
we must execute the loop several thousand times. Hence our
method speeds up the characterization time by a significant
factor.

As an example we can use (0x5A5A + 0x0F0F) followed
by (0x9C9C + 0xAAAA) for characterizing the ADD instruc-
tion. Similarly we can use (0x5A5A * 0x2E74) followed by
(0x9696 * 0x74E8) to characterize MPY. It requires a one-
time effort to come up with a suitable pair of input vectors
which more-or-less satisfy the conditions of 50% switching
and functionality, which is fairly straight-forward. In figure 1
we show how we use a short hardware loop of two execution
sets on the SC140e DSP with pre-computed data inputs to
characterize the ADD instruction. We have used the maximum
number of ADD instructions permissible in an execution set
i.e. 4, so that any energy difference across the several adders is
averaged out. Using multiple ADD instructions is permissible
due to the additivity property of their incremental energies.
Also NOP word padding is used to ensure that the intended
data values reach the corresponding functional unit (in this
case they are all equal). NOP word padding also eliminates
unnecessary toggles in the instruction register which can
otherwise add some inter-instruction energy into the base cost.

Fig. 1. Incremental energy calculation of ADD

However, it is to noted that this model is not accurate for
advanced DSP programs. The user can use low power software
techniques like MAC input operand swapping, introduction of
a bias in the accumulator etc. In such cases this model will
over-estimate the energy. Hence we built a linear run-time
model of the MAC unit of the DSP, based on present and
preceding input values and the characteristics of the MAC
itself (like Booth recoding and number of zeroes or ones in
the MAC inputs). This model is invoked by the user only
for advanced low power DSP techniques. In practice for most
DSP programs, the 50% input switching and functionality
assumption is a safe approximation.

The reduced incremental energy numbers are computed
in the same way as incremental energy numbers shown in
figure 1, but making the instruction predicated with a false

condition. The amount of energy reduction depends on the
actual implementation. In the SC140e, all move instructions
associated with the address-generate unit have a similar re-
duced incremental energy of approximately 22.2pJ. But for all
instructions associated with arithmetic units like ADD, MAC,
MPY etc., the incremental energy is actually reduced by a
constant amount of around 10pJ per cycle on average. This is
because these instructions actually go through the arithmetic
units but only the destination register update is blocked. For
generality, for each instruction we store an incremental and a
reduced incremental energy number as shown in table II.

The energy for different stall types are calculated by creating
a prolonged stall for several cycles and measuring the average
power during that duration. If that is not possible, similar
techniques as described above are used.

TABLE II
SAMPLE INCREMENTAL ENERGY TABLE

Instruction Cycles Incremental Reduced
Energy (pJ) Energy (pJ)

MAC 1 105.3 94.4
MPY 1 79.5 65.1
ADD 1 77.8 63.9

MOVE.W 1 38.4 22.2
(post-inc load)

MOVE.W 2 40.9 22.2
(pre-inc load)

MOVE.W 1 42.3 22.1
(post-inc store)

BF 4 8.3 -
(branch taken)

BF 1 10.4 -
(branch not taken)

C. Inter-Execution-Set Energy

In most modern DSPs due to aggressive clock gating the
variation and absolute value of controller energy for different
pairs of functional instructions is limited. The energy value
further reduces when a functional instruction changes to a
NOP or prefix instruction or vice-versa. This is because the
NOP or prefix instruction does not do anything after it is
decoded. If a functional instruction like MAC changes to
another functional instruction like MOVE in the same lane,
n controller signals with its associated circuitry will deassert
and a new set of m signals will assert. When MAC changes
to a NOP, only n controller signals will deassert. This is
assuming that the control signals are like one-hot with separate
control lines for different functions. This assumption is true to
some extent for most complex controllers. Hence the switching
energy of a functional to a NOP or prefix instruction will be
smaller. This argument differs from that proposed in the NOP
model of inter-instruction energy [10]. Additionally if a NOP
instruction changes to prefix or vice-versa, the inter-instruction
energy is negligible.

The VLIW processor has an instruction register (IREG) with
several lanes with corresponding instruction decoders on each
lane. For computing the inter-execution set energy, we align
the instructions of the execution sets in the IREG as they

Fig. 2. Eies calculation from assembly code

get decoded. Change in instructions in each lane is tracked
to compute the variables xi

1
and xi

2
of equation 8. In figure

2, we show the computation of xi
1

and xi
2

corresponding to
the execution set (n + 1). To calculate the coefficients, we
create several code snippets with execution sets in hardware
loops consisting of ADD, MPY, MAC, MOVE(different types),
NOP, PREFIX, etc similar to that shown in figure 2. We use
fixed maximal length execution sets to eliminate the constant
factor k0 from our initial analysis. We use exactly the same
data values as used in incremental energy calculation. Then
we calculate the difference between measured energy and that
given by equation 3. This represents Eies. We perform a
regression analysis to model Eies as a linear equation on the
average values of xi

1
and xi

2
per execution set. The regression

coefficient R2 for the SC140e came out to be 0.92, justifying
our assumptions. However a part of the controller is used to
calculate the length and position of the current execution set.
This effect is then introduced as a constant k0. We argue
that most VLIW processors will also have limited variation
in energy due to the length variability effect. For fixed length
processors we can omit this constant factor.

V. FUNCTIONAL SEPARABILITY

At the architectural level, the processor performs a set of
well-defined functions. While building the model we make
sure that we distinctly map the energy of each of these
tasks into only one component of the model. We term this
feature as “functional separability” of the core model that
makes the whole energy model very accurate. This is the very
reason that we built the model based on NOP and incremental
energy values, used hardware loops with NOP word padding
for incremental energy calculation, clearly separated data and
control inter-instruction effects. For every high-level function
we define two components of energy - fixed and variable.
The fixed component is due to the function being performed
by the same instruction. The variable component is due to
the function being performed by different instructions. The
table III points out the different high-level functions and their
mapping to a single component in the energy equation. The
incremental energy ∆Ek consumes the bulk of the energy
in the dispatch and execution units, the NOP energy mainly
accounts for idle state and the program address generation,

Fig. 3. Power Estimation on Benchmarks @100MHz

whereas Eies accounts for the switching part in program read,
decode and dispatch.

TABLE III
MAPPING OF PROCESSOR FUNCTIONS

Function Fixed Variable
Program Address generation ENOP ENOP

Read program data from memory ENOP Eies

Decode & Dispatch of instruction ∆Ek Eies

Data Address Generation ∆Ek ∆Ek

Arithmetic Computation ∆Ek ∆Ek

* ENOP also models idle energy of the processor

VI. RESULTS AND CONCLUSION

We tested this model on the SC140e DSP core with a large
suite of real-life DSP C benchmarks (with different compiler
options) and assembly codes. In figure 3, we show a sample set
of benchmark programs. The benchmarks contained both small
and large DSP functions, several codecs and control codes. The
maximum error reported over the entire benchmark suite is less
than 6.0%. Higher error is primarily due to the functionality
effect in incremental energy calculation deviating from the
assumed 50%. The absolute average error is just 2.5% over a
large number of DSP and control codes.

Though there is lot of proven work in the area of single-
issue processors, comprehensive energy models for multiple is-
sue machines like VLIW have not been thorughly investigated.
The previous works on energy estimation of VLIW processors
have several deficiencies. In [6], the power of an execution
set of (ADD MAC) is approximated as power of (ADD NOP)
added to (NOP MAC). This adds up the NOP energy twice
in an execution set. This is also evident in the estimation
being over 15% higher than the measured power. The model
in [7] maintains a table of additional energy contributions
over the NOP energy for each pair of instructions. This has a
characterization complexity of O(N 2), where N is the total
number of instructions of the processor. This is practically
not feasible for commercial processors with over hundred
instructions. Moreover clustering of instructions here will lead
to higher inaccuracy because the base and inter-instruction
components are merged together. Clustering of instructions

works better for inter-instruction effects as it has relatively
smaller absolute value and variation compared to base energy.
When pipeline stalls occur, the absolute maximum error of
this model can be 20%. In this paper, we presented a novel
and comprehensive energy model for VLIW DSP cores. The
model is equally effective in estimating both DSP and control
kernels with predicated execution and pipeline stalls. Due to
a simple yet accurate inter-execution set energy model, we
are able to reduce the model complexity from O(N 2) to
O(N). We integrated the energy model into the application
software simulation environment. This simulator has several
ISS corresponding to various VLIW processors of the StarCore
family. The energy model is implemented as a function library
that interacts with a particular ISS based on the processor
selected. The energy tables are stored in separate data libraries
corresponding to each processor and each technology node. In
its default form, the power estimation tool named JouleQuest
reports the energy and power (in the core and memory sub-
system) of the application code with a function-wise breakup.

REFERENCES

[1] C. Tsui, M. Pedram, and A. Despain, “Efficient estimation of dynamic
power consumption under a real delay model,” in Proceedings of
International Conference on Computer Aided Design (ICCAD), 1993.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proceedings of
International Symposium on Computer Architecture (ISCA), 2000.

[3] P. E. Landman and J. M. Rabaey, “Activity-sensitive architectural
power analysis,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 15(6), June 1996.

[4] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: A first step towards software power minimization,” IEEE
Transactions on VLSI Systems, vol. 2(4), December 1994.

[5] M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis and min-
imization techniques for embedded DSP software,” IEEE Transactions
on VLSI Systems, vol. 5(1), March 1997.

[6] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “Instruction-level power
estimation for embedded VLIW cores,” in Proceedings of CODES,
2000.

[7] Sami, Sciuto, Silvano, and Zaccaria, “An instruction-level energy model
for embedded VLIW architectures,” IEEE Transactions on CAD of
Integrated Circuits and Systems, vol. 21(9), September 2002.

[8] Nanosim User Guide, Synopsys Inc., December 2004.
[9] SC140e DSP Reference Manual, Freescale Semiconductors, Jan 2004.

[10] B. Klass, D. Thomas, H. Schmit, and D. Nagle, “Modeling inter-
instruction energy effects in a digital signal processor,” in Proceedings
of International Symposium on Computer Architecture (ISCA), 1998.

