
 
 

  
Abstract—This paper introduces the microarchitecture and 

logical implementation of SMT (Simultaneous Multithreading) 
improvement of Godson-2 processor which is a 64-bit, four-issue, 
out-of-order execution high performance processor. The 
condition for implementing correct memory consistency model in 
Godson-2 SMT processor is studied and a new register-level 
sharing and synchronization scheme is proposed. Godson-2 SMT 
processor has been implemented at the RTL level and simulated 
with the VstationPro of Mentor Graphics. The Linux operating 
system is ported to run in Godson-2 SMT processor and 
application programs such as SPEC CPU2000 benchmark suite 
are used to evaluate performance. Experimental results indicate 
that the performance of Godson-2 SMT processor is improved 
significantly by fully exploiting thread-level parallelism and 
optimized utilization of functional units. The average speedup is 
31.3% with 18.8% area overhead. 

 
Index Terms—Godson-2, Simultaneous multithreading, 

Microarchitecture, Memory consistency model, Register sharing 
 

I. INTRODUCTION 
HE rapid development of semiconductor technology drives 
the improvement of processor architectures. As a single 
chip contains over one billion transistors, the exploitation 

of thread-level parallelism becomes the trend of high 
performance microprocessor design. Several multithreading 
processors are implemented by industry in previous years 
[1]-[3]. 

Simultaneous multithreading (SMT) [4]-[6] inherits the 
ability to issue multiple instructions each cycle from 
superscalar, while utilizing independent instructions of 
multiple threads to find more instructions executing in parallel. 
It uses its resources more efficiently and thus achieves better 
performance than its conventional superscalar counterpart by 
adding minimal hardware complexity and chip area. SMT 
exploits thread-level parallelism fully in exchange of slight 
hardware cost. 

Godson-2 processor [7] is a four-issue superscalar and 
nine-stage superpipelining microprocessor. Exploitation of 
instruction-level parallelism (ILP) is achieved by the adoption 
of aggressive branch prediction, register renaming, out-of-order 
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execution, non-blocking cache, and load speculation 
techniques. This paper introduces the SMT improvement of 
Godson-2 processor. It presents microarchitecture of the 
Godson-2 SMT processor, studies condition for implementing 
correct memory consistency model, and proposes a new 
register-level sharing and synchronization mechanism. 

The following of the paper is organized as follows. Section 2 
elaborates the microarchitecture of Godson-2 SMT processor. 
Section 3 describes the memory consistency model adopted. 
Section 4 describes the mechanism for register sharing and 
synchronization. Section 5 describes the experimental 
methodology of performance evaluation. Section 6 briefly 
presents the physical design and evaluates the area of the chip. 
Section 7 evaluates the performance. Finally, conclusions and 
directions for future work are given in section 8. 

II. ARCHITECTURE OF GODSON-2 SMT PROCESSOR 
Godson-2 SMT processor supports the simultaneous 

execution of two threads and the following two running 
models, Superscalar model and SMT model. 

Like Godson-2 superscalar processor, the superscalar model 
executes one thread using all hardware resources, including 
various queues, pipeline path, physical register file, functional 
units, caches, and so on. 

SMT model executes two threads generally coming from 
different programs. Each thread owns its individual program 
counter (PC), logical registers, and control registers. Two 
threads share other hardware resources, such as various queues, 
pipeline path, functional units, cache, and so on. The share 
scheme consists of proportional sharing, full sharing, and 
time-multiplexing sharing. The proportional sharing means that 
each thread only uses half of the resources, for example, using 
half number of the reorder queue entries. The full sharing 
scheme means each thread can use the most of the resources, 
but cannot use all the resources, for example, the use of 
fixed-point reservation station is in this class. The 
time-multiplexing sharing means that each thread uses the 
resources by turns, for example, using functional units and 
pipeline path. 

Godson-2 SMT microarchitecture is similar to conventional 
simultaneous multithreading processors. However, there are a 
number of tradeoffs among the performance, the difficulty of 
physical design and the cost of hardware resources in 
considering the implementation of Godson-2 SMT processor. 
For example, to reduce the chip area, to decrease the latency, 
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and to ease physical design, Godson-2 SMT processor uses 
single-port RAM to implement instruction cache. The area of 
RAM is in the direct ratio to the number of ports. Table I shows 
that the area of dual-port RAM is 2.8 times that of single-port 
RAM. The latency of dual-port RAM is also longer than that of 
single-port RAM. Godson-2 SMT processor only fetches 
instructions from one thread each cycle in round robin policy. 
However, conventional simultaneous multithreading 
processors use multiple-port RAM to implement instruction 
cache. They fetch instructions from two different threads in 
each cycle. In addition, the physical register file in conventional 
simultaneous multithreading processors is difficult for physical 
implementation. Furthermore, the larger register file requires 
longer access time. To avoid increasing the processor cycle 
time, Godson-2 SMT processor allocates individual register file 
to each thread. Though resource is wasted in a certain extent, 
high clock frequency is easy to be realized. 

TABLE I 
COMPARISON BETWEEN SINGLE-PORT AND DUAL-PORT RAM OF 0.18UM CMOS 

 Single-port RAM Dual-port RAM 

area (um2) 216258 611910 

latency (ns) 1.384 1.547 

Fig. 1 shows the microarchitecture of Godson-2 SMT 
processor. It supports two threads and contains the contexts of 
two threads. Some hardware resources added to Godson-2 SMT 
processor include PC, fixed-point register rename, 
floating-point register rename, fixed-point reservation station, 
floating-point reservation station, control registers, branch 
queue, and so on. Other resources are shared between two 
threads due to different sharing policies. Each thread uses half 
of the resources related to context, including instruction TLB 
(Translation Lookaside Buffer), reorder queue, CP0 queue 
(Memory Access Queue). The partition sharing scheme avoids 
one thread interfering the other. Instruction cache (I-Cache), 
data cache (D-Cache), branch target buffer (BTB), branch 
pattern history table (PHT), data TLB and functional units are 
shared completely. Both threads share fixed-point reservation 
station and floating-point reservation station. When an 
instruction enters the reservation station, an empty entry is 
randomly allocated for it. However, the number of entries each 
thread can use is restricted that no less than four entries will be 
left to allocate to the other thread. When a thread is blocked 
during its execution by remote memory accesses, cache misses, 
or synchronization needs, this sharing policy ensures the 
instructions of the other thread can be issued. 
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Fig. 1: Microarchitecture of Godson-2 SMT processor 

Godson-2 SMT processor fetches new instructions from the 

selected thread and sends them to IR (Instruction Register) in 
each cycle. The instructions selected from one thread are 
decoded into internal instruction format of Godson-2 and are 
sent to the register renaming module. The renamed instructions 
are sent to reservation stations and queues. The instructions 
with all required operands ready are selected from the fixed or 
floating-point reservation station for each functional unit. Then 
the instructions are executed and the results are written back. 
Finally, reorder queue graduates the instructions of each thread 
in program order individually. 

III. MEMORY CONSISTENCY MODEL 
Memory consistency model influences the performance and 

the complexity or cost of the design. This section is dedicated to 
implementation issues of Godson-2 SMT processor related to 
various memory consistency models including weak ordering 
(WO) [8], sequential consistency (SC) [9], and processor 
consistency (PC) [10]. 

The primary data cache is shared across the two threads of 
Godson-2 SMT processor. Once data is stored to data cache, 
memory consistency need not be concerned. The operation of 
memory instructions in CP0 queue must be considered to 
satisfy memory consistency model. Godson-2 superscalar 
processor has already implemented SYNC instruction. Simply 
using synchronization operations to coordinate memory 
operations on different threads and maintaining program order, 
weak order consistency model is able to be implemented. 
Godson-2 SMT processor ensures that memory access 
instructions graduate in the order specified by the program. 
Load instructions execute before graduating and store 
instructions write their values in sequential order after 
graduating by the design of memory access queue. In this way, 
constraints on event orderings imposed by processor 
consistency are satisfied. Therefore, Godson-2 SMT processor 
also supports processor consistency model. 

Clearly, Godson-2 SMT processor does not satisfy 
sequential consistency model. To guarantee its compatibility 
with software, memory consistency model in Godson-2 SMT 
processor should be sequential consistent and ensures that the 
execution result of multiple threads is the same as if the 
operations are executed in uniprocessor. Otherwise, the 
execution result may be incorrect. Take the program segment in 
Fig. 2 as an example. After this program segment is executed, 
the correct combinations of values for register R1 and R2 are (0, 
1), (1, 0) or (1, 1). The result R1 = R2 = 0 is incorrect. 

Thread T0                   Thread T1 
L11 : store a , 1               L21 : store b , 1 
L12 : load R1 , b              L22 : load R2 , a 

Fig. 2: Example program segments PRG (initially R1 = R2 = a = b = 0) 
A store is write-ready when the value to store is valid and it 

has been committed (that is, cannot be cancelled) in Godson-2 
superscalar processor. Only the write-ready store instruction 
can write data cache. If data cache miss occurs, the store is in 
CP0 queue temporally, and it is impossible for the other thread 
which can commit the load instructions following this store to 
access the value of the store. This condition is clearly not 
sufficient for satisfying sequential consistency. If both threads 
meet the above condition, they read the value R1=R2=0. If the 



 
 

value written by store becomes accessible by both threads 
concurrently in order of graduate, this error possibility can be 
precluded. 

When a load enters the CP0 queue, it checks all the older 
stores for possible bypass for each byte it needs as Godson-2 
superscalar processor. Furthermore, it checks whether there is 
dependent stores in the graduated stores queue. When a store 
enters the CP0 queue, it checks all the younger loads in front of 
another younger store to the same byte in the queue to decide 
whether to forward value to them. An exception arises and the 
loads are cancelled, if the loads dependent to the store have 
written back. The primary difficulty of this mechanism is in 
hardware overhead and possible correctness problems. Firstly, 
each thread commits multiple instructions in one cycle. If 
multiple stores commit in one cycle, they all need to check the 
CP0 queue which incurs a significant overhead. Secondly, if the 
dependent store and load from two threads commit at the same 
time, the exception will not arise and error occurs. For example, 
consider the program segment in Fig. 2. If four instructions 
commit in one cycle, error arises. 

The above problem can be solved efficiently by 
implementing additional function of CP0 queue for Godson-2 
SMT processor as follows. When a load enters the CP0 queue, 
it checks the stores of the other thread for possible dependency. 
An exception arises and load is cancelled if dependency exists. 
When a store enters the CP0 queue, it checks all the loads to the 
same byte in the CP0 queue of the other thread. An exception 
arises and store is cancelled if dependency exists. In this way, 
the implementation guarantees that the dependent load and 
store instructions from two threads will not be processed at the 
same time, and ensures that the value written by one thread 
becomes accessible by the other thread. As for store and store 
dependency, in-order graduate ensures the correctness. Load 
and load dependency does not need to be detected because it 
may not lead to errors. 

In summary, WAW dependency is resolved by in-order 
operating of stores and forwarding the value of store to the 
following loads in the graduate store queue. Furthermore, 
RAW dependency is resolved by checking RAW dependency 
between threads and raising exception in the condition of 
dependency existence. Hence, Godson-2 SMT processor 
supports sequential consistency model by the technique 
discussed above. 

IV. REGISTER SHARING AND SYNCHRONIZATION 
Godson-2 SMT processor implements full/empty 

synchronization to pass messages between threads at register 
level. Each register has an associated full/empty bit. Each 
register can be read and written by synchronized read and 
synchronized write instruction. Synchronized read and write 
instruction can only be executed when condition is satisfied. 
Taking into account complex circumstances, for example in the 
mispredicted branch canceling case, synchronized write 
instruction of one thread is not allowed to write the other 
thread’s register.  

Full/empty scheme has an issue that should be considered. A 
synchronized read instruction is in register renaming stage after 

decoded, and the register it reads is empty. If the instruction 
waits for the register it reads to be set to full in register 
renaming stage, it will block the pipeline and result in deadlock. 
If synchronized read instruction enters reservation station first, 
its physical register number is not the number of synchronized 
write instruction which will write this physical register in the 
future. The synchronized read instruction needs to be renamed 
again. Thus the logical register number of synchronized read 
instruction must be known, and new rename result must inform 
reservation station to modify the physical register number of 
the synchronized read instruction. The above disposition has a 
large impact on complexity of design. 

To implement full/empty scheme, the problem that the 
register for synchronized read/write instruction the unready 
should be solved. Our effective solution is blocking 
synchronized read/write instructions in instruction buffer in 
decode stage. This scheme not only avoids blocking the whole 
pipeline, but also renames the register to get correct physical 
register number after the register is ready. In pre-decode stage, 
synchronized read/write instruction is decoded. At the same 
time, destination register number is decoded. Only the 
instruction whose register is ready can be chosen to enter 
decode stage. If synchronized read instruction is used before 
corresponding synchronized write instruction by programmer's 
error, the processor will wait endless in decode stage. When 
interrupt occurs, the instruction whose register is unready will 
be selected and signed exception to avoid deadlock. To avoid 
mispredicted branch canceling, synchronized read/write 
instructions do not set full/empty bit until commit stage. 
Full/empty synchronization not only can pass messages at 
register level, but also can synchronize between two threads. 

V. EXPERIMENTAL METHODOLOGY 
Godson-2 SMT processor is improved step by step. The base 

processor models of Godson-2 SMT processor are summarized 
in Table II. The above design of the Godson-2 SMT processor 
has been implemented at RTL level based on verilog hardware 
description language. Godson-2 SMT processor has been 
logically synthesized to evaluate the chip area. 

TABLE II 
PROCESSOR MODELS 

Fetch width 4 Cp0queue 32 
Decode width 4 DTLB 64 
ALU 2 ITLB 16 
FP Unit 2 BHT 4K 
MMU 1 Data Cache 64KB 
Roqueue 64 Instruction Cache 64KB 
Fixqueue 16 On-chip Secondary Cache No 
Ftqueue 16   

The performance of Godson-2 SMT processor is evaluated 
by RTL simulation. To build the simulation systems, the 
motherboard is RTL implemented based on verilog hardware 
description language. The motherboard environments 
implement the peripheral components, including SYSAD 
interface, 1M off-chip secondary cache, 1M ROM, 32M RAM 
(memory) and serial interface (the characters are output to 
serial interface by processor and are printed to screen by serial 
interface). The latency of secondary cache access is 2 cycles. 
The latency of memory access is 16 cycles. VStationPro 



 
 

simulation accelerator developed by Mentor Graphics 
Company was used to accelerate the running of RTL codes. 

Because the performance of superscalar model of Godson-2 
SMT processor is the same as Godson-2 superscalar processor, 
our performance evaluation is based on the executing results of 
superscalar model and SMT model of Godson-2 SMT 
processor. Linux2.4.20 operating system is modified to work 
on Godson-2 SMT processor, and application programs are 
executed in it to evaluate performance. Because memory 
resource of VStationPro is limited, only the programs whose 
memory resource requirement is little can be used in this study. 
We use the following three kinds of programs to evaluate 
performance. The first kind is a program (Inst Depend 
Program) that all instructions are dependent. This program is 
executed twice in superscalar model. Two threads execute this 
program at the same time in SMT model. The second kind of 
program is the multithreading chat program. The third kinds of 
program are eon, twolf, art, crafty from SPEC CPU2000 
benchmark suite. We choose two programs running together in 
superscalar model and SMT model. Total number of 
instructions and total number of cycles are statistically 
collected for each model, and IPC (Instruction per Cycle) is 
calculated to evaluate the performance. 

VI. CHIP AREA EVALUATION 
Chip area is the major factor that influences chip cost, and  

the manufacturing cost of Godson-2 SMT processor is best 
measured by its chip area. The design of the Godson-2 SMT 
processor is physically synthesized based on 0.18um CMOS 
process to evaluate the chip area. Fig. 3 shows chip area 
comparison of Godson-2 SMT processor and Godson-2 
superscalar processor. 
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Fig. 3: Chip area comparison 

As is shown in Fig. 3, the majority of the SMT area overhead 
comes from the following modules: PC, DECODE, REGMAP 
(Register Mapping), GR (Fixed-point Physical Register File) 
and FR (Float-point Physical Register File), because the logic 
of these modules are doubled due to the addition of SMT. For 
example, doubling PC, instruction buffer, register renaming 
and register file takes more than twice the area of 
corresponding modules. Adding SMT will double branch 
queue in ROQ module, double control register set in DTLB, 
and add dependency checking logic to resolve conflicting 
accesses between threads in CP0. Hence, the area of ROQ 
(Reorder Queue), DTLB (Data TLB) and CP0Q (Memory 
Access Queue) also grows. The area of cache and functional 
units of Godson-2 SMT processor is equal to Godson-2 
superscalar processor, because no additional logic is added to 
these modules.  

Comparing to Godson-2 superscalar processor, Godson-2 

SMT processor only adds chip area in 18.8%. Relative 
percentage of the area increased by adding SMT in Godson-2 
SMT processor is bigger than Hyperthreading Xeon of Intel. 
The reason is that Xeon processor has on-chip secondary cache, 
and its front-end decode module is complex. The area of 
on-chip secondary cache and decode sharing between two 
threads occupy the largest percentage of entire chip area. 
Adding SMT will not multiply the on-chip secondary cache and 
decode area overhead. The secondary cache always occupies 
more than half of entire chip area. Therefore, relative 
percentage of the increased area of Xeon is smaller. Suppose 
Godson-2 processor implements on-chip secondary cache, the 
added area will be less than 10 percent. 

VII. PERFORMANCE EVALUATION  

A.  Single-Program Benchmarks Performance Analysis 
We execute single-program benchmarks under simultaneous 

multithreading model and superscalar model to evaluate the 
performance of single-program workloads. Fig. 4 presents the 
IPC of single program benchmarks in SMT and superscalar. 
Experimental results show IPC of superscalar is larger than 
SMT. The main reason is that each thread shares reorder queue 
and CP0 queue in partition. Half the entries of these queues are 
idle when running single program workload in SMT. Of course, 
most of the resources are full sharing and can be used by one 
thread in SMT under single program workload. Hence, the 
performance of SMT is close to superscalar under single 
program benchmarks. In fact, Godson-2 SMT processor 
supports real time switch between SMT model and superscalar 
model. Operating system can detect single program workload 
and switch from SMT model to superscalar model adaptively to 
attain better performance. 
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Fig. 4: Performance of single program benchmarks 

B. Perfect Performance Analysis 
Godson-2 SMT processor supports two threads 

simultaneously. Therefore, the perfect IPC of Godson-2 SMT 
processor is twice the IPC of Godson-2 superscalar processor. 
Table III shows the IPC of instruction dependent program in 
superscalar and SMT. Experimental results in Table III show 
that Godson-2 SMT processor makes full use of functional 
units. When one thread waits for the calculated results, the 
other thread can use functional units to complete its task. Thus 
the running time of two programs approximates to the running 
time of one program. Experimental results show that Godson-2 
SMT processor obtains the expected perfect performance. 

TABLE III 
EXPERIMENTAL RESULTS OF INSTRUCTION DEPENDENT PROGRAM 

IPC of superscalar IPC of SMT performance speedup 

0.799873913 1.598539529 1.998 



 
 

C. Per-pipeline Stage Performance Analysis 
We execute the combination of two programs from eon, 

twolf, crafty and art program of SPEC CPU2000 benchmarks in 
Godson-2 SMT processor to evaluate the performance of 
pipeline stages. The experimental results are shown in Fig. 5. 
We can see from Fig. 5 that the IPC value of pipeline stage is 
less than the IPC value of its previous stage except fetch stage 
and decode stage. Because there is an instruction buffer 
between fetch stage and decode stage, Godson-2 SMT 
processor can still decode the blocked instructions from 
instruction buffer, when fewer instructions are fetched from 
instruction cache. Godson-2 SMT processor uses single-port 
RAM to implement instruction cache, which avoids the area 
overhead of dual-port RAM. Instruction buffer balances the 
negative effects of fetch stage in most cases, though only one 
thread can fetch instructions from instruction cache per cycle. 
Hence, the fetch policy of Godson-2 processor achieves 
sufficient performance with low cost. 
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Fig. 5: Pipeline stages performance analysis of Godson-2 SMT processor 

The implementation policy of fetch stage and decode stage in 
Godson-2 SMT processor is different from the policy in 
conventional SMT processors. We will analyze decode stage 
performance in the following figure. Fig. 6 shows the IPC 
distribution of decode stage. In Fig. 6, lossinst-1 denotes the 
case that the amount of instructions decoded by one thread is 
less than 4 and instruction buffer of the other thread has 
instructions. Lossinst-2 denotes the case that the amount of 
instructions decoded by one thread is less than 4 and the 
instruction buffer of the other thread is empty. Noinst denotes 
the case that there is no instruction in both threads. Considering 
IPC degradation in above cases, only lossinst-1 can be avoided 
by fetching instructions from both threads. However, the 
performance loss due to lossinst-1 is only 0.13, which occupies 
low percentage of total performance loss. On the other hand, 
the cost and complexity of fetching instruction from both 
threads is high. Hence, the decode policy of Godson-2 
processor achieves high cost-performance. The majority losses 
of IPC in decode stage due to the case that the instructions in 
instruction buffer are not sufficient. Improving the ability of 
instruction fetching is a way of achieving high performance. 
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Fig. 6: Decode stage performance analysis of Godson-2 SMT processor 

D. Multi-Program Benchmarks Performance Analysis 
We also execute multi-program benchmarks in SMT and 

superscalar to evaluate the performance under multi-program 
workloads. The multi-program benchmarks include 
multithreading application program chat and the combination 
of SPEC CPU2000. Fig. 7, 8, 9, 10 clearly show branch 
misprediction rate, instruction cache miss rate, data cache miss 
rate and data TLB miss rate in SMT and superscalar. These 
resources are shared between two threads, and one thread 
interferes with the other thread. Hence, various miss rates 
increase a little in SMT. 
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Fig. 7: Branch misprediction rate of multi-program benchmarks 
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Fig. 8: Instruction cache miss rate of multi-program benchmarks 
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Fig. 9: Data cache miss rate of multi-program benchmarks 
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Fig. 10: Data TLB miss rate of multi-program benchmarks 

The resources of various queues are also shared between two 
threads. The available queue resources of each thread in SMT 
are less than the resources in superscalar, and the full rates of 
queues are larger. However, when one thread blocks, the SMT 
processor can fetch instructions from the other thread. Thus the 
block times of SMT are less than the block times of superscalar. 
Fig. 11 shows the pipeline block times of multi-program 
benchmarks in SMT and superscalar. T0 and T1 in Fig. 11 are 
used to denote the queue full times of thread 0 and thread 1. We 
can see from Fig. 11 that queue full times of each thread in 
SMT are more than that in superscalar. But queue full times of 
both threads which indicate the block times of multithreading 



 
 

processor in SMT are less than that in superscalar. Furthermore, 
the results show that Godson-2 SMT processor makes full use 
of the resources by executing the instructions of one thread, 
when the other thread is blocked. 
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Fig. 11: Pipeline block times of multi-program benchmarks 

Fig. 12 presents the IPC of multi-program benchmarks in 
SMT and superscalar. The results show Godson-2 SMT 
processor improves performance efficiently. The speedup on 
average is 31.1%. The performance improvement of 
twolf+twolf is up to 54.4%. Though branch misprediction rate, 
cache miss rate and TLB miss rate of SMT processor is a little 
higher than those of superscalar processor as a result of 
resources competition, Godson-2 SMT processor improves 
performance significantly by full exploitation of thread-level 
parallelism. Godson-2 SMT processor utilizes fully the 
independency characteristic between multithreads, therefore 
exploits more instructions executing in parallel in the same 
instruction window. High utilization rate of functional units 
increases the performance of Godson-2 processor effectively. 
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Fig. 12: Performance of multi-program benchmarks 

VIII. CONCLUSIONS AND FUTURE WORK 
This paper elaborates the microarchitecture of the Godson-2 

SMT processor. Memory consistency model and register 
sharing scheme which influence the performance and the 
complexity of the design are described in detail. Some 
application programs of SPEC CPU2000 are used to evaluate 
the performance. It has been shown that Godson-2 SMT 
processor improves the performance of Godson-2 superscalar 
processor significantly by fully exploiting thread-level 
parallelism, high utilization rate of functional units and fast 
register sharing and synchronization. The average speedup is 
31.1%. Our future work includes improving performance of 
Godson-2 SMT processor and exploiting further multithreading 
parallelism through putting multiple Godson-2 SMT processors 
on the same chip. 
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