

Abstract—This paper introduces the microarchitecture and

logical implementation of SMT (Simultaneous Multithreading)
improvement of Godson-2 processor which is a 64-bit, four-issue,
out-of-order execution high performance processor. The
condition for implementing correct memory consistency model in
Godson-2 SMT processor is studied and a new register-level
sharing and synchronization scheme is proposed. Godson-2 SMT
processor has been implemented at the RTL level and simulated
with the VstationPro of Mentor Graphics. The Linux operating
system is ported to run in Godson-2 SMT processor and
application programs such as SPEC CPU2000 benchmark suite
are used to evaluate performance. Experimental results indicate
that the performance of Godson-2 SMT processor is improved
significantly by fully exploiting thread-level parallelism and
optimized utilization of functional units. The average speedup is
31.3% with 18.8% area overhead.

Index Terms—Godson-2, Simultaneous multithreading,

Microarchitecture, Memory consistency model, Register sharing

I. INTRODUCTION
HE rapid development of semiconductor technology drives
the improvement of processor architectures. As a single
chip contains over one billion transistors, the exploitation

of thread-level parallelism becomes the trend of high
performance microprocessor design. Several multithreading
processors are implemented by industry in previous years
[1]-[3].

Simultaneous multithreading (SMT) [4]-[6] inherits the
ability to issue multiple instructions each cycle from
superscalar, while utilizing independent instructions of
multiple threads to find more instructions executing in parallel.
It uses its resources more efficiently and thus achieves better
performance than its conventional superscalar counterpart by
adding minimal hardware complexity and chip area. SMT
exploits thread-level parallelism fully in exchange of slight
hardware cost.

Godson-2 processor [7] is a four-issue superscalar and
nine-stage superpipelining microprocessor. Exploitation of
instruction-level parallelism (ILP) is achieved by the adoption
of aggressive branch prediction, register renaming, out-of-order

Manuscript received May 4, 2006. This work was supported by the National
Natural Foundation of China for Distinguished Young Scholars under Grant
No.60325205; the National High-Tech Research and Development Plan of
China under Grant Nos. 2002AA110010, 2005AA110010 and
2005AA119020; National Basic Research Program of China under Grant No.
2005CB321601.

execution, non-blocking cache, and load speculation
techniques. This paper introduces the SMT improvement of
Godson-2 processor. It presents microarchitecture of the
Godson-2 SMT processor, studies condition for implementing
correct memory consistency model, and proposes a new
register-level sharing and synchronization mechanism.

The following of the paper is organized as follows. Section 2
elaborates the microarchitecture of Godson-2 SMT processor.
Section 3 describes the memory consistency model adopted.
Section 4 describes the mechanism for register sharing and
synchronization. Section 5 describes the experimental
methodology of performance evaluation. Section 6 briefly
presents the physical design and evaluates the area of the chip.
Section 7 evaluates the performance. Finally, conclusions and
directions for future work are given in section 8.

II. ARCHITECTURE OF GODSON-2 SMT PROCESSOR
Godson-2 SMT processor supports the simultaneous

execution of two threads and the following two running
models, Superscalar model and SMT model.

Like Godson-2 superscalar processor, the superscalar model
executes one thread using all hardware resources, including
various queues, pipeline path, physical register file, functional
units, caches, and so on.

SMT model executes two threads generally coming from
different programs. Each thread owns its individual program
counter (PC), logical registers, and control registers. Two
threads share other hardware resources, such as various queues,
pipeline path, functional units, cache, and so on. The share
scheme consists of proportional sharing, full sharing, and
time-multiplexing sharing. The proportional sharing means that
each thread only uses half of the resources, for example, using
half number of the reorder queue entries. The full sharing
scheme means each thread can use the most of the resources,
but cannot use all the resources, for example, the use of
fixed-point reservation station is in this class. The
time-multiplexing sharing means that each thread uses the
resources by turns, for example, using functional units and
pipeline path.

Godson-2 SMT microarchitecture is similar to conventional
simultaneous multithreading processors. However, there are a
number of tradeoffs among the performance, the difficulty of
physical design and the cost of hardware resources in
considering the implementation of Godson-2 SMT processor.
For example, to reduce the chip area, to decrease the latency,

Microarchitecture and Performance Analysis of
Godson-2 SMT Processor
Zusong Li, Xianchao Xu, Weiwu Hu and Zhimin Tang

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, 100080
{lisoon, xuxianchao, hww, tang}@ict.ac.cn

T

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

and to ease physical design, Godson-2 SMT processor uses
single-port RAM to implement instruction cache. The area of
RAM is in the direct ratio to the number of ports. Table I shows
that the area of dual-port RAM is 2.8 times that of single-port
RAM. The latency of dual-port RAM is also longer than that of
single-port RAM. Godson-2 SMT processor only fetches
instructions from one thread each cycle in round robin policy.
However, conventional simultaneous multithreading
processors use multiple-port RAM to implement instruction
cache. They fetch instructions from two different threads in
each cycle. In addition, the physical register file in conventional
simultaneous multithreading processors is difficult for physical
implementation. Furthermore, the larger register file requires
longer access time. To avoid increasing the processor cycle
time, Godson-2 SMT processor allocates individual register file
to each thread. Though resource is wasted in a certain extent,
high clock frequency is easy to be realized.

TABLE I
COMPARISON BETWEEN SINGLE-PORT AND DUAL-PORT RAM OF 0.18UM CMOS

 Single-port RAM Dual-port RAM

area (um2) 216258 611910

latency (ns) 1.384 1.547

Fig. 1 shows the microarchitecture of Godson-2 SMT
processor. It supports two threads and contains the contexts of
two threads. Some hardware resources added to Godson-2 SMT
processor include PC, fixed-point register rename,
floating-point register rename, fixed-point reservation station,
floating-point reservation station, control registers, branch
queue, and so on. Other resources are shared between two
threads due to different sharing policies. Each thread uses half
of the resources related to context, including instruction TLB
(Translation Lookaside Buffer), reorder queue, CP0 queue
(Memory Access Queue). The partition sharing scheme avoids
one thread interfering the other. Instruction cache (I-Cache),
data cache (D-Cache), branch target buffer (BTB), branch
pattern history table (PHT), data TLB and functional units are
shared completely. Both threads share fixed-point reservation
station and floating-point reservation station. When an
instruction enters the reservation station, an empty entry is
randomly allocated for it. However, the number of entries each
thread can use is restricted that no less than four entries will be
left to allocate to the other thread. When a thread is blocked
during its execution by remote memory accesses, cache misses,
or synchronization needs, this sharing policy ensures the
instructions of the other thread can be issued.

Fetch

Pre-decode

D
ecode

D
ispatch queue

Fix-point
reservation

station

Floating-
point

reservation
station

Fix-point
functional

units

Floating-
point

functional
units

Memory

management
units

Reorder queue
T1

Fix-point
register
rename

T1
Floating-

point
register
rename

T1
Fix-point
register

file

T1
Floating-

point
register

file

T0
Floating-

point
register
rename

T0
Fix-point
register
rename

T0
Floating-

point
register

file

T0
Fix-point
register

file

T1
PC T0

PC

Fig. 1: Microarchitecture of Godson-2 SMT processor

Godson-2 SMT processor fetches new instructions from the

selected thread and sends them to IR (Instruction Register) in
each cycle. The instructions selected from one thread are
decoded into internal instruction format of Godson-2 and are
sent to the register renaming module. The renamed instructions
are sent to reservation stations and queues. The instructions
with all required operands ready are selected from the fixed or
floating-point reservation station for each functional unit. Then
the instructions are executed and the results are written back.
Finally, reorder queue graduates the instructions of each thread
in program order individually.

III. MEMORY CONSISTENCY MODEL
Memory consistency model influences the performance and

the complexity or cost of the design. This section is dedicated to
implementation issues of Godson-2 SMT processor related to
various memory consistency models including weak ordering
(WO) [8], sequential consistency (SC) [9], and processor
consistency (PC) [10].

The primary data cache is shared across the two threads of
Godson-2 SMT processor. Once data is stored to data cache,
memory consistency need not be concerned. The operation of
memory instructions in CP0 queue must be considered to
satisfy memory consistency model. Godson-2 superscalar
processor has already implemented SYNC instruction. Simply
using synchronization operations to coordinate memory
operations on different threads and maintaining program order,
weak order consistency model is able to be implemented.
Godson-2 SMT processor ensures that memory access
instructions graduate in the order specified by the program.
Load instructions execute before graduating and store
instructions write their values in sequential order after
graduating by the design of memory access queue. In this way,
constraints on event orderings imposed by processor
consistency are satisfied. Therefore, Godson-2 SMT processor
also supports processor consistency model.

Clearly, Godson-2 SMT processor does not satisfy
sequential consistency model. To guarantee its compatibility
with software, memory consistency model in Godson-2 SMT
processor should be sequential consistent and ensures that the
execution result of multiple threads is the same as if the
operations are executed in uniprocessor. Otherwise, the
execution result may be incorrect. Take the program segment in
Fig. 2 as an example. After this program segment is executed,
the correct combinations of values for register R1 and R2 are (0,
1), (1, 0) or (1, 1). The result R1 = R2 = 0 is incorrect.

Thread T0 Thread T1
L11 : store a , 1 L21 : store b , 1
L12 : load R1 , b L22 : load R2 , a

Fig. 2: Example program segments PRG (initially R1 = R2 = a = b = 0)
A store is write-ready when the value to store is valid and it

has been committed (that is, cannot be cancelled) in Godson-2
superscalar processor. Only the write-ready store instruction
can write data cache. If data cache miss occurs, the store is in
CP0 queue temporally, and it is impossible for the other thread
which can commit the load instructions following this store to
access the value of the store. This condition is clearly not
sufficient for satisfying sequential consistency. If both threads
meet the above condition, they read the value R1=R2=0. If the

value written by store becomes accessible by both threads
concurrently in order of graduate, this error possibility can be
precluded.

When a load enters the CP0 queue, it checks all the older
stores for possible bypass for each byte it needs as Godson-2
superscalar processor. Furthermore, it checks whether there is
dependent stores in the graduated stores queue. When a store
enters the CP0 queue, it checks all the younger loads in front of
another younger store to the same byte in the queue to decide
whether to forward value to them. An exception arises and the
loads are cancelled, if the loads dependent to the store have
written back. The primary difficulty of this mechanism is in
hardware overhead and possible correctness problems. Firstly,
each thread commits multiple instructions in one cycle. If
multiple stores commit in one cycle, they all need to check the
CP0 queue which incurs a significant overhead. Secondly, if the
dependent store and load from two threads commit at the same
time, the exception will not arise and error occurs. For example,
consider the program segment in Fig. 2. If four instructions
commit in one cycle, error arises.

The above problem can be solved efficiently by
implementing additional function of CP0 queue for Godson-2
SMT processor as follows. When a load enters the CP0 queue,
it checks the stores of the other thread for possible dependency.
An exception arises and load is cancelled if dependency exists.
When a store enters the CP0 queue, it checks all the loads to the
same byte in the CP0 queue of the other thread. An exception
arises and store is cancelled if dependency exists. In this way,
the implementation guarantees that the dependent load and
store instructions from two threads will not be processed at the
same time, and ensures that the value written by one thread
becomes accessible by the other thread. As for store and store
dependency, in-order graduate ensures the correctness. Load
and load dependency does not need to be detected because it
may not lead to errors.

In summary, WAW dependency is resolved by in-order
operating of stores and forwarding the value of store to the
following loads in the graduate store queue. Furthermore,
RAW dependency is resolved by checking RAW dependency
between threads and raising exception in the condition of
dependency existence. Hence, Godson-2 SMT processor
supports sequential consistency model by the technique
discussed above.

IV. REGISTER SHARING AND SYNCHRONIZATION
Godson-2 SMT processor implements full/empty

synchronization to pass messages between threads at register
level. Each register has an associated full/empty bit. Each
register can be read and written by synchronized read and
synchronized write instruction. Synchronized read and write
instruction can only be executed when condition is satisfied.
Taking into account complex circumstances, for example in the
mispredicted branch canceling case, synchronized write
instruction of one thread is not allowed to write the other
thread’s register.

Full/empty scheme has an issue that should be considered. A
synchronized read instruction is in register renaming stage after

decoded, and the register it reads is empty. If the instruction
waits for the register it reads to be set to full in register
renaming stage, it will block the pipeline and result in deadlock.
If synchronized read instruction enters reservation station first,
its physical register number is not the number of synchronized
write instruction which will write this physical register in the
future. The synchronized read instruction needs to be renamed
again. Thus the logical register number of synchronized read
instruction must be known, and new rename result must inform
reservation station to modify the physical register number of
the synchronized read instruction. The above disposition has a
large impact on complexity of design.

To implement full/empty scheme, the problem that the
register for synchronized read/write instruction the unready
should be solved. Our effective solution is blocking
synchronized read/write instructions in instruction buffer in
decode stage. This scheme not only avoids blocking the whole
pipeline, but also renames the register to get correct physical
register number after the register is ready. In pre-decode stage,
synchronized read/write instruction is decoded. At the same
time, destination register number is decoded. Only the
instruction whose register is ready can be chosen to enter
decode stage. If synchronized read instruction is used before
corresponding synchronized write instruction by programmer's
error, the processor will wait endless in decode stage. When
interrupt occurs, the instruction whose register is unready will
be selected and signed exception to avoid deadlock. To avoid
mispredicted branch canceling, synchronized read/write
instructions do not set full/empty bit until commit stage.
Full/empty synchronization not only can pass messages at
register level, but also can synchronize between two threads.

V. EXPERIMENTAL METHODOLOGY
Godson-2 SMT processor is improved step by step. The base

processor models of Godson-2 SMT processor are summarized
in Table II. The above design of the Godson-2 SMT processor
has been implemented at RTL level based on verilog hardware
description language. Godson-2 SMT processor has been
logically synthesized to evaluate the chip area.

TABLE II
PROCESSOR MODELS

Fetch width 4 Cp0queue 32
Decode width 4 DTLB 64
ALU 2 ITLB 16
FP Unit 2 BHT 4K
MMU 1 Data Cache 64KB
Roqueue 64 Instruction Cache 64KB
Fixqueue 16 On-chip Secondary Cache No
Ftqueue 16

The performance of Godson-2 SMT processor is evaluated
by RTL simulation. To build the simulation systems, the
motherboard is RTL implemented based on verilog hardware
description language. The motherboard environments
implement the peripheral components, including SYSAD
interface, 1M off-chip secondary cache, 1M ROM, 32M RAM
(memory) and serial interface (the characters are output to
serial interface by processor and are printed to screen by serial
interface). The latency of secondary cache access is 2 cycles.
The latency of memory access is 16 cycles. VStationPro

simulation accelerator developed by Mentor Graphics
Company was used to accelerate the running of RTL codes.

Because the performance of superscalar model of Godson-2
SMT processor is the same as Godson-2 superscalar processor,
our performance evaluation is based on the executing results of
superscalar model and SMT model of Godson-2 SMT
processor. Linux2.4.20 operating system is modified to work
on Godson-2 SMT processor, and application programs are
executed in it to evaluate performance. Because memory
resource of VStationPro is limited, only the programs whose
memory resource requirement is little can be used in this study.
We use the following three kinds of programs to evaluate
performance. The first kind is a program (Inst Depend
Program) that all instructions are dependent. This program is
executed twice in superscalar model. Two threads execute this
program at the same time in SMT model. The second kind of
program is the multithreading chat program. The third kinds of
program are eon, twolf, art, crafty from SPEC CPU2000
benchmark suite. We choose two programs running together in
superscalar model and SMT model. Total number of
instructions and total number of cycles are statistically
collected for each model, and IPC (Instruction per Cycle) is
calculated to evaluate the performance.

VI. CHIP AREA EVALUATION
Chip area is the major factor that influences chip cost, and

the manufacturing cost of Godson-2 SMT processor is best
measured by its chip area. The design of the Godson-2 SMT
processor is physically synthesized based on 0.18um CMOS
process to evaluate the chip area. Fig. 3 shows chip area
comparison of Godson-2 SMT processor and Godson-2
superscalar processor.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

PC

DE
CO

DE

IT
LB

IC
AC

HE BT
B

BH
T

RE
GM

AP FX
Q

FT
Q GR FR RO
Q

AL
U1

AL
U2

FA
LU

1

FA
LU

2

ME
MA

DD
R

DT
LB

DC
AC

HE

DT
AG

CM
P

CP
0Q

CA
CH

E2
ME

M

BU
FF

ER

IN
TE

RF
AC

E

SU
M/

10

s uper scal ar SMT

Fig. 3: Chip area comparison

As is shown in Fig. 3, the majority of the SMT area overhead
comes from the following modules: PC, DECODE, REGMAP
(Register Mapping), GR (Fixed-point Physical Register File)
and FR (Float-point Physical Register File), because the logic
of these modules are doubled due to the addition of SMT. For
example, doubling PC, instruction buffer, register renaming
and register file takes more than twice the area of
corresponding modules. Adding SMT will double branch
queue in ROQ module, double control register set in DTLB,
and add dependency checking logic to resolve conflicting
accesses between threads in CP0. Hence, the area of ROQ
(Reorder Queue), DTLB (Data TLB) and CP0Q (Memory
Access Queue) also grows. The area of cache and functional
units of Godson-2 SMT processor is equal to Godson-2
superscalar processor, because no additional logic is added to
these modules.

Comparing to Godson-2 superscalar processor, Godson-2

SMT processor only adds chip area in 18.8%. Relative
percentage of the area increased by adding SMT in Godson-2
SMT processor is bigger than Hyperthreading Xeon of Intel.
The reason is that Xeon processor has on-chip secondary cache,
and its front-end decode module is complex. The area of
on-chip secondary cache and decode sharing between two
threads occupy the largest percentage of entire chip area.
Adding SMT will not multiply the on-chip secondary cache and
decode area overhead. The secondary cache always occupies
more than half of entire chip area. Therefore, relative
percentage of the increased area of Xeon is smaller. Suppose
Godson-2 processor implements on-chip secondary cache, the
added area will be less than 10 percent.

VII. PERFORMANCE EVALUATION

A. Single-Program Benchmarks Performance Analysis
We execute single-program benchmarks under simultaneous

multithreading model and superscalar model to evaluate the
performance of single-program workloads. Fig. 4 presents the
IPC of single program benchmarks in SMT and superscalar.
Experimental results show IPC of superscalar is larger than
SMT. The main reason is that each thread shares reorder queue
and CP0 queue in partition. Half the entries of these queues are
idle when running single program workload in SMT. Of course,
most of the resources are full sharing and can be used by one
thread in SMT under single program workload. Hence, the
performance of SMT is close to superscalar under single
program benchmarks. In fact, Godson-2 SMT processor
supports real time switch between SMT model and superscalar
model. Operating system can detect single program workload
and switch from SMT model to superscalar model adaptively to
attain better performance.

0
0. 2
0. 4
0. 6
0. 8

1

eon t wol f cr af t y ar t aver age

benchmar k pr ogr ams

IP
C

super scal ar SMT

Fig. 4: Performance of single program benchmarks

B. Perfect Performance Analysis
Godson-2 SMT processor supports two threads

simultaneously. Therefore, the perfect IPC of Godson-2 SMT
processor is twice the IPC of Godson-2 superscalar processor.
Table III shows the IPC of instruction dependent program in
superscalar and SMT. Experimental results in Table III show
that Godson-2 SMT processor makes full use of functional
units. When one thread waits for the calculated results, the
other thread can use functional units to complete its task. Thus
the running time of two programs approximates to the running
time of one program. Experimental results show that Godson-2
SMT processor obtains the expected perfect performance.

TABLE III
EXPERIMENTAL RESULTS OF INSTRUCTION DEPENDENT PROGRAM

IPC of superscalar IPC of SMT performance speedup

0.799873913 1.598539529 1.998

C. Per-pipeline Stage Performance Analysis
We execute the combination of two programs from eon,

twolf, crafty and art program of SPEC CPU2000 benchmarks in
Godson-2 SMT processor to evaluate the performance of
pipeline stages. The experimental results are shown in Fig. 5.
We can see from Fig. 5 that the IPC value of pipeline stage is
less than the IPC value of its previous stage except fetch stage
and decode stage. Because there is an instruction buffer
between fetch stage and decode stage, Godson-2 SMT
processor can still decode the blocked instructions from
instruction buffer, when fewer instructions are fetched from
instruction cache. Godson-2 SMT processor uses single-port
RAM to implement instruction cache, which avoids the area
overhead of dual-port RAM. Instruction buffer balances the
negative effects of fetch stage in most cases, though only one
thread can fetch instructions from instruction cache per cycle.
Hence, the fetch policy of Godson-2 processor achieves
sufficient performance with low cost.

00. 5
1

1. 5
22. 5
3

3. 5
4

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t+

ar
t

eo
n+

tw
ol

f

cr
af

t y
+a

r t

av
er

ag
e

benchmark programs

IP
C

f et ch decode regmap i ssue commi t

Fig. 5: Pipeline stages performance analysis of Godson-2 SMT processor

The implementation policy of fetch stage and decode stage in
Godson-2 SMT processor is different from the policy in
conventional SMT processors. We will analyze decode stage
performance in the following figure. Fig. 6 shows the IPC
distribution of decode stage. In Fig. 6, lossinst-1 denotes the
case that the amount of instructions decoded by one thread is
less than 4 and instruction buffer of the other thread has
instructions. Lossinst-2 denotes the case that the amount of
instructions decoded by one thread is less than 4 and the
instruction buffer of the other thread is empty. Noinst denotes
the case that there is no instruction in both threads. Considering
IPC degradation in above cases, only lossinst-1 can be avoided
by fetching instructions from both threads. However, the
performance loss due to lossinst-1 is only 0.13, which occupies
low percentage of total performance loss. On the other hand,
the cost and complexity of fetching instruction from both
threads is high. Hence, the decode policy of Godson-2
processor achieves high cost-performance. The majority losses
of IPC in decode stage due to the case that the instructions in
instruction buffer are not sufficient. Improving the ability of
instruction fetching is a way of achieving high performance.

0

1

2

3

4

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

av
er

ag
e

benchmar k pr ogr ams

IP
C

noi nst

l oss i nst - 2

l oss i nst - 1

decode

Fig. 6: Decode stage performance analysis of Godson-2 SMT processor

D. Multi-Program Benchmarks Performance Analysis
We also execute multi-program benchmarks in SMT and

superscalar to evaluate the performance under multi-program
workloads. The multi-program benchmarks include
multithreading application program chat and the combination
of SPEC CPU2000. Fig. 7, 8, 9, 10 clearly show branch
misprediction rate, instruction cache miss rate, data cache miss
rate and data TLB miss rate in SMT and superscalar. These
resources are shared between two threads, and one thread
interferes with the other thread. Hence, various miss rates
increase a little in SMT.

0
0. 05
0. 1

0. 15
0. 2

0. 25
0. 3

0. 35

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

super scal ar SMT

Fig. 7: Branch misprediction rate of multi-program benchmarks

0
1
2
3
4
5

eo
n+

eo
n

tw
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

super scal ar SMT

Fig. 8: Instruction cache miss rate of multi-program benchmarks

0
20
40
60
80

100
120
140

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

super scal ar SMT

Fig. 9: Data cache miss rate of multi-program benchmarks

0
10
20
30
40
50
60

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

c r
af

t y
+a

r t

super scal ar SMT

Fig. 10: Data TLB miss rate of multi-program benchmarks

The resources of various queues are also shared between two
threads. The available queue resources of each thread in SMT
are less than the resources in superscalar, and the full rates of
queues are larger. However, when one thread blocks, the SMT
processor can fetch instructions from the other thread. Thus the
block times of SMT are less than the block times of superscalar.
Fig. 11 shows the pipeline block times of multi-program
benchmarks in SMT and superscalar. T0 and T1 in Fig. 11 are
used to denote the queue full times of thread 0 and thread 1. We
can see from Fig. 11 that queue full times of each thread in
SMT are more than that in superscalar. But queue full times of
both threads which indicate the block times of multithreading

processor in SMT are less than that in superscalar. Furthermore,
the results show that Godson-2 SMT processor makes full use
of the resources by executing the instructions of one thread,
when the other thread is blocked.

0
1000
2000
3000
4000
5000
6000
7000

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

av
er

ag
e

super scal ar T0 T1 SMT

Fig. 11: Pipeline block times of multi-program benchmarks

Fig. 12 presents the IPC of multi-program benchmarks in
SMT and superscalar. The results show Godson-2 SMT
processor improves performance efficiently. The speedup on
average is 31.1%. The performance improvement of
twolf+twolf is up to 54.4%. Though branch misprediction rate,
cache miss rate and TLB miss rate of SMT processor is a little
higher than those of superscalar processor as a result of
resources competition, Godson-2 SMT processor improves
performance significantly by full exploitation of thread-level
parallelism. Godson-2 SMT processor utilizes fully the
independency characteristic between multithreads, therefore
exploits more instructions executing in parallel in the same
instruction window. High utilization rate of functional units
increases the performance of Godson-2 processor effectively.

0
0. 2
0. 4
0. 6

0. 8
1

1. 2

ch
at

eo
n+

eo
n

t w
ol

f +
t w

ol
f

cr
af

t y
+c

r a
f t

y

ar
t +

ar
t

eo
n+

t w
ol

f

cr
af

t y
+a

r t

av
er

ag
e

benchmar k pr ogr ams

IP
C

super scal ar SMT

Fig. 12: Performance of multi-program benchmarks

VIII. CONCLUSIONS AND FUTURE WORK
This paper elaborates the microarchitecture of the Godson-2

SMT processor. Memory consistency model and register
sharing scheme which influence the performance and the
complexity of the design are described in detail. Some
application programs of SPEC CPU2000 are used to evaluate
the performance. It has been shown that Godson-2 SMT
processor improves the performance of Godson-2 superscalar
processor significantly by fully exploiting thread-level
parallelism, high utilization rate of functional units and fast
register sharing and synchronization. The average speedup is
31.1%. Our future work includes improving performance of
Godson-2 SMT processor and exploiting further multithreading
parallelism through putting multiple Godson-2 SMT processors
on the same chip.

REFERENCES
[1] Deborah T.Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.

Koufaty, J. Alan Miller, and Michael Upton. Hyper-Threading
Technology Architecture and Microarchitecture. Intel Technology
Journal Q1, 2002, pp. 4-15

[2] Ron Kalla, Balaram Sinbaroy, and Joel M.Tendler. IBM Power5 Chip: A
Dual-Core Multithreaded Processor. IEEE Micro, Mar./Apr. 2004, pp.
40-47

[3] Poonacha Kongetira, Kathirgamar Aingaran, Kunle Olukotun. Niagara: A
32-Way Multithreaded Sparc Processor. IEEE Micro, Mar./Apr. 2005,
Vol. 25, No. 2, pp. 21-29

[4] Tullsen D.M., Eggers S.J., Levy H.M. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. Proceedings of 22nd Annual
International Symposium on Computer Architecture, Santa Margherita
Ligure, Italy, Jun. 1995, pp. 392-403

[5] Tullsen D.M., Eggers S.J., Emer J.S., Levy H.M., Lo J.L., and Stamm R.L.
Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor. Proceedings of 23nd Annual
International Symposium on Computer Architecture(Philadelphia, PA) ,
1996, pp. 191-202

[6] Eggers S.J., Emer J.S., Levy H.M., Lo J.L., Stamm R.L. and Tullsen D.M.
Simultaneous Multithreading: A Platform for next-generation processors.
IEEE Micro, 1997, Vol. 17, No. 5, pp. 12-19

[7] Weiwu Hu, Fuxin Zhang, Zusong Li. Microarchitecture of the Godson-2
processor. Journal of Computer Science and Technology, Mar. 2005,
Vol.20, No.2, pp. 243-249

[8] Dubios M, Scheurich C, Briggs F. Memory Access Buffering In
Multiprocessors. Proceedings of the 13th International Symposium on
Computer Architecture, 1986

[9] Lamport L. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocessor Programs. IEEE Transactions on Computers,
1979, Vol. C-28, No. 9

[10] Goodman J. Cache Consistency and Sequential Consistency. Technical
Report No. 61. SCI committee, 1989

Zusong Li received his B.S. degree from Tsinghua University in 1996 and his
Ph.D. degree from the Institute of Computing Technology, the Chinese
Academy of Sciences in 2006, both in Computer Science. He is one of the three
architectural designers of Godson-2 processor, and his interest focuses on high
performance computer architecture, verification and VLSI design.

