
Patching Processor Design Errors
Satish Narayanasamy Bruce Carneal Brad Calder

Department of Computer Science and Engineering
University of California, San Diego
{satish, bcarneal, calder}@cs.ucsd.edu

Abstract—
Microprocessors can have design errors that escape the test

and validation process. The cost to rectify these errors after
shipping the processors can be very expensive as it may require
replacing the processors and stalling the shipment.

In this paper, we discuss architecture support to allow patching
the design errors in the processors that have already been
shipped out. A contribution of this paper is our analysis showing
that a majority of errors can be detected by monitoring a
subset of signals in the processors. We propose to incorporate
a programmable error detector in the processor that monitors
these signals to detect and initiate recovery using one of the
mechanisms that we discuss. The proposed hardware units can
be programmed using patches consisting of the errata signatures
which the manufacturer develops and distributes when errors
are discovered in the post-design phase.

I. INTRODUCTION

Industry spends as much as 50 to 70 percent of its efforts
on validation and testing of new hardware [1]. Increasing
hardware complexities, and time to market pressures contribute
to design errors. Despite significant efforts, some of these
design errors find their way into production, after which the
cost of dealing with them can be substantial.

If serious errors are found before a chip is shipped, the
repair cost includes the engineering time to characterize and
repair the errors, the direct fabrication costs associated with a
re-spin, including new masks, and, most importantly, the lost
revenue attributable to delayed introduction of the product.
If serious errors are discovered after shipment, the costs to
correct the problem can include all of the above along with the
in field replacement costs and a severely tarnished reputation
for the company. Recently, 3000 Opteron processors were
recalled as they were found to be vulnerable to an error
that can produce incorrect results for a particular sequence
of floating point operations [2]. Perhaps the most well known
design error is the FDIV [3] bug that cost Intel about $475
million as the manufacturers had to provide a replacement to
any customer that reported a faulty part. In fact, almost every
processor has a good number of design errors in them, which
the manufacturers discover after shipment and publish them
in the errata sheets [4], [5].

There are two ways to reduce the post shipment costs: (a)
prevent errors from occurring in the first place or (b) make
it easier/cheaper to correct errors as they are discovered. Our
natural inclination, and most of the resources committed to
date, are toward prevention. But with so much being spent on

prevention already, and errors still getting through, we should
also focus on designing mechanisms to patch design errors in
the shipped processors. The latter is the goal of this paper.

Currently, it is possible to correct some errors through BIOS
patches, by modifying the software, and by reconfiguring
the system configuration (eg: motherboard). Such mechanisms
often resort to disabling some functionality in the processor
to fix an error. For example, a design error in Pentium4 can
be overcome by having the firmware (BIOS) disable cache
prefetching [6]. Another error in AMD64 processor can be
avoided by disabling dynamic power management [5]. Many
errors relating to the instructions’ execution can be fixed by
patching the micro-op generation mechanism [7]. However,
executing the patch code every time the error prone instruction
is executed can result in significant performance overhead. An
alternative to these is to have a well tested checker processor
in order to verify the correctness of a complex out-of-order
core [8], but design errors in the periphery of a processor core
(e.g., coherency) can be difficult to patch with this approach.

In this paper, we propose to include a hardware unit in
the processor when the processor is designed, which can be
programmed later to patch errors when they are discovered.
We do not focus on the initial discovery of the design errors
in the processor. Instead, our goal is to patch the errors in
the shipped out processors after they are diagnosed by the
manufacturer. Our approach can detect the possibility of an
error while the processor is executing, and apply the patch
only when it is necessary to correct the error.

A key observation makes this possible. By studying the
design errors in Pentium4 [4] and AMD64 [5] processors, we
find that a majority of errors can be detected by monitoring
a well defined set of signals in the processors (e.g., signals
used for monitoring the performance, interrupts, exceptions,
etc). Hence, the error (discovered by the manufacturer) can be
represented using an errata signature, which consists of a set
of signals along with their values that are required to detect the
error. The error signature can be used to program our proposed
hardware units to detect the errors.

We also examine a set of mechanisms to patch an error
once it is detected by our programmable error detector. Some
errors related to CISC instruction implementation can be
patched through instruction stream editing [9]. Errors that are
dependent on the occurrence of a specific sequence of events in
the processor can be patched by rolling back and re-executing
the running threads. We also discuss how hypervisor [10],

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

[11] support can help patch processor design errors. Through
empirical analysis, we find that these mechanisms are capable
of patching 78% of AMD64 errors and 69% of Pentium4 errors
without leading to degradation in functionality.

II. CURRENT ERROR CORRECTION TECHNIQUES

In this section, we focus on techniques currently used by the
manufacturers to patch the errors discovered in the post-design
phase.

A. BIOS Patches

The primary purpose of the BIOS is to set up the initial con-
trol states in the processor during start up, before the control
is handed over to the operating system. Since the processor’s
control settings are dependent on the configuration of the
external devices in the system, usually the BIOS is customized
to a particular OEM vendor’s system configuration.

Processor manufacturers have found the BIOS (in general,
firmware) to be a good place to apply hardware patches, as
it lies at a convenient abstraction layer that does not affect
the higher level software users and it also has knowledge
about the system’s configuration. The BIOS can be used to
set up the initial control state in such a way that it would
circumvent a hardware error. For example, it is possible to
overcome a particular hardware error by setting the control
bits appropriately to increase the pulse width of the signals
(e.g., Erratum #98 in AMD64 Errata [5]).

Perhaps, the most common form of patching using the BIOS
are the micro-code patches [7]. In modern processors, certain
instructions are already translated to a sequence of micro-
operations. Hence, if the hardware error is related to the imple-
mentation of an instruction with a particular opcode, then we
can fix the bug by just patching the micro-code corresponding
to that opcode. A similar mechanism can be used in processors
like Crusoe, which have a layer of software called the Code
Morphing Software [12] on top of the processor to translate
the x86 instructions into the native ISA.

The BIOS has certain limitations. First, we find that a
significant proportion of the BIOS patches involve disabling a
feature in the processor to overcome the problem. Such fixes
can degrade performance or functionality in the processor.
Examples for disabling the functionality include disabling
the write combining feature in write buffers (Erratum #133
in AMD64 [5]) or disabling a power optimization feature
(Erratum #78 in AMD64 [5]).

Second, the BIOS has only limited run-time support and
does not have knowledge about all the events in the processor.
Though the BIOS micro-code patching will work for patching
the error in the implementation of a particular instruction
opcode, it is not suitable for patching more complex design
errors. Also, the BIOS cannot detect hardware errors during
the program execution to take corrective action on demand. As
a result, if the error occurs only under special circumstances,
executing the patch code for every executed instance of the
instruction can result in inefficiencies. For example, Erratum
#103 for AMD64 [5] says that the incorrect execution of the

AAM instruction only occurs under a very specific pipeline
condition, so it does not need to be patched every single
time the instruction is executed. In Section V, we discuss our
hardware patching mechanisms that can detect the occurrence
of an error and trigger the execution of the patch only when
it is necessary.

B. Software Patches

It is possible to overcome some hardware errors by taking
preventive action in the software layer. For example, code
generation in a compiler or run-time system can make sure
that certain opcodes never appear adjacent to each other in
order to avoid a particular sequence of events that trigger an
error. Patching a hardware error in software is typically only an
option if there is a single operating system and compiler/linker
used for the processor. For example, DEC successfully masked
hardware errors using link-time optimization for released
processors, making sure certain opcode sequences would never
occur during execution. This was possible because they were
in complete control of the operating system (OSF) and the
compiler chain. For mainstream processors, software patching
is not as feasible, because of the multitude of different
operating systems and compilers supported by them.

C. Re-spin

A re-spin of the chip is both the most costly and the
most capable of the post fabrication patching options. Bugs
can be fixed during a re-spin, but there is also a chance
for introducing new bugs. The costs associated with a re-
spin include additional engineering time, the purchase of new
masks, and a potentially devastating delay to market. Though
re-spinning can completely fix a hardware error, it would
involve replacing the customer products, which is a more
costly exercise than sending a simple patch to the customer.
Further, re-spinning requires significantly more time when
compared to just sending a patch to the customer.

III. TAXONOMY OF ERRATA

In this section, we identify the common types of processor
design errors. We also analyze the importance of the errors
that are discovered in the post-design phase.

A. Source of Design Errors

The AMD64 errata sheet [5] reports 63 errors found in
the AMD Athlon 64 and AMD Opteron processors (hereafter
referred to as AMD64). The Intel Pentium4’s errata sheet [4]
reports 109 errors. Table I classifies the design errors reported
in those errata sheets into various categories. A few of the
errors are classified under more than one category. Hence, the
numbers do not add up to 100%. For clarity, the table also
contains the absolute number of errors (presented inside the
braces).

The memory interface category includes the errors in the bus
interfaces, cache and virtual memory implementations. About
17.4% of errata in AMD64 and 20.2% in Pentium4 can be
classified under this category. This category of errors constitute

the highest proportion of errors among all the categories. This
shows how the external memory interfacing is error prone.

All the errors that relate to the interaction between multiple
processors are classified into the Multi-processor category.
Especially, coherence bugs are prominent in this category.
This happens to be the next most common form of errors
in AMD64, as they constitute about 14.2%. In Pentium4
processors about 5.5% of the errors are classified under this
category.

Error Type AMD64 Pentium4

Memory interface 17.4 (11) 20.2 (22)
Multi-processor 14.2 (9) 5.5 (6)
Power management 11.1 (7) 3.7 (4)
Incorrect error report 11.1 (7) 6.4 (7)
Opcode Implementation 11.1 (7) 16.5 (18)
64-bit extension 9.5 (6) 11.0 (12)
Frequency 4.7 (3) 1.8 (2)
Interrupt 7.9 (5) 1.8 (2)
Exception 6.3 (4) 2.7 (3)
Debug Support 3.1 (2) 11.0 (12)
Hyper-threading (SMT) NA 11.0 (12)
VT (Vanderpool) NA 8.3 (9)
Unpatchable 9.5 (6) 2.7 (3)
None of the above 3.1 (2) 0.9 (1)

TABLE I

TAXONOMY OF DESIGN ERRORS IN AMD64 AND INTEL PENTIUM4.

Power management is relatively a new functionality added
to the CPU design. We see that about 11.1% and 3.7% of
errors in AMD64 and Pentium4 fall under this category. The
Pentium4 number is a little lower than the AMD64 number
because we classified some of the Pentium4 bugs in this
category as Hyper-threading bugs.

Processors incorporate diagnosis functionality to detect cer-
tain faults (e.g., faults in memory by using ECC). We found
seven errors in both AMD64 and Pentium4 that are due
to incorrect error reporting. Incorrect error reporting is a
recurring problem in these implementations, but the impact
from these errata is usually less than catastrophic as they do
not lead to incorrect execution of programs. Errors in this
category include off by one counters, mismanaged counter
overflows, and extended delays when reporting a condition.

The opcode implementation category contains those bugs
that are clearly identified with the incorrect implementation
of an instruction with a particular opcode. In x86 ISA imple-
mentations it is common for a complex CISC instruction to get
incorrectly implemented. For example, the CPUID instruction
is incorrectly implemented and can lead to incorrect behavior
under some circumstances.

Recent advancement to 64-bit resulted in 9.5% of the errors
in AMD64 and 11.0% of the errors in Pentium4. Interesting
examples in this category include various incorrect implemen-
tations of the CISC based string instructions when they operate
on operands that are over 232 in length.

The ’frequency’ category contains all those bugs that only
occur with specific operating frequencies or clock ratios. A
number of bugs in this category occur in conjunction with

peculiar but legal motherboard configuration choices. Interrupt
bugs are the incorrect implementation of external interrupt
handlers, while the exception category represents the imple-
mentation bugs that manifest when the chip attempts to deal
with internal (CPU originated) exceptions. Incorrect interrupt
and exception handling together account for nearly 14% of
errors in AMD64, but it is only 4.5% errors in Pentium4.

The next category listed is related to the debugging support
provided in hardware. A good number of the debug support
bugs had to do with altered execution flow of the application’s
execution. Various problems involving the single step execu-
tion facility are classified under this category. Mismanagement
of the data watch-point capability are also common.

We next list the errors seen in Intel’s Hyper-Threading(HT)
and Vanderpool technologies, which resulted in 12 and 9
respectively out of the Pentium4’s total of 109 errors. We did
not find any erratum related to the implementation of Pacifica
technology in the AMD64 errata sheet [5].

The Unpatchable category consists of those bugs that are
not good candidates for architectural patching. For example,
errata that are related to voltage levels in the processor not
meeting the published specifications are classified under this
category.

B. Importance of Design Errors

There are two factors that determine the importance of an
erratum: frequency of occurrence and severity of the error.
Unfortunately, the errata documents available to us give only
a limited view of the frequency of the individual erratum.
However, they let us know if it is possible for an error to
occur at the customer site or whether it occurs only when the
processor is subjected to a contrived in-house testing. Table II,
categorizes the percentage of errors into these two categories:
Customer and In-house errors.

Clearly, the errors that have the potential to occur at the
customer site are important. However, for certain errors, like
a very small time slip in the performance counter accounting,
the errata sheet mentions that they are not a serious cause for
concern. We classify such errors into ”Customer; Unimpor-
tant” category and the rest into ”Customer; Important”.

AMD64 Pentium4

Customer; Important 79.35 74.31
Customer; Unimportant 3.17 0.00
In-house; Plan to fix 11.11 8.26
In-house; No plan to fix 4.76 17.43

TABLE II

IMPORTANCE OF DESIGN ERRORS IN AMD64 AND INTEL PENTIUM4.

For errors found during in-house testing, the manufacturers
also indicate whether or not they ever plan to fix the errors.
Thus, we further classify in-house errors into two categories
based on whether the manufacturer has plans to fix it or not.
We believe that errors that the manufacturer plans to fix are
also important. By taking the first and the third row in the

Event - Signature

Matcher

Signature Monitor Recovery

Micro -arch Signals

Exceptions

Interrupts

Mode Changes

Instr. Stream

Watchdog
Timer

(SignatureID,
Event ID)

SignatureID

Fig. 1. Patching design errors using errata signatures.

Table II together, we note that approximately 90% of errors
are important and a mechanism to patch these errors in shipped
processors will be of great value.

C. Empirical Study on Design Errors

Similar to our empirical analysis of errata, Aviczienis and
He [13] studied the errors in Pentium-II that are discovered
in the post-design phase. Their study focused on analyzing
the importance of design errors. Their study reports that most
of the errors are concentrated in the parts of the processors
that are meant for fault tolerance (e.g., ECC). However, we
find that in recent processors a significant fraction are due to
the new functionalities added to the processor (e.g., Hyper-
Threading in Pentium4).

IV. DETECTION USING ERRATA SIGNATURES

In this section, we show that it is possible to detect a
majority of design errors by monitoring a set of signals that
can be determined during design. We propose to include a
programmable error detection unit in the processor, which has
the capability to monitor a set of signals that are commonly
involved in processor design errors. When a new error in the
design is discovered after the processor has been shipped out,
the processor manufacturer can develop a patch for it. The
patch consists of an errata signature.

A. Patching Hardware Errors using Errata Signatures

An errata signature is used to program our hardware patch-
ing mechanism to detect errors that manifest due to an erratum.
An Errata Signature is a combination of a set of events. An
Event is a signal with a particular value. The errata signature
also has a field that specifies the maximum time interval within
which we should detect all the events specified in the signature.
The time interval can be specified either in terms of the number
of committed instructions or processor cycles.

Figure 1 shows the high level architecture design for our
hardware patching mechanism, which can be programmed
using the errata signatures. The Event-Signature Matcher is
programmed to watch for events (signals with specific values
or values that lie within specified ranges) that are part of any
of the errata signatures. When an event occurs, it can match

a set of signatures in the Event-Signature Matcher. For each
match, a (SignatureID, EventID) tuple is generated and is
given as input to the Signature Monitor.

The Signature Monitor contains an entry for each signature
that is to be patched. The purpose of the Signature Monitor
is to determine if all the events for a signature occur within
the time interval specified for that signature. The signature
monitor entry for a signature consists of the following: (1) a
signature identifier (2) the time interval specified in signature
(3) a list of events specified in the signature, and for each event
it also keeps track of a timestamp. The timestamp maintained
for an event indicates when that event last occurred. Thus,
by examining the timestamps of all the events for a signature
in the Signature Monitor entry, we can determine if all the
required events have occurred within the specified interval.

When a (SignatureID, EventID) tuple is generated
by the Event-Signature Matcher, an entry in the Signature
Matcher is updated as follows. The SignatureID is looked
up in the Signature Monitor table to select an entry. Then,
the EventID for that signature is updated with the current
timestamp, to keep track of the time when the event last
occurred. We then check to see if all of the events for the
signature have occurred within the specified interval. If so,
then we have detected an error corresponding to the monitored
signature, and the signature identifier corresponding to the
erratum is passed to the Recovery unit. The Recovery unit
then initiates the recovery for the detected error using one of
the mechanisms that we will describe in Section V.

In the remainder of this section, we discuss the types of
signals that are important to monitor in order to detect the
errata in Pentium4 and AMD64. Table III shows the common
signal types involved in the processor errors. It also shows the
percentage of errata that a particular type of signal is involved
in. A particular error might require multiple signals. Hence, the
numbers in the table do not add up to 100%. An important
result in the table is that except for 22% of AMD64 errors
and 31.2% of Pentium4 errors, the rest can be detected by
monitoring a common set of signals. Hence, if the Event-
Signature Matcher has access to signals of the types listed
in Table III, it should be able to detect a majority of errors.

B. Instruction Stream Signals

Instruction stream signals are the ones routed to the micro-
op expansion hardware. By having access to these signals,
the detection unit can monitor the instructions that are getting
executed. Instruction stream signals occur early enough dur-
ing instruction execution. Therefore, the errors related to an
instruction’s implementation can usually be avoided at little
cost, provided we can accurately identify the instances of the
instructions that need to be fixed. From Table III, we see that
about 25% of hardware errors in AMD64 and 27% of errors
in Pentium4 require that the Event-Signature Matcher has the
ability to monitor the instruction stream.

AMD64 Pentium4

Instruction Stream 25.39 26.71
Exception 15.87 12.42
Interrupt 17.46 2.48
Mode Changes 11.11 19.88
Micro-Arch Events 19.04 13.66
Watchdog timer 6.34 1.86
Others 3.17 4.35
None required 22.20 31.2

TABLE III

SIGNALS INVOLVED IN ERRORS.

C. Interrupts and Exceptions

Interrupts are the asynchronous signals received by the
processor from the external world. Defined exception signals
are predicates indicating the ISA or implementation defined
exceptions. We find that a significant proportion of errors
in hardware require monitoring these events. Monitoring the
interrupts and exceptions are useful in detecting 33.33% of
AMD64 errors and 14.9% of Pentium4 errors.

Errata signatures with these events may not be seen early
enough to avoid the corresponding erratum. However, rolling
back the execution after flushing the pipeline or to a previous
checkpoint [14] are possible approaches for correcting these
errors. Also, we find that a significant proportion of errors
involving exceptions are due to incorrect handling of the
exception itself, which can be corrected using hypervisor
support, which we will describe in Section V.

D. Monitoring the Mode Changes

We find that a large number of errors occur only while
operating in a specialized mode. An example is executing
in the low power mode or in the 32-bit compatibility mode.
The Event-Signature Matcher that we propose should have
access to the necessary signals to determine the mode, the
processor is in. About 11.1% of errors in AMD64 and 19.9%
of errors in Pentium4 occur while the processor is operating
in a specialized mode.

E. Micro-architectural Events

In a processor, there are a set of signals that indicate
various micro-architectural events. Performance counters in
the modern processors are updated by monitoring such events.
Examples in this group include L1 cache misses, TLB misses,
hardware prefetches, etc. These signals need to be monitored
to fix 19% of errors in AMD64 and 14% of errors in Pentium4
(see Table III).

F. Watchdog Timer

Finally, there is a class of errors that are not caught
with the above monitors, which lead to a deadlock situation,
where the processor stops making progress. This condition can
be detected using a watchdog timer. Traditionally watchdog
timers are used just to restart the processor after terminating
the application that was running. We propose to instead use
the watchdog timer to recover from the processor error with

the help of hardware checkpoint mechanisms or hypervisor
support, which we describe in Section V. We find that only
about 6% of errors in AMD64 and 2% of errors in Pentium4
cannot be detected before the processor hangs.

G. Errors not Involving Signals

We found that for 22% of errors in AMD64, there is little
use in using the signals to detect the hardware error. One
reason is that there are errors that just cannot be patched
by monitoring signals. For example, the erratum #104 in
AMD64 is related to incorrect ECC calculation for partial
writes. Another example is the erratum #111 in AMD 64
that says that the Rtt (Round-Trip-Time) specification for the
HyperTransport pins used for communication is not meet.
Then there are errors deemed as insignificant, which we place
under this classification and will not be targeted for patching.
An example is the erratum #75 in AMD64 which causes slight
inaccuracy in the APIC timer.

H. Total Signals

As we will see in Section VII, we can cover 78% of the
errors in AMD64 [5] by monitoring the signal types that
we described above. We also estimated the total number of
unique signals that need to be monitored to fix these errata.
We found that we need to monitor around 41 signals to
capture the 78% of errors in AMD64. The breakdown of
the signals was as follows: 15 different signals were of type
interrupts and exceptions, 14 different signals were related to
micro-architectural events, 11 different signals were required
to detect different modes in the processor, and one signal was
required to monitor the opcodes of the instruction stream. This
gives us an estimate of the number of signals that need to be
made accessible to the Event-Signature Matcher.

V. HARDWARE DEFECT PATCHING SUPPORT

In Section IV, we discussed how one can detect the occur-
rence of an error by monitoring the signals in hardware. In
this section, we describe various hardware mechanisms that
can be used to patch the design errors when they manifest
during program execution.

A. Instruction Stream Editing

The BIOS micro-code patching is useful to overcome those
hardware errors that are due to incorrectly implemented in-
structions. However, these patches are static in nature, because
they are applied once before the processor starts functioning.
Given that the hardware errors in heavily tested processors
occur very infrequently, it is inefficient to execute, potentially
high overhead, patched micro-code sequence every time the
instruction that may cause erroneous behavior is executed.
The micro-code patch needs to be executed only when the
processor is in a state that will cause an error if we do not
execute the patch code.

Corliss et.al. proposed a dynamic instruction editing mecha-
nism called DISE [9]. DISE is similar to the micro-code expan-
sion mechanism in hardware, except that it is programmable

and can inject instructions into the instruction stream when
certain conditions are met. These conditions could be based
on the opcode, the operand registers and their values, or they
could even be based on the instructions that are currently
being executed in the pipeline. We can use the instruction
editing mechanism to execute patched micro-code sequences
only when the required conditions are met.

B. Replay after Pipeline Flush

Many of the hardware errors cause problems under highly
specific circumstances when two or more events occur close to
each other in time. Using the errata signature, our hardware
detector can detect the problem, and then to overcome the
issue it might be sufficient to flush the pipeline and re-execute
the instructions. Modern processors already have checkpoint
support to roll-back to a mispredicted branch and replay
from there. During replay, we can execute NOP instructions
interspersed with the original instruction stream. Thereby,
during replay, we can force sufficient delay between the events
that would otherwise result in an erroneous execution. In
Section VI-B, we discuss an example erratum that can be
patched using this replay support.

C. Replay with Checkpoint Support

For the replay approach, we assumed that we have the
capability to flush the instructions in the pipeline. But this
replay functionality is inadequate to handle some errors that
require replaying a few hundreds to thousand instructions
across all the processors in a multi-processor system. For
example, this is required in the case of hardware errors
that are due to incorrect implementations of multi-processor
functionalities like coherency, incorrect interaction with the
memory subsystem, etc. One way to address these types
of errors is to have a light-weight checkpoint support that
can enable rolling back the architecture state a few hundred
instructions for each of the cores in a multi-processor system.
Then NOPs can be inserted into the instruction stream during
the replay, to avoid the error.

Sorin et.al. proposed SafetyNet [14], which is a hardware
assisted checkpoint mechanism that provides the capability to
rollback program execution by about 100,000 cycles across
all the processors in a multi-processor system. This type of
checkpoint and restore could definitely be used to avoid some
of the errors, but through our analysis of errata in Pentium4
and AMD64, we find that a light-weight mechanism, as
mentioned above, which supports rolling back a few hundred
instructions per core should be sufficient to recover a majority
of complex hardware design errors.

1) Alternative to Checkpoint Scheme: If the above check-
pointing schemes are not supported, then an alternative is to
just detect the error and report it to the higher level software.
This will allow the software to perform graceful recovery in
the presence of an error. This way of handling the error is
essentially how the watchdog timers are being used today.
However, if the watchdog timer is used with the proposed

Signature Monitoring unit, one can potentially report the cause
for a deadlock when it is detected by the watchdog timer.

D. Hypervisor Patching Support

Some modern processors support hypervisors, also known
as Virtualization Technology (VT). Recent examples of VT
include Intel’s Vanderpool [11] and AMD’s Pacifica hard-
ware [10]. A hypervisor occupies a layer between the operating
system and the hardware. Because of its proximity to the
hardware, patching using a hypervisor can cover a wider
variety of problems without exposing the hardware error to the
operating system or the software. In addition, VT hardware
provides hypervisors with fine grained abilities to intercept
and interrupt the flow of control when there is an exception.
Hence, the proposed hardware error detector can trap to the
hypervisor whenever an error is detected and communicate the
erroneous condition to the hypervisor. The hypervisor can then
take sophisticated corrective action and shepherd the program
execution past the problem. This corrective action might
involve flushing the pipeline or rolling back the execution
to the previous checkpoint, and then replaying the program’s
execution.

VI. CASE STUDIES

In this section, we discuss several case studies to illustrate
how errors can be recovered using the patching mechanisms
that we described in Section V.

A. Case for Instruction Stream Editing

The following errata can be found in the errata sheet for
AMD64 [5]. When an AAM (ASCII Adjust after Multiply)
is followed by another AAM instruction in a span of three
instructions, or when a DIV is followed by an AAM in a
span of six instructions, the processor might produce incorrect
results. The suggested workaround for this problem in the
errata sheet is to have the software ensure that the AAM and
DIV instructions are sufficiently spaced out in the code using
additional NOPs to avoid the error. Instead of exposing this
problem to the software, we can use dynamic instruction
stream editing described in Section V-A to fix this issue. The
DISE [9] programmable engine can keep track of whether
any AAM or DIV instruction was encountered in the last 6
instructions dispatched. If that condition is satisfied while
dispatching an AAM, it can inject NOPs into the stream to avoid
the impending hardware error. Note that, one could potentially
use BIOS micro-code patching to solve this problem as well.
However, that will involve injecting the NOPs for every
instance of the AAM instruction, which can be expensive in
terms of performance overhead.

B. Case for Replay after Pipeline Flush

The following errata found in the Intel Pentium4 errata
sheet [4] can be solved with the help of replay support. Intel’s
Pentium processors have the support to do fast string copying
operations while executing MOVS or STOS instructions with
prefix REP. The processor makes use of the control register

CR2 while performing this string copy operation. If a paging
event occurs while the processor is performing a fast string
copy operation, then the value in the CR2 register can get
incorrectly modified. In such circumstances, we will expe-
rience an incorrect execution of the program. There are no
workarounds suggested in the errata sheet. However, this error
can be easily detected using an errata signature that comprises
of the following: 1) a paging event and 2) a fast string copy
operation. The latter can be determined by monitoring the
instruction stream signal to look for the opcodes with the prefix
REP. The detection unit can detect this problem whenever
the paging event is encountered and when the processor is
in the fast string copy mode. After detection, the processor
only needs to flush the pipeline and restart the execution
from the last uncommitted instruction. Note, it is possible
that the processor might take corrective action even when it
is not absolutely necessary (false positive), but the approach
guarantees that the error will not occur (no false negatives).

C. Case for Light-Weight Checkpoint Support

To overcome certain hardware errors, especially the errors
related to the implementation of multi-processor functionali-
ties, we might have to rollback past the committed instructions
to undo the changes done to main memory. To rollback
execution past the committed instructions in a multi-processor
system, we assume a light-weight hardware checkpointing
support that can support rolling back past a few hundred
instructions in each processor in the system. An example is
the following error reported in the Pentium4 [4] errata sheet
(Errata R21): “While going through a sequence of locked
operations, it is possible for the two threads to receive stale
data. This is a violation of expected memory ordering rules and
causes the application to hang”. To recover from the deadlock,
the execution can be rolled back to a past checkpointed state.
During re-execution, we can ensure that the system does not
encounter the same problem again by inserting NOPs into the
instruction streams to cause sufficient delay between the lock
operations.

D. Case for Hypervisor Support

In one of the AMD64 errata [5], Advanced Programmable
Interrupt Controller (APIC) generated interrupt is not serviced
correctly if the interrupt occurs while the processor is entering
the C2 power state. The interrupt is not lost, but it is not
serviced until some other wakeup event like a timer tick occurs
to take the processor out of the C2 state. Unusually long
delays in servicing the interrupt might result in unpredictable
system failures. The suggested workaround for this bug in the
errata sheet is to not enable the C2 power state. However,
this amounts to loss of functionality in the processor. Instead,
in our mechanism, since the detection unit has access to the
interrupt signals and also can determine the current power
mode in the processor, we can detect when such an interrupt
occurs in the C2 power mode. Once detected, we can trap
to the hypervisor where we can ensure that the interrupt is
serviced without any delay.

In one other example from the AMD64 errata sheet [5],
unexpected page faults are reported for software prefetches.
But the right thing to do is to ignore the page faults triggered
by the software prefetches. The suggested workaround to this
problem is to modify the kernel of the operating system.
Instead, our mechanism can handle this error as follows.
The errata signature to detect the error is the combination
of software prefetch instruction dispatch event and the page
fault event. When the detection unit detects a match for the
signature, it can trap to the hypervisor where we can accurately
determine if the page fault was generated by the software
prefetch instruction. If that is the case, then the fault can
be ignored. If not, the hypervisor can invoke the page fault
handler to service the page fault.

VII. ERROR COVERAGE RESULTS

Table IV and Table V show the percentages of errors
covered by the conventional approaches and the proposed
mechanisms. The results are presented for the errors found
in the errata sheets for AMD64 [5] and Pentium4 [4].

As shown in Table IV, using BIOS patches that do not
involve disabling a functionality in the processor, we can patch
14.2% errors in AMD64 and 28.4% errors in Pentium4. A
predominant proportion of these errors are the BIOS micro-
code patches. However, executing the patch-up code can
incur appreciable overhead. Instead of micro-code patches,
we propose using I-Stream patching mechanism described
in Section V-A, which can trigger the execution of patch-
up micro-code conditionally and thereby avoid degradation in
performance. From Table V, we can see that there are about
6.2% AMD64 errors and 10% Pentium4 errors that can benefit
from conditional patching. However, 4.9% AMD64 errors and
9.1% Pentium4 errors still require patching every instance of
an instruction (shown as I-Stream:Static).

There are about 12.6% AMD64 errors and 7.3% Pentium4
errors that require support from the higher level software.
The categories labeled with the prefix Disable involve turning
off some functionality in the processor (e.g., power saving
feature or a prefetching mechanism). The conventional BIOS
patching approach can be applied to 30% AMD64 errors and
10% Pentium4 errors, which disables certain features to avoid
the hardware errors. If software support is used to ensure
that certain features in the processor are not used or certain
instruction sequences do not occur, then an additional 12.4%
AMD64 errors and 17.3% Pentium4 errors can be covered. In
total, about 42.4% AMD64 errors and 27.3% Pentium4 errors
can be covered through these conventional techniques, but the
downside is that many of the features will be disabled. We also
found that about 25.3% AMD64 errors and 33.9% of Pentium4
errors cannot be patched using these conventional methods.

Table V shows the coverage using our signature-based
detection and error correction mechanisms. Among our mech-
anisms, support for simple replay after flushing the pipeline
can recover 7.9% AMD64 errors and 3.6% Pentium4 errors.
Replay with a light-weight checkpoint support that we dis-
cussed in Section V-C can cover additional 9.5% AMD64

Technique AMD64 Pentium4

BIOS 14.2 28.4
OS 6.3 5.5
Software 6.3 1.8
Disable:BIOS 30.1 10.0
Disable:OS 4.7 6.4
Disable:Software 6.2 3.6
Disable:External 1.5 7.3
Unimportant 3.1 2.7
Watchdog 1.5 0
Not covered 25.3 33.9

TABLE IV

COVERAGE USING CONVENTIONAL APPROACHES.

Technique AMD64 Pentium4

I-Stream:Static 4.9 9.1
I-Stream:Cond 6.2 10.0
Replay w/ Pipeline Flush 7.9 3.6
Replay w/ Checkpoint 9.5 0.9
Hypervisor 46.0 39.4
Hypervisor+Replay 4.7 5.5
Disable:BIOS 7.9 0.0
Disable:Hypervisor 6.2 11.9
Unimportant 3.1 2.7
Not covered 4.7 16.5

TABLE V

COVERAGE USING SIGNATURE BASED PATCHING.

errors and 0.9% of Pentium4 errors. Hypervisor support plays
an important role as it can help patching about 46% AMD64
errors and 39.4% Pentium4 errors. The category labeled as
Hypervisor+Replay correspond to the technique where we
have to flush the pipeline and start re-executing the pro-
gram under the guidance of the hypervisor. The hypervisor
will be in control of the program’s execution until it has
successfully shepherded the program’s execution to get past
the hardware error. The category labeled as Disable:BIOS
and Disable:Hypervisor avoid the errors by disabling some
functionalities in the processor with the help of BIOS or
hypervisor support. The ones that are labeled as Unimportant
correspond to errors like timer inaccuracy that do not affect
the functionality of the processor. These errors do not warrant
a patch.

In summary, using our proposed patching mechanisms, we
are able to cover 78% of errors reported for the AMD64
processors and 69% of errors in the Pentium4 processor. When
incorporating in the conventional disabling techniques, and
ignoring the unimportant errors, we can cover almost all the
errors except 4.7% AMD64 errors and 16.5% Pentium4 errors.
Among the patched errors, only about 13% of AMD64 errors
and 12% of Pentium4 errors require disabling some function-
alities. This is better than 42.4% AMD64 errors and 27.3%
that require disabling features using the conventional methods
(many of which require patching support from software). Also,
using the conventional methods 25.3% AMD64 errors and
33.9% of Pentium4 errors were left unpatched.

VIII. CONCLUSION

In spite of the enormous amount of effort spent on test-
ing and validation, processors continue to contain non-trivial
errors. We can only expect this situation to worsen as the
hardware complexity continues to increase. Processor manu-
factures can benefit by including a mechanism in the processor
that has the capability to patch the errors.

To patch an error, we require the ability to detect it and
a mechanism to fix it. From our empirical study, we showed
that it is possible to have a detection mechanism based on the
errata signatures, as a majority of errors can be detected by
monitoring a common set of signals. We also discussed using
a set of architectural mechanisms to fix the error once they are
detected when the processor is functioning. We showed that
it is possible to cover 78% of errors reported for the AMD64
processors and 69% of errors in the Pentium4 processor using
the proposed signature based error patching mechanisms.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for pro-
viding useful comments on this paper. This work was funded
in part by Microsoft and Intel.

REFERENCES

[1] P. Rashinkara, P. Paterson, and L. Singh, System-on-a-Chip Verification
- Methodology and Techniques. Kluwer Academic Publishers, 2001.

[2] AMD opteron woes. DailyTech. [Online]. Available:
http://www.dailytech.com/article.aspx?newsid=2039&ref=y

[3] A. Wolfe. (1997, May) For Intel, it’s a case of FPU all over again. EE
Times.

[4] Intel Pentium 4 Processor on 90nm Process, specification update, Intel
Corporation Std. Order No. 302 352-024, Dec 2005.

[5] Revision Guide for AMD Athlon 64 and AMD Opteron Processors,
Advanced Micro Devices Std. Publication 25 759, Rev. 3.57, Aug 2005.

[6] M. Magee. (2002, Aug) Intel’s hidden Xeon, Pen-
tium 4 bugs. The Inquirer. [Online]. Available:
http://www.theinquirer.net/default.aspx?article=5184

[7] L. C. Heller and M. S. Farrell, “Millicode in an IBM zSeries processor,”
IBM Journal of Research and Development, May 2004.

[8] T. M. Austin, “DIVA: A reliable substrate for deep submicron mi-
croarchitecture design,” in Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 196–207.

[9] M. L. Corliss, E. C. Lewis, and A. Roth, “DISE: A programmable macro
engine for customizing applications,” in Proceedings of the 30th Annual
International Symposium on Computer Architecture. New York, NY,
USA: ACM Press, 2003, pp. 362–373.

[10] AMD64 Virutalization Codenamed ”Pacifica” Technology, Secure Vir-
tual Machine Architecture Reference Manual, Advanced Micro Devices
Std. 33 047, Rev. 3.01, May 2005.

[11] (2005, Dec) Intel virtualization technology. Intel Corporation. [Online].
Available: http://www.intel.com/technology/computing/vptech/

[12] A. Klaiber, “The technology behind the crusoe processors,” White paper,
Transmeta Corporation, Jan 2000.

[13] A. Avizienis and Y. He, “Microprocessor entomology: A taxonomy of
design faults in COTS microprocessors,” in Proceedings of the Con-
ference on Dependable Computing for Critical Applications (DCCA).
Washington, DC, USA: IEEE Computer Society, 1999, p. 3.

[14] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safe-
tyNet: Improving the availability of shared-memory multiprocessors
with global checkpoint/recovery,” in Proceedings of the 29th Annual
International Symposium on Computer Architecture. IEEE Computer
Society, 2002, pp. 123–134.

