
Verifying External Interrupts of Embedded
Microprocessor in SoC with on-chip bus
Fu-Ching Yang and Jing-Kun Zhong

Department of Computer Science and Engineering
National Sun Yat-sen University

Kaohsiung 80424, Taiwan
Email: {fcyang, jkzhong}@esl.cse.nsysu.edu.tw

Ing-Jer Huang
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung 80424, Taiwan

Email: ijhuang@cse.nsysu.edu.tw

Abstract—The microprocessor verification challenge becomes
higher in the on-chip bus (OCB) than in the unit-level. Especially
for the external interrupts, since they interface with other IP
components, they suffer from the complicated bus protocol and
IP conflict problems. This paper proposes a automatic method
to verify the microprocessor external interrupt behaviors on the
OCB. The verification approach is based on the Processor Exter-
nal Interrupt Verification Tool (PEVT) whose simulation environ-
ment is direct-connected memory. In this paper, we implement
the PEVT-SoC and successfully verify two SoC platforms, one
academic microprocessor and one public domain microprocessor.
An interesting bug appears that is impossible to be discovered
in the memory bus and not easy to be identified on the OCB.
The result shows that the PEVT-SoC effectively shortens the
verification time regardless of the system complexity and can
be easily migrated to different platforms/microprocessors. With
little human effort, even an inexperience designer can generate
extensive verification cases in a systematic way.

I. INTRODUCTION

Microprocessor external interrupt behaviors cannot be veri-
fied by instruction-based verification approach because exter-
nal interrupt behaviors are caused by external interrupt signals.
External interrupt behaviors are hard to verify because of two
reasons. First, the external interrupts’ arrival time are variables.
Second, the relationship between the external interrupts and
the instructions is very close; the microprocessor behaves
differently when the external interrupts arrive at different
instructions.

Traditional external interrupt verification approaches are
usually unsystematic, impractical and not retargetable. The
microprocessor core connects to the memory directly. The
verification engineers design a hardware module to stim-
ulate the microprocessor external interrupt pins while the
microprocessor executes instructions. Such approach has three
disadvantages. First, because the possible external interrupt
behaviors are huge, the verification coverage of such human
dedicated approaches is usually low. Second, modern micro-
processor often equips the bus interface unit (BIU) for on-chip
bus (OCB) protocol compatibility. It is impractical to ignore
the BIU and verify the microprocessor core independently.
Also, the microprocessor may be wrong on the OCB even
though it passes the verification at core level. Third, because
the microprocessor core I/O pins’ functionalities depend on

the implementation, verification mechanism developed at this
level restricts the retargetability.

In this paper, we implement an automatic processor external
interrupt verification tool for system-on-a-chip environment
(PEVT-SoC) to overcome the above problems. With this tool,
the only thing the user needs to do is to describe the micro-
processor in the proposed exception description language (EX-
PDL). PEVT-SoC generates the verification cases by exploring
the EXPDL automatically and systematically. The verification
cases are then translated to verification hardware and software
automatically. The hardware stimulates the microprocessor
external interrupt behaviors and monitors the microprocessor
in a SoC environment. The software creates specific micro-
processor pipeline scenarios for verification. This systematic
approach helps the verification engineers achieve good veri-
fication coverage within a short time. It is also practical for
modern microprocessor verification.

The rest of the paper is organized as follows. Section II
discusses the related work of the microprocessor verification.
Section III is the overview of the PEVT-SoC. Section IV and
Section V discuss the challenges and solutions of verification
in the OCB environment. In Section VI, the PEVT-SoC is
applied on two OCB platforms to demonstrate the usefulness,
the experimental results are discussed as well. Section VII
concludes this work.

II. RELATED WORK

As the system complexity increases, IP (Intellectual Prop-
erty) integration in the SoC via the OCB is inevitable. How-
ever, because the OCB environment is complex and difficult
for verification, the verification is divided into unit-level and
system-level [2].

For microprocessor, the unit-level refers to the MUV con-
necting to the memory directly (called simple verification
environment) as Fig. 1(a) shows. The primary concern is
the microprocessor core’s correctness. The bus protocol is
very simple. First, only a small subset of microprocessor
I/O pins is used for communication: address, data, read/write
control signal and data size. Second, the transmission only
takes one cycle to complete. On the contrary, in system-
level, the microprocessor connects with other IPs via the
OCB as Fig. 1(b) shows. Because of the IP conflict and the

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 372

Memory

Microprocessor
under verificationExternal interrupt

signals

Software trigger
programPEV-HW

Monitor
engine

Interrupt
activator

Memory

Microprocessor
under verificationExternal

interrupt
sources

Software trigger
program

PEV-HW

Monitor
engine

Interrupt
activator

Interrupt
controller

External
interrupt signals

Master
IP 1

Master
IP 2

Slave
IP 1

Slave
IP 2

(a) (b)

Fig. 1. PEVT-SoC verification environment. (a) Simple verification envi-
ronment: connecting microprocessor and memory directly (b) On-chip bus
verification environment

Software
trigger

PEVT core engine

Microprocessor
specification External interrupt

scenarios

Monitor
engine

Interrupt
activator

Memory
BIU

SwitchSynchronizer

Monitor
engine

Interrupt
activator

Software
trigger

For memory
bus

environment

For on-chip bus
environment

P
E

V
T

P
E

V
T

-S
oC

Fig. 2. PEVT-SoC framework

complex bus protocol, the microprocessor’s correctness cannot
be guaranteed even after passing unit-level verification [2].

As a result, there are research papers about generating
transactions on the OCB to stimulate the IPs. The generation
methods are either from the bus functional model [2] [8] or
the software program generator [3] [4] [5]. Depending on the
verification granularity and speed, the verification environment
can be register-transfer level (RTL) [3] [8], system level,
FPGA or a hybrid of any two of them [4] [5]. The transaction-
based verification approach is good for verifying the micro-
processor instructions’ functional correctness. Unfortunately,
the verification of microprocessor external interrupt behaviors
still cannot be verified because those transactions are, in
fact, instructions or data. As we mentioned in Section I,
the instruction-based verification cannot exercise the external
interrupt behaviors.

III. PEVT-SOC FRAMEWORK OVERVIEW

The PEVT-SoC verification flow is highly automatic. It is
based on the PEVT [7] which targets at the simple verification
environment in Fig. 1(a). The framework of PEVT is shown
in the upper part of Fig. 2. On top of the flow, the PEVT
core engine reads in the microprocessor specification de-
scribed in EXPDL. The EXPDL contains the microprocessor-
dependent information, such as the instruction behaviors, the
exception behaviors and the pipeline behaviors. On the right,
the external interrupt scenarios describe the microprocessor
independent interrupt behaviors for verification. There are

individual interrupt behaviors, concurrent interrupt behaviors
and nested-interrupt behaviors. The PEVT core engine com-
bines the microprocessor specification information with the
external interrupt scenarios to create microprocessor dependent
verification cases. To apply the verification cases in the simula-
tion environment, it generates the processor external interrupt
verification hardware (PEV-HW), including the interrupt ac-
tivator and the monitor engine, and the software trigger. The
interrupt activator automatically stimulates the microprocessor
external interrupt pins while the microprocessor executes the
software trigger. The monitor engine automatically observes
the microprocessor’s responses and provides the verification
report.

There are three advantages of this flow. First, the user only
has to describe the microprocessor model in the EXPDL.
The rest of the work is taken care of automatically. Second,
the PEVT can generate good quality coverage cases which
are hard to compile manually. Third, the simulation-based
verification is automatic, including the external interrupts
triggering and the results monitoring.

Although the case exploration is effective, the verification
environment in PEVT is impractical. Because the MUV con-
nects to the memory directly, there is no protocol latency
and IP conflict, which is not the case in the modern SoC
environment. To overcome the problems, this paper extends the
verification environment of PEVT to SoC as Fig. 1(b) shows.
The verification environment is complex and close to real
world environment. It is effective to discover potential bugs
which cannot be found in the simple verification environment.

A. Verification mechanism of simple verification environment

The external interrupts can be divided into two categories:
operation-independent interrupts and operation-dependent in-
terrupts. [7] Operation-independent interrupts arrive at any
cycle no matter what the microprocessor operates, such as
interrupt request (IRQ) in ARM7 and external interrupt request
level (IRL) in LEON2 [6]. They are generated by external
components. As for operation-dependent interrupts, they only
occurs when the microprocessor does specific operations,
which are memory access operations mostly. For example, the
data abort exception in ARM7 occurs when the microprocessor
accesses an invalid memory address. Therefore, the operation-
dependent external interrupt arrival time is restricted to the
microprocessor memory access time. Fig. 3(a) shows the data
abort exception when the load instruction accesses an invalid
memory address. The data abort arrives at the 2nd execution
stage since the memory access operation occurs there.

The PEVT core engine analyzes the relationship between
the instructions and the external interrupts, and produces the
verification cases. Each verification case generated by the
PEVT core engine contains the external interrupt triggering
information and the expected microprocessor reactions. The
triggering information includes when to trigger (Trigger time)
and what to trigger. This information is read in by the interrupt
activator. The expected reactions include the microprocessor’s
interrupt response time (Response time), the vector address and

373

Data
abort

Fetch Decode Execute1 Execute2 Execute3LOAD

Trigger time : 2
Instruction
address

Int. vec.
Interrupt Service

Routine
Return

Instruction

Action time : 4 Check vector
address

Check return
address

Unknown
cycle

processor
clock

...

Address
bus

Load
Addr.

data
Addr.

... ... Vect.
Addr.

Rtn. Instr.
Addr.

...

Fetch Decode Execute1 Execute2 Execute3LOAD

Microprocessor
clock

Address
bus

data
Addr.

... ...

Abort

HREADY

ErrorHRESP

Hold for 3 cycles in system clock

1 cycle delay for the data address to appear on the bus

Equivalence

(a) (b)

System
clock

Fig. 3. PEVT triggers data abort at second execution stage of LOAD instruction and verify the MUV’s response (a) In simple verification environment (b)
In on-chip bus verification environment

the return address. This information is used by the monitor
engine.

To trigger the external interrupts at specific time, the
interrupt activator takes three steps. Using Fig. 3(a) as an
example. It is the verification case that triggering data abort
external interrupt at the load instruction’s second execution
stage. First, the interrupt activator identifies the fetch stage of
the instruction the external interrupts arrive. This is achieved
by comparing the MUV’s instruction address with that instruc-
tion’s address, which is the load instruction’s address in this
example. Second, it waits for Trigger time. As Fig. 3(a) shows,
it is 2 cycles in this example. Finally, it asserts the external
interrupt, which is the data abort.

The monitor engine works in the similar way as the interrupt
activator does. It contains five steps. For this example, it
verifies whether the MUV responses to the data abort after
the third execution stage. It also verifies the vector address and
return address. First, it identifies the instruction’s fetch stage
in the same way. Second, it waits for Response time, which
is 4 cycles in this case. Third, it checks whether the MUV
responses to the external interrupt. It is achieved by comparing
the microprocessor’s instruction address with the expected
vector address, which is the data abort exception’s vector
address in this case. Fourth, it waits for the microprocessor to
service the exception. Finally, it checks the return address by
comparing the microprocessor’s instruction address with the
return address. Because the service routine processing time is
difficult to be calculated beforehand, the judgment of whether
the microprocessor returns is by comparing the microproces-
sor’s instruction address with a threshold address. [7]

IV. CHALLENGES IN VERIFYING ON OCB
Please note that the cycle numbers of the Trigger time and

the Response time, are calculated beforehand. There are two
reasons why they are not changed in the simple verification
environment. First, there is no protocol latency between the
microprocessor core and the bus. As Fig. 3(a) shows, the
addresses appearing on the bus are the microprocessor’s cur-
rent program counter or current data address. Therefore, the
microprocessor’s current pipeline status can be realized by

observing the current address bus. Second, because there is
only one master IP in this environment, the microprocessor is
not held due to IP conflict.

However, on the OCB, the first condition breaks, and
therefore, the instruction address on the OCB may not reflect
the current MUV’s pipeline status, which we called it the
latency problem. The latency problem causes that the PEV-HW
fails to identify the time of the fetch stage. The OCB protocol
often supports advanced transfer features that are often not
implemented in the microprocessor core, such as burst transfer
in AMBA. To support these features, a bus interface unit (BIU)
often resides between the microprocessor and the OCB for
signals translation. Because of the BIU, there may be latency
from the time the microprocessor sending the address to the
time the wrapper releasing the address on the bus. Fig. 3(b)
is the same verification case on the OCB. Please note that the
data address released at the first execution stage is delayed for
one system clock cycle comparing to Fig. 3(a).

On the other hand, the microprocessor may be held on the
OCB environment. As a result, the PEV-HW cannot operate
with the pre-calculate Trigger time and Response time. The
microprocessor could be held because of two reasons. First,
the OCB usually has the handshaking protocol to solve the IP
competition problem. To access memory, the microprocessor
must first request to grant the bus, then it may be held
for several cycles until it is granted, and then it begins
transmission. Second, the slave IPs on the OCB may not
response immediately. It causes that the microprocessor is
held until the memory responses. As shown in Fig. 3(b), the
microprocessor is held for 4 cycles in the 2nd execution stage,
waits for the memory’s response.

V. SOLUTIONS TO THE CHALLENGES

A. Synchronization and PC Observation

One important observation is required to overcome the
challenges: the internal states of the microprocessor are in-
dependent from the bus protocol. Although a memory access
requires several cycles to complete, the microprocessor core
still completes the memory access operation in one processor

374

PEV-HW Memory

Monitor
engine

Interrupt
activator

Microprocessor
under verification

BIU

BIU

Software trigger
program

BIU

Addr

Interrupt controller

BIU

OCB

E
xt

er
na

li
nt

er
ru

pt
s

External
interrupt
signals

Identical
wrapper

Switch

response

response

mem_abort

Other Master

BIU

Arbiter

(a)

Other
signals

Synchronizer

Program counter &
synchronization signal 3D graphics platform

AHB

Reset
Controller

TIC
ARM7
(MUV)

External
Memory

Controller

Geometry
Engine

Rendering
Engine

S2M
MUX

M2S
MUX

Arbiter Decoder
AHB/APB

Bridge

UART
Interrupt

Controller
Remap/Pause

Controller
Timers MuxP2B

APB

External
Bus

UART[6:0] ExtIRQ[1:0]

Internal
memory

PEV-HW

(b)

Fig. 4. (a) PEV-HW in OCB verification environment (b) 3D graphics integrated platform in EASY environment

clock cycle. As Fig. 3(b) shows, although the memory access
operation takes 4 system clock cycles, it takes only one
processor clock cycle. According to our survey in ARM7 and
LEON2 [6], same holding mechanism exists. In ARM7, it is
achieved by gating clock controlled by the BIU. In LEON2,
it is achieved by disabling the enable signal of the pipeline
register.

With this observation, the two problems in Section IV can
be solved by synchronizing the PEV-HW with the MUV
and monitoring the MUV’s program counter directly. First,
for the latency problem, the PEV-HW can now identify the
fetch stage correctly. Second, the PEV-HW can still operate
according to the pre-calculate Trigger time and Response time.
Fig. 4(a) shows the OCB verification environment with the
enhanced PEV-HW. The additional hardware, called synchro-
nizer, synchronized with the synchronization signal, provides
the program counter to the interrupt activator and the monitor
engine.

B. Reconstructing memory access patterns

However, for the interrupt activator, there is still one prob-
lem with the triggering of the operation-dependent external
interrupts. As mentioned in Section III-A, the operation exter-
nal dependent interrupts depend on the microprocessor oper-
ations, mostly memory operations. In the OCB environment,
as Fig. 3(b) shows, the memory access abort exceptions are
generated from the BIU by interpreting the memory’s error
responses in the bus protocol. Because the memory response
time is unpredictable, the Trigger time cannot be calculated
beforehand.

The solution is to trigger the operation-dependent external
interrupts by the memory access count, instead of the cycle
count. For example, in Fig. 3(b), the memory access which
causes data abort exception is the first data access after the
load instruction is fetched. In order to identify the memory
access requests, the PEV-HW adds a BIU, which is identical
to the memory BIU, as Fig. 4(a) shows. The BIU deals with
the bus protocol and ends with sending the memory core the
request address. Because the BIUs are identical, the interrupt
activator can identify exactly when the memory requests arrive
at the memory. In addition, to make sure the memory access is

requested by the MUV instead of other master IPs, the PEV-
HW also identifies the IP’s identification of the transfers.

As we mentioned, since the operation-dependent external
interrupts are generated by interpreting the memory’s error
response, the PEV-HW triggers them in the same way, instead
of asserting the external interrupt pins directly. The motivation
is to keep the verification environment as real as possible.
To do this, we add the switch module which reside between
the memory BIU and the OCB as shown in Fig. 4(a). It is
controlled by the interrupt activator to replace the response
signal: when the interrupt activator generates the abort signal,
the switch module then changes the response signal from
correct to error. Please note that the memory can be SRAM
or SDRAM, as long as the BIUs are identical.

By carefully analyzing the OCB protocol and the micropro-
cessor’s behaviors on the OCB, only three additional hardware
modules are required for the PEVT-SoC. Among them, the
synchronizer and the switch module are generated automati-
cally by the PEVT-SoC. As for the BIU, it is identical to the
memory BIU. It significantly reduces the development effort
of the verification environment and reduces the development
time.

VI. CASE STUDIES

A. 3D graphics SoC based on ARM’s EASY platform

The PEVT-SoC is successfully applied to the micropro-
cessor in the 3D graphic platform as Fig. 4(b) shows. This
platform is established based on the AHB Example AMBA
SYstem (EASY) [1] released by ARM. It is composed of basic
AMBA components including the arbiter, decoder, mux and
bridge. There are three master IPs in this platform. First, the
academic ARM7 compatible microprocessor, which is the one
under verification, controls the data flow of the 3D graphics
operations. It has gone through extensive verification including
MP3 and µc-OSII porting, and is verified previously by the
PEVT on the simple bus. It is interesting to know what bugs
might appear when connecting to the AMBA. The other two
masters, geometry engine and rendering engine, play as the
accelerators to speed up the 3D graphics operations.

In Fig. 4(b), the detail PEV-HW interconnection surrounded
by the dash block is shown in Fig. 4(a). To keep the verification

375

TABLE I
BUS COMPLEXITY REFLECT ON THE SIMULATION TIME

Interrupt # of Sim. time Ave. time
behavior case (cycle) (cycle)

Mem. OCB Mem. OCB
bus bus

Individual 1,229 71,685 90,801 58 74
interrupt
Concurrent 41,743 4,130,803 5,298,243 99 127
interrupt
Nested 22 2,473 3,218 112 146
interrupt
Total 42,994 4,204,967 5,392,262 98 125

228 22c 230 234 238

SEQ SEQ SEQ SEQ SEQ

228 18 1c 20 24

SEQ SEQ SEQ SEQ SEQ

HADDR [31:0]

HTRANS [1:0]

ADDR [31:0]

TRANS [1:0]

BIU to
bus

Microprocessor
core to BIU

Fig. 5. Wrong TRANS signal causes the BIU sending wrong address

environment as real as possible, the PEV-HW connects the
operation independent external interrupt, such as IRQ, to the
interrupt controller. The correctness of the interrupt controller
and its interactions with the MUV can be verified as well.
Multiple masters are welcome to join the system to create the
IP conflict scenario.

Table I shows the verification case number of the MUV.
The individual interrupt verifies the reaction of single external
interrupt arriving at a instruction. The concurrent interrupt
verifies the behaviors when multiple interrupt arrive at a period
of time. The nested interrupt verifies the nested interrupt
state transition. The cases are applied in both the simple
bus environment and the OCB. Due to the bus protocol
handshaking and microprocessor hold caused by IP conflict
on the OCB, the simulation time on the OCB is much higher
than on the memory bus. It takes 1.28x cycles on average to
complete one case. The total simulation time in real time is
about 5 and half hours using the Verilog-XL HDL simulator
on 1.2 GHz SUN Blade 2000.

By applying the extensive verification cases, one corner
case bug appears which is not found previously. When the
microprocessor jumps to the vector address and requests the
memory access, it sends the wrong transfer type to the BIU,
even though the address is correct. The transfer type indicates
the current memory request is a sequential (SEQ) address or
non-sequential (NONSEQ) address of the previous address.
When jumping to the vector address, it is clearly that the
address is not a sequential address. However, the designer does
not consider the external interrupt effect on the transfer type.

This bug is hard to be found in the simple verification
environment. It is because the transfer type signal is not used in
this environment. Fig. 5 shows the example. When the external
interrupt is accepted, the vector address 0x18 and the wrong
transfer type SEQ are released by the microprocessor core. The
designer may not discover the transfer type is incorrect because
the microprocessor works fine. However, the BIU processes
the address with the transfer type signal. Since the transfer

type indicates that it a sequential transfer, the BIU sends the
incremented address 0x230. It causes that the microprocessor
fetches the wrong instruction. This bug indicates that even with
extensive verification on the memory bus, the microprocessor
may be failed on the OCB.

Even in the SoC verification environment, this bug is not
easy to be discovered, because the transfer type may not be
always SEQ when jumping to the vector address. In fact, by
applying the individual interrupt verification cases, the error
implementation still passes 71% cases. It shows that if the
verification engineer uses the unsystematic ad-hoc approach,
the bug may not be discovered.

B. LEON2

The PEVT-SoC is also applied on the public domain micro-
processor core, SPARC, in an integration system LEON2 [6].
LEON2 has three kinds of external interrupt: interrupt request
(IRL), instruction cache error (ICO) and data cache error
(DCO). IRL is composed by four pins which represent 15
interrupt sources. The experiment shows that the PEVT-SoC
can be painlessly applied to different microprocessors in the
SoC environment. About one day is spent to describe the
EXPDL. The case generation and PEV-HW generation take
a few seconds to complete.

By applying the PEVT-SoC, it generates 290 verification
cases as shown in Table II. The verification case is much less
comparing to ARM7 because the SPARC does not have many
long multi-cycle instructions: only one multi-cycle instruction
whose cycle number exceeds 5. Since the case generation is
considered at every cycle of the instructions under verify [7],
the case number shrinks as the cycle count of the multi-cycle
instruction decreases. In addition, the nested interrupt is not
supported by LEON2.

We compare the PEVT-SoC with the huge self-verify pro-
gram delivered along with the LEON2 hardware. It contains
15 c files to verify the microprocessor core, cache, memory
and peripherals including the interrupt controller, UART, timer.
However, the verification of external interrupt is not stressed:
the ICO and DCO exception never occur. As for the IRL, the
program is intent on verifying the interrupt controller’s func-
tion instead of the microprocessor’s reaction to the IRL. The
program verifies the interrupt controller’s masking, pending
and priority function by asserting the 15 external interrupts
one at a time. Therefore, there are totally 45 IRL triggering
cases regardless of what instruction is in the pipeline stage.
However, in an additional case, it does verify the reaction of
triggering one IRL on a multi-cycle instruction. So the total
verification cases are 46.

This verification mechanism has several potential flaws
which are overcome by the PEVT-SoC. First, the interrupt is
triggered by writing the interrupt controller’s register with the
store instruction. It limits the trigger time to the memory stage
of the store instruction. In fact, the interrupt can arrive at any
cycle. Second, in [7], different instructions may have different
reactions to the external interrupt. It could be dangerous to
neglect the relationship. Third, the verification mechanism is

376

TABLE II
VERIFICATION CASES ON LEON2

Classification Case number
Individual int. 238
Concurrent int. 52
Nested int. Not supported
Total 290

not cycle accurate. The microprocessor could jump to the
vector address one cycle earlier/later, resulting in potential
errors.

The purpose of the comparison is to demonstrate that the
PEVT-SoC can generate extensive cases with little human
effort instead of attacking the effectiveness of the LEON2’s
approach. Because there is no clear definition of how to
implement the interrupt control module, the external interrupt
behaviors’ complexity highly depends on the hardware im-
plementation, resulting in no standard coverage measurement.
The intention of the PEVT-SoC is to generate the highest
coverage verification cases regardless of the hardware imple-
mentation. Because of the high automation, it can compile
huge verification case number in a short time that is impossible
to achieve manually.

Another advantage of the PEVT-SoC on the OCB is that the
verification can be easily applied to different microprocessor as
long as they are on the OCB. In this case, even if the LEON2
is written in VHDL while the generated PEV-HW is written
in Verilog, it is still painless to apply the PEVT on LEON2:
the verification environment establishment takes about 2 hours
by a master student.

VII. CONCLUSION

We have presented the methods to enhance the PEVT in the
SoC verification environment and implemented as A CAD tool
- PEVT-SoC. With careful analysis of the OCB protocol and
the microprocessor’s behaviors on the OCB, three additional
hardware modules are required. Two of them are generated
automatically. One is obtained without modification.

PEVT-SoC was applied to verify an academic implemen-
tation of ARM7 microprocessor core, which had been ver-
ified previously by PEVT in the direct memory connection
environment. PEVT generated 42,994 verification cases and
successfully identified one bug. This bug is difficult to identify
in both the simple bus environment and the SoC environment.
The verification cases take about 5,392,262 cycles of RTL
simulation on a SUN Blade 2000 workstation. The experiment
shows that PEVT could generate highly focused verification
cases which identity potential bugs with much less simula-
tion cycles, compared with traditional regression tests which
consume huge amount of simulation cycles. We also applied
PEVT-SoC on the public domain LEON2 platform to prove
the retargetability. With little human involvement, the PEVT-
SoC can easily compile extensive verification cases at better
coverage, and shorten the verification time significantly.

REFERENCES

[1] ARM. AHB Example AMBA SYstem Technical Reference Manual. ARM,
1999.

[2] M. Bose, M. H. Nodine, A. Chodavadia, W. R. J. Jr, L. R. Nunes, and
V. Zavadsky. Modeling ip responses in testcase generation for systems-on-
chip verification. In Proceedings of the Fourth International Workshop on
Microprocessor Test and Verification (MTV’03), pages 7–10, May 29–30,
2003.

[3] A. Cheng, A. Cheng, and C.-C. Lim. A software test program generator
for verifying system-on-chips. In Proceedings of the 10th IEEE Inter-
national High-Level Design Validation and Test Workshop, pages 79–86,
Nov. 30 -Dec. 2, 2005.

[4] S.-H. Lee, J.-G. Lee, S. Kim, W. Hwangbo, and C.-M. Kyung. Soc
design environment with automated configurable bus generation for rapid
prototyping. In Proceedings of 6th International Conference On ASIC
(ASICON), pages 41–45, Oct. 24–27, 2005.

[5] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, and T. Yoshimura.
A fast hardware/software co-verification method for system-on-a-chip by
using a c/c++ simulator and fpga emulator with shared register communi-
cation. In Proceedings of the 41th Design Automation Conference (DAC),
pages 299–304, June 7–11, 2004.

[6] G. Research. The LEON-2 User’s Manual, June 2002.
[7] F.-C. Yang, W.-K. Huang, and I.-J. Huang. Automatic verification of

external interrupt behaviors for microprocessor design. In Proceedings
of the 44rd Design Automation Conference (DAC), pages 896–901, June
4–8, 2007.

[8] J. Yu, T. Li, and Q. Tan. The use of uml sequence diagram for system-on-
chip system level transaction-based functional verification. In Proceedings
of the Sixth World Congress on Intelligent Control and Automation
(WCICA), pages 6173–6177, June 21–23, 2006.

377

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

